1
|
Nachbar M, Lo Russo M, Gani C, Boeke S, Wegener D, Paulsen F, Zips D, Roque T, Paragios N, Thorwarth D. Automatic AI-based contouring of prostate MRI for online adaptive radiotherapy. Z Med Phys 2024; 34:197-207. [PMID: 37263911 PMCID: PMC11156783 DOI: 10.1016/j.zemedi.2023.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND PURPOSE MR-guided radiotherapy (MRgRT) online plan adaptation accounts for tumor volume changes, interfraction motion and thus allows daily sparing of relevant organs at risk. Due to the high interfraction variability of bladder and rectum, patients with tumors in the pelvic region may strongly benefit from adaptive MRgRT. Currently, fast automatic annotation of anatomical structures is not available within the online MRgRT workflow. Therefore, the aim of this study was to train and validate a fast, accurate deep learning model for automatic MRI segmentation at the MR-Linac for future implementation in a clinical MRgRT workflow. MATERIALS AND METHODS For a total of 47 patients, T2w MRI data were acquired on a 1.5 T MR-Linac (Unity, Elekta) on five different days. Prostate, seminal vesicles, rectum, anal canal, bladder, penile bulb, body and bony structures were manually annotated. These training data consisting of 232 data sets in total was used for the generation of a deep learning based autocontouring model and validated on 20 unseen T2w-MRIs. For quantitative evaluation the validation set was contoured by a radiation oncologist as gold standard contours (GSC) and compared in MATLAB to the automatic contours (AIC). For the evaluation, dice similarity coefficients (DSC), and 95% Hausdorff distances (95% HD), added path length (APL) and surface DSC (sDSC) were calculated in a caudal-cranial window of ± 4 cm with respect to the prostate ends. For qualitative evaluation, five radiation oncologists scored the AIC on the possible usage within an online adaptive workflow as follows: (1) no modifications needed, (2) minor adjustments needed