1
|
Guan A, Dai Z, Jiang C, Sun J, Yang B, Xie B, Chen Q. PGRMC1 promotes NSCLC stemness phenotypes by disrupting TRIM56-mediated ubiquitination of AHR. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167440. [PMID: 39059592 DOI: 10.1016/j.bbadis.2024.167440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Cancer stem cells (CSCs) are responsible for tumor chemoresistance, and the aryl hydrocarbon receptor (AHR) is indispensable for maintaining CSC characteristics. Here, we aimed to investigate how the interaction between progesterone receptor membrane component 1 (PGRMC1) and AHR contributes to the maintenance of CSC phenotypes in non-small cell lung cancer (NSCLC). Clinical data and tissue microarray analyses indicated that patients with elevated PGRMC1 expression had poorer prognoses. Moreover, PGRMC1 overexpression enhanced CSC phenotypes and chemotherapy resistance in vitro and in vivo by modulating AHR ubiquitination. We then determined the specific interaction sites between PGRMC1 and AHR. Mass spectrometry screening identified tripartite motif containing 56 (TRIM56) as the E3 ligase targeting AHR. Notably, PGRMC1 overexpression inhibited the interaction between TRIM56 and AHR. Overall, our study revealed a regulatory mechanism that involves PGRMC1, AHR, and TRIM56, providing insights for developing CSC-targeting strategies in NSCLC treatment.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Nude
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Phenotype
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Progesterone/metabolism
- Tripartite Motif Proteins/metabolism
- Tripartite Motif Proteins/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitination
Collapse
Affiliation(s)
- Anqi Guan
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chen Jiang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jingyi Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Baishuang Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bin Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Solairaja S, Venkatabalasubramanian S. Beyond Hormones: Investigating the Impact of Progesterone Receptor Membrane Component 1 in Lung Adenocarcinoma. J Membr Biol 2024; 257:231-243. [PMID: 38546883 DOI: 10.1007/s00232-024-00311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/23/2024] [Indexed: 07/31/2024]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is a candidate oncogene with a prominent involvement in the pathogenesis of diverse cancers (ovarian, thyroid, breast, colon, head, and neck). Our study ascertains the ability of PGRMC1 to influence WNT members in the non-small cell lung cancer subtype-lung adenocarcinoma (LUAD) and participates in augmented cell proliferation and migration. Both computational and in vitro experimental analyses were performed in this study. Gene silencing, in vitro assays, gene expression & and protein expression studies were performed to ascertain the role of PGRMC1 in LUAD cells. The computational analysis, PGRMC1 gene level expression was analysed using the microarray gene expression omnibus datasets (GSE27262; GSE18842) to compare LUAD tumours and normal tissues. Concurrently, the gene expression profiling interactive analysis of PGRMC1 and Kaplan-Meier survival analysis revealed a decreasing patient survival rate with an increasing PGRMC1 gene expression in LUAD tumour samples. Interestingly, the experimental gene silencing studies were conducted in vitro (si-PGRMC1 Vs si-Control) to understand the essential role of PGRMC1 in regulating WNT-associated genes (WNT1, WNT5A, and WNT11). Comparative experimental cell migration and spheroid formation assays (si-PGRMC1 Vs si-Control) in vitro showed a strong association between PGRMC1 and LUAD. In vitro expression analysis using real-time PCR and western blot further confirmed the connecting link between PGRMC1 and WNT5A compared to other WNT member genes (WNT1 and WNT11) in LUAD. The computational and experimental analyses agreed with one another.
