1
|
Li Y, You L, Nepovimova E, Adam V, Heger Z, Jomova K, Valko M, Wu Q, Kuca K. c-Jun N-terminal kinase signaling in aging. Front Aging Neurosci 2024; 16:1453710. [PMID: 39267721 PMCID: PMC11390425 DOI: 10.3389/fnagi.2024.1453710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
2
|
Shoeb M, Meighan T, Kodali VK, Abadin H, Faroon O, Zarus GM, Erdely A, Antonini JM. TERT-independent telomere elongation and shelterin dysregulation after pulmonary exposure to stainless-steel welding fume in-vivo. ENVIRONMENTAL RESEARCH 2024; 250:118515. [PMID: 38373547 PMCID: PMC11375608 DOI: 10.1016/j.envres.2024.118515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Telomeres are inert DNA sequences (TTAGGG) at the end of chromosomes that protect genetic information and maintain DNA integrity. Emerging evidence has demonstrated that telomere alteration can be closely related to occupational exposure and the development of various disease conditions, including cancer. However, the functions and underlying molecular mechanisms of telomere alteration and shelterin dysregulation after welding fume exposures have not been broadly defined. In this study, we analyzed telomere length and shelterin complex proteins in peripheral blood mononuclear cells (PBMCs) and in lung tissue recovered from male Sprague-Dawley rats following exposure by intratracheal instillation (ITI) to 2 mg/rat of manual metal arc-stainless steel (MMA-SS) welding fume particulate or saline (vehicle control). PBMCs and lung tissue were harvested at 30 d after instillation. Our study identified telomere elongation and shelterin dysregulation in PBMCs and lung tissue after welding fume exposure. Mechanistically, telomere elongation was independent of telomerase reverse transcriptase (TERT) activation. Collectively, our findings demonstrated that welding fume-induced telomere elongation was (a) TERT-independent and (b) associated with shelterin complex dysregulation. It is possible that an alteration of telomere length and its regulatory proteins may be utilized as predictive biomarkers for various disease conditions after welding fume exposure. This needs further investigation.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA.
| | - Terence Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Vamsi K Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Henry Abadin
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA
| | - Obaid Faroon
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA
| | - Gregory M Zarus
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| |
Collapse
|
3
|
Yu M, Yang D, Chen C, Xia H. Effects of SETD2 on telomere length and malignant transformation property of Met-5A after one-month crocidolite exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:121-134. [PMID: 37899647 DOI: 10.1080/26896583.2023.2271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Crocidolite is a carcinogen contributing to the pathogenesis of malignant mesothelioma. This study aimed to characterize the possible telomere-related events mediating the malignant transformation of mesothelial cells with and without SETD2 under crocidolite exposure. The crocidolite concentration resulting in 90% viable SETD2 knockout Met-5A (Met-5ASETD2-KO) and Met-5A were estimated to be 0.71 μg/cm2 and 1.8 μg/cm2, respectively, during 72 h of exposure, which was further employed in chronical crocidolite exposure during a 72 h exposure interval per time up to 1 month. Chronical crocidolite-exposed Met-5ASETD2-KO (chronical Cro-Met-5ASETD2-KO) had higher colony formation and increased telomerase reverse transcriptase (TERT) protein levels than chronical crocidolite-exposed Met-5A (chronical Cro-Met-5A) and Met-5ASETD2-KO. Chronical Cro-Met-5ASETD2-KO had longer telomere length (TL) than chronical Cro-Met-5A, although there were no changes in TL for either chronical Cro-Met-5A or chronical Cro-Met-5ASETD2-KO compared with their corresponding cells without crocidolite exposure. BIBR 1532, an inhibitor targeting TERT, partially reduced colony formation and TL for chronical Cro-Met-5ASETD2-KO, while BIBR 1532 reduced TL but had no effect on colony formation for chronical Cro-Met-5A. Therefore, SETD2 deficient mesothelial cells are susceptible to malignant transformation during chronical crocidolite exposure, and TERT-dependent TL modification likely partially drives SETD2 loss-mediated early onset of mesothelial malignant transformation.