Collapse
Affiliation(s)
- Solaipriya Solairaja
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, Tamil Nadu, 603203, India
| | | |
Collapse
|
3
|
Lin C, Zhang S, Yang P, Zhang B, Guo W, Wu R, Liu Y, Wang J, Wu H, Cai H. Combination of UGT1A1 polymorphism and baseline plasma bilirubin levels in predicting the risk of antipsychotic-induced dyslipidemia in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:52. [PMID: 38760414 PMCID: PMC11101411 DOI: 10.1038/s41537-024-00473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
The prolonged usage of atypical antipsychotic drugs (AAPD) among individuals with schizophrenia often leads to metabolic side effects such as dyslipidemia. These effects not only limit one's selection of AAPD but also significantly reduce compliance and quality of life of patients. Recent studies suggest that bilirubin plays a crucial role in maintaining lipid homeostasis and may be a potential pre-treatment biomarker for individuals with dyslipidemia. The present study included 644 schizophrenia patients from two centers. Demographic and clinical characteristics were collected at baseline and 4 weeks after admission to investigate the correlation between metabolites, episodes, usage of AAPDs, and occurrence of dyslipidemia. Besides, we explored the combined predictive value of genotypes and baseline bilirubin for dyslipidemia by employing multiple PCR targeted capture techniques to sequence two pathways: bilirubin metabolism-related genes and lipid metabolism-related genes. Our results indicated that there existed a negative correlation between the changes in bilirubin levels and triglyceride (TG) levels in patients with schizophrenia. Among three types of bilirubin, direct bilirubin in the baseline (DBIL-bl) proved to be the most effective in predicting dyslipidemia in the ROC analysis (AUC = 0.627, p < 0.001). Furthermore, the odds ratio from multinomial logistic regression analysis showed that UGT1A1*6 was a protective factor for dyslipidemia (ß = -12.868, p < 0.001). The combination of baseline DBIL and UGT1A1*6 significantly improved the performance in predicting dyslipidemia (AUC = 0.939, p < 0.001). Schizophrenia patients with UGT1A1*6 mutation and a certain level of baseline bilirubin may be more resistant to dyslipidemia and have more selections for AAPD than other patients.
Collapse
Affiliation(s)
- Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
- National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
4
|
Marson NA, Gallio AE, Mandal SK, Laskowski RA, Raven EL. In silico prediction of heme binding in proteins. J Biol Chem 2024; 300:107250. [PMID: 38569935 PMCID: PMC11101860 DOI: 10.1016/j.jbc.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.
Collapse
Affiliation(s)
- Noa A Marson
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Roman A Laskowski
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge, UK
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
5
|
Badve P, Meier KK. Defining Requirements for Heme Binding in PGRMC1 and Identifying Key Elements that Influence Protein Dimerization. Biochemistry 2024; 63:926-938. [PMID: 38489495 DOI: 10.1021/acs.biochem.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) binds heme via a surface-exposed site and displays some structural resemblance to cytochrome b5 despite their different functions. In the case of PGRMC1, it is the protein interaction with drug-metabolizing cytochrome P450s and the epidermal growth factor receptor that has garnered the most attention. These interactions are thought to result in a compromised ability to metabolize common chemotherapy agents and to enhance cancer cell proliferation. X-ray crystallography and immunoprecipitation data have suggested that heme-mediated PGRMC1 dimers are important for facilitating these interactions. However, more recent studies have called into question the requirement of heme binding for PGRMC1 dimerization. Our study employs spectroscopic and computational methods to probe and define heme binding and its impact on PGRMC1 dimerization. Fluorescence, electron paramagnetic resonance and circular dichroism spectroscopies confirm heme binding to apo-PGRMC1 and were used to demonstrate the stabilizing effect of heme on the wild-type protein. We also utilized variants (C129S and Y113F) to precisely define the contributions of disulfide bonds and direct heme coordination to PGRMC1 dimerization. Understanding the key factors involved in these processes has important implications for downstream protein-protein interactions that may influence the metabolism of chemotherapeutic agents. This work opens avenues for deeper exploration into the physiological significance of the truncated-PGRMC1 model and developing design principles for potential therapeutics to target PGRMC1 dimerization and downstream interactions.