Collapse
Affiliation(s)
- Min Yu
- Department of Occupational Health & Radiation Hygiene, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, Zhejiang, China
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dan Yang
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chiyun Chen
- Department of Pulmonary and Critical Care Medicine, Cixi People Hospital Medical Health Group (Cixi People Hospital), Cixi, Zhejiang, China
| | - Hailing Xia
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Shoeb M, Zarus GM, Abadin HE. Profiling Metal-Induced Genotoxic Endpoints. JOURNAL OF ENVIRONMENTAL HEALTH 2023; 86:30-35. [PMID: 39239121 PMCID: PMC11375607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Many toxic metals are involved in the initiation and progression of DNA damage that can result in the activation of DNA damage response machinery at double- and single-stranded DNA; this response can result in global and gene-specific DNA alteration. The toxicological profiles from the Agency for Toxic Substances and Disease Registry (ATSDR) and several other studies have demonstrated the influence of metal exposure-induced genotoxic endpoints and epigenetic modifications. Our review systematically summarizes accumulating evidence from ATSDR toxicological profiles and the available literature that demonstrate a possible induction of various genotoxic endpoints and metal exposures. We include in this article studies on chromium, arsenic, nickel, lead, mercury, and zinc.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention
| | - Gregory M Zarus
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention
| | - Henry E Abadin
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention
| |
Collapse
|
5
|
Salmón P, Burraco P. Telomeres and anthropogenic disturbances in wildlife: A systematic review and meta-analysis. Mol Ecol 2022; 31:6018-6039. [PMID: 35080073 PMCID: PMC9790527 DOI: 10.1111/mec.16370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 01/31/2023]
Abstract
Human-driven environmental changes are affecting wildlife across the globe. These challenges do not influence species or populations to the same extent and therefore a comprehensive evaluation of organismal health is needed to determine their ultimate impact. Evidence suggests that telomeres (the terminal chromosomal regions) are sensitive to environmental conditions and have been posited as a surrogate for animal health and fitness. Evaluation of their use in an applied ecological context is still scarce. Here, using information from molecular and occupational biomedical studies, we aim to provide ecologists and evolutionary biologists with an accessible synthesis of the links between human disturbances and telomere length. In addition, we perform a systematic review and meta-analysis on studies measuring telomere length in wild/wild-derived animals facing anthropogenic disturbances. Despite the relatively small number of studies to date, our meta-analysis revealed a significant small negative association between disturbances and telomere length (-0.092 [-0.153, -0.031]; n = 28; k = 159). Yet, our systematic review suggests that the use of telomeres as a biomarker to understand the anthropogenic impact on wildlife is limited. We propose some research avenues that will help to broadly evaluate their suitability: (i) further causal studies on the link between human disturbances and telomeres; (ii) investigating the organismal implications, in terms of fitness and performance, of a given telomere length in anthropogenically disturbed scenarios; and (iii) better understanding of the underlying mechanisms of telomere dynamics. Future studies in these facets will help to ultimately determine their role as markers of health and fitness in wildlife facing anthropogenic disturbances.
Collapse
Affiliation(s)
- Pablo Salmón
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK,Department of Plant Biology and EcologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Pablo Burraco
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
6
|
Concomitant use of relative telomere length, biological health score and physical/social statuses in the biological aging evaluation of mustard-chemical veterans. Int Immunopharmacol 2022; 109:108785. [DOI: 10.1016/j.intimp.2022.108785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022]
|
7
|
Reece AS, Hulse GK. Epidemiology of Δ8THC-Related Carcinogenesis in USA: A Panel Regression and Causal Inferential Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7726. [PMID: 35805384 PMCID: PMC9265369 DOI: 10.3390/ijerph19137726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
The use of Δ8THC is increasing at present across the USA in association with widespread cannabis legalization and the common notion that it is "legal weed". As genotoxic actions have been described for many cannabinoids, we studied the cancer epidemiology of Δ8THC. Data on 34 cancer types was from the Centers for Disease Control Atlanta Georgia, substance abuse data from the Substance Abuse and Mental Health Services Administration, ethnicity and income data from the U.S. Census Bureau, and cannabinoid concentration data from the Drug Enforcement Agency, were combined and processed in R. Eight cancers (corpus uteri, liver, gastric cardia, breast and post-menopausal breast, anorectum, pancreas, and thyroid) were related to Δ8THC exposure on bivariate testing, and 18 (additionally, stomach, Hodgkins, and Non-Hodgkins lymphomas, ovary, cervix uteri, gall bladder, oropharynx, bladder, lung, esophagus, colorectal cancer, and all cancers (excluding non-melanoma skin cancer)) demonstrated positive average marginal effects on fully adjusted inverse probability weighted interactive panel regression. Many minimum E-Values (mEVs) were infinite. p-values rose from 8.04 × 10-78. Marginal effect calculations revealed that 18 Δ8THC-related cancers are predicted to lead to a further 8.58 cases/100,000 compared to 7.93 for alcoholism and -8.48 for tobacco. Results indicate that between 8 and 20/34 cancer types were associated with Δ8THC exposure, with very high effect sizes (mEVs) and marginal effects after adjustment exceeding tobacco and alcohol, fulfilling the epidemiological criteria of causality and suggesting a cannabinoid class effect. The inclusion of pediatric leukemias and testicular cancer herein demonstrates heritable malignant teratogenesis.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