Collapse
Affiliation(s)
- Prajakta Badve
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Katlyn K Meier
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
6
|
Tang L, Zhang W, Zhang Y, Deng W, Zhao M. Machine Learning-Based Integrated Analysis of PANoptosis Patterns in Acute Myeloid Leukemia Reveals a Signature Predicting Survival and Immunotherapy. Int J Clin Pract 2024; 2024:5113990. [PMID: 38322112 PMCID: PMC10846924 DOI: 10.1155/2024/5113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Objective We conducted a meticulous bioinformatics analysis leveraging expression data of 226 PANRGs obtained from previous studies, as well as clinical data from AML patients derived from the HOVON database. Methods Through meticulous data analysis and manipulation, we were able to categorize AML cases into two distinct PANRG clusters and subsequently identify differentially expressed genes (PRDEGs) with prognostic significance. Furthermore, we organized the patient data into two corresponding gene clusters, allowing us to investigate the intricate relationship between the risk score, patient prognosis, and the immune landscape. Results Our findings disclosed significant associations between the identified PANRGs, gene clusters, patient survival, immune system, and cancer-related biological processes and pathways. Importantly, we successfully constructed a prognostic signature comprising nineteen genes, enabling the stratification of patients into high-risk and low-risk groups based on individually calculated risk scores. Furthermore, we developed a robust and practical nomogram model, integrating the risk score and other pertinent clinical features, to facilitate accurate patient survival prediction. Our comprehensive analysis demonstrated that the high-risk group exhibited notably worse prognosis, with the risk score proving to be significantly correlated with infiltration of most immune cells. The qRT-PCR results revealed significant differential expression patterns of LGR5 and VSIG4 in normal and human leukemia cell lines (HL-60 and MV-4-11). Conclusions Our findings underscore the potential utility of PANoptosis-based molecular clustering and prognostic signatures as predictive tools for assessing patient survival in AML.
Collapse
Affiliation(s)
- Lanlan Tang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yang Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
7
|
Zhou L, Montalvo AD, Collins JM, Wang D. Quantitative analysis of the UDP-glucuronosyltransferase transcriptome in human tissues. Pharmacol Res Perspect 2023; 11:e01154. [PMID: 37983911 PMCID: PMC10659769 DOI: 10.1002/prp2.1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that play important roles in the detoxification of endogenous and exogenous substrates. The 22 human UGTs belong to four families (UGT1, UGT2, UGT3, and UGT8) and differ in their expression, substrate specificity, UDP-sugar preference, and physiological functions. Differential expression/activity of the UGTs contributes to interperson variability in drug responses and toxicity, hormone homeostasis, and disease/cancer risks. However, in normal tissues, the tissue-specific expression profiles and transcriptional regulation of the UGTs are still not fully understood. In this study, we comprehensively analyzed the transcriptome of 22 UGTs in 54 human tissues/regions using RNAseq data from GTEx. We then validated the findings in the liver and small intestine samples using real-time PCR. Our results showed large interindividual variability across tissues in the expression of each UGT and the overall composition of UGT pools, consisting of different UGTs and their splice isoforms. Our results also revealed coexpression of the UGTs, Cytochrome P450s, and many transcription factors in the liver, suggesting potential coregulation or functional coordination. Our results provide the groundwork for future studies to detail further the regulation of the expression and activity of the UGTs.
Collapse
Affiliation(s)
- Lucas Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Abelardo D. Montalvo
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Joseph M. Collins
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
8
|
Nguyen NT, Jaramillo-Martinez V, Mathew M, Suresh VV, Sivaprakasam S, Bhutia YD, Ganapathy V. Sigma Receptors: Novel Regulators of Iron/Heme Homeostasis and Ferroptosis. Int J Mol Sci 2023; 24:14672. [PMID: 37834119 PMCID: PMC10572259 DOI: 10.3390/ijms241914672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Sigma receptors are non-opiate/non-phencyclidine receptors that bind progesterone and/or heme and also several unrelated xenobiotics/chemicals. They reside in the plasma membrane and in the membranes of the endoplasmic reticulum, mitochondria, and nucleus. Until recently, the biology/pharmacology of these proteins focused primarily on their role in neuronal functions in the brain/retina. However, there have been recent developments in the field with the discovery of unexpected roles for these proteins in iron/heme homeostasis. Sigma receptor 1 (S1R) regulates the oxidative stress-related transcription factor NRF2 and protects against ferroptosis, an iron-induced cell death process. Sigma receptor 2 (S2R), which is structurally unrelated to S1R, complexes with progesterone receptor membrane components PGRMC1 and PGRMC2. S2R, PGRMC1, and PGRMC2, either independently or as protein-protein complexes, elicit a multitude of effects with a profound influence on iron/heme homeostasis. This includes the regulation of the secretion of the iron-regulatory hormone hepcidin, the modulation of the activity of mitochondrial ferrochelatase, which catalyzes iron incorporation into protoporphyrin IX to form heme, chaperoning heme to specific hemoproteins thereby influencing their biological activity and stability, and protection against ferroptosis. Consequently, S1R, S2R, PGRMC1, and PGRMC2 potentiate disease progression in hemochromatosis and cancer. These new discoveries usher this intriguing group of non-traditional progesterone receptors into an unchartered territory in biology and medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (N.T.N.); (V.J.-M.); (M.M.); (V.V.S.); (S.S.); (Y.D.B.)