8
|
Multiwalled Carbon Nanotubes Induce Fibrosis and Telomere Length Alterations. Int J Mol Sci 2022; 23:ijms23116005. [PMID: 35682685 PMCID: PMC9181372 DOI: 10.3390/ijms23116005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Telomere shortening can result in cellular senescence and in increased level of genome instability, which are key events in numerous of cancer types. Despite this, few studies have focused on the effect of nanomaterial exposure on telomere length as a possible mechanism involved in nanomaterial-induced carcinogenesis. In this study, effects of exposure to multiwalled carbon nanotubes (MWCNT) on telomere length were investigated in mice exposed by intrapleural injection, as well as in human lung epithelial and mesothelial cell lines. In addition, cell cycle, apoptosis, and regulation of genes involved in DNA damage repair were assessed. Exposure to MWCNT led to severe fibrosis, infiltration of inflammatory cells in pleura, and mesothelial cell hyperplasia. These histological alterations were accompanied by deregulation of genes involved in fibrosis and immune cell recruitment, as well as a significant shortening of telomeres in the pleura and the lung. Assessment of key carcinogenic mechanisms in vitro confirmed that long-term exposure to the long MWCNT led to a prominent telomere shortening in epithelial cells, which coincided with G1-phase arrest and enhanced apoptosis. Altogether, our data show that telomere shortening resulting in cell cycle arrest and apoptosis may be an important mechanism in long MWCNT-induced inflammation and fibrosis.
Collapse
|
9
|
Cediel-Ulloa A, Isaxon C, Eriksson A, Primetzhofer D, Sortica MA, Haag L, Derr R, Hendriks G, Löndahl J, Gudmundsson A, Broberg K, Gliga AR. Toxicity of stainless and mild steel particles generated from gas-metal arc welding in primary human small airway epithelial cells. Sci Rep 2021; 11:21846. [PMID: 34750422 PMCID: PMC8575907 DOI: 10.1038/s41598-021-01177-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Welding fumes induce lung toxicity and are carcinogenic to humans but the molecular mechanisms have yet to be clarified. The aim of this study was to evaluate the toxicity of stainless and mild steel particles generated via gas-metal arc welding using primary human small airway epithelial cells (hSAEC) and ToxTracker reporter murine stem cells, which track activation of six cancer-related pathways. Metal content (Fe, Mn, Ni, Cr) of the particles was relatively homogenous across particle size. The particles were not cytotoxic in reporter stem cells but stainless steel particles activated the Nrf2-dependent oxidative stress pathway. In hSAEC, both particle types induced time- and dose-dependent cytotoxicity, and stainless steel particles also increased generation of reactive oxygen species. The cellular metal content was higher for hSAEC compared to the reporter stem cells exposed to the same nominal dose. This was, in part, related to differences in particle agglomeration/sedimentation in the different cell media. Overall, our study showed differences in cytotoxicity and activation of cancer-related pathways between stainless and mild steel welding particles. Moreover, our data emphasizes the need for careful assessment of the cellular dose when comparing studies using different in vitro models.
Collapse
Affiliation(s)
- Andrea Cediel-Ulloa
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Axel Eriksson
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Daniel Primetzhofer
- Department of Physics and Astronomy, Applied Nuclear Physics, Uppsala University, Uppsala, Sweden
- The Tandem Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Lars Haag
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Jakob Löndahl
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
| |
Collapse
|
10
|
Abstract
Workplace health and safety is constantly evolving both in developed and developing countries. Under the tumultuous development of technology, working environments are changing, leading to the onset of new occupational hazards and unprecedented risk conditions deriving from the new ways of organizing work. At the same time, progress in medical science, with the knowledge in the fields of genetics, metabolomics, big data, and smart technologies, makes it possible to promptly identify and treat risk conditions that would have escaped notice in the past. Personalized occupational medicine represents the frontier of prevention in the workplace, from the perspective of total worker health and the sustainability of resources. The contributions to this Special Issue range from chemical, physical, and biological to psychosocial risks, and from the search for new ways to control long-known risks, such as mercury toxicity, to observations of the most frequent pathologies in the workplace in the last twenty years, such as repetitive trauma diseases, immunodeficiency transmitted as a result of biological injuries, and violence and psychological trauma in the workplace. New insights are needed in occupational health and safety practice to address the new challenges in this field.
Collapse
|