| |
Collapse
|
9
|
Wang L, Chen Q, Ma R, Zhang B, Yang P, Cao T, Jiao S, Chen H, Lin C, Cai H. Insight into mitochondrial dysfunction mediated by clozapine-induced inhibition of PGRMC1 in PC12 cells. Toxicology 2023; 491:153515. [PMID: 37087062 DOI: 10.1016/j.tox.2023.153515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Clozapine is usually considered as the last resort for treatment-resistant schizophrenia (TRS). However, it shows limited efficacy in cognition improvement. Moreover, the metabolic side effects induced by clozapine can aggravate cognitive impairment, which is closely related to its neurotoxicity. Nevertheless, the mechanisms underlying clozapine's neurotoxicity remain largely elusive. In this study, PC12 cells were simultaneously treated with different concentrations (0μM, 10μM, 20μM, 40μM and 80μM) of clozapine and AG205 which functions as a blocking reagent of progesterone receptor membrane component 1 (PGRMC1). In addition, we examined the effect of PGRMC1 in clozapine-induced neurotoxicity through overexpressing or downregulating PGRMC1. Molecular docking and surface plasmon resonance (SPR) analysis indicated that clozapine and AG205 inhibited the binding of endogenous progesterone to PGRMC1. The results showed that high concentration of clozapine and AG205 induced a significant increase in cytotoxicity, reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) collapse, all of which were worsened as concentration increases, while overexpression of PGRMC1 reverted the above toxic effect of clozapine on PC12 cells. Furthermore, clozapine and AG205 also downregulated the expression of PGRMC1, glucagon-like peptide-1 receptor (GLP-1R) and mitofusin2 (Mfn2). Interestingly, overexpression of PGRMC1 could revert these effects. Our data suggest that overexpression of PGRMC1 in PC12 cells prevents and restores clozapine-induced oxidative and mitochondrial damage. We propose PGRMC1 activation as a promising therapeutic strategy for clozapine-induced neurotoxicity to facilitate the relief of neuronal damage.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Rui Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, 427# Furong Road, Changsha, Hunan 410000, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
10
|
Obi CD, Dailey HA, Jami-Alahmadi Y, Wohlschlegel JA, Medlock AE. Proteomic Analysis of Ferrochelatase Interactome in Erythroid and Non-Erythroid Cells. Life (Basel) 2023; 13:577. [PMID: 36836934 PMCID: PMC9958551 DOI: 10.3390/life13020577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Heme is an essential cofactor for multiple cellular processes in most organisms. In developing erythroid cells, the demand for heme synthesis is high, but is significantly lower in non-erythroid cells. While the biosynthesis of heme in metazoans is well understood, the tissue-specific regulation of the pathway is less explored. To better understand this, we analyzed the mitochondrial heme metabolon in erythroid and non-erythroid cell lines from the perspective of ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Affinity purification of FLAG-tagged-FECH, together with mass spectrometric analysis, was carried out to identify putative protein partners in human and murine cell lines. Proteins involved in the heme biosynthetic process and mitochondrial organization were identified as the core components of the FECH interactome. Interestingly, in non-erythroid cell lines, the FECH interactome is highly enriched with proteins associated with the tricarboxylic acid (TCA) cycle. Overall, our study shows that the mitochondrial heme metabolon in erythroid and non-erythroid cells has similarities and differences, and suggests new roles for the mitochondrial heme metabolon and heme in regulating metabolic flux and key cellular processes.
Collapse
Affiliation(s)
- Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30606, USA
| |
Collapse
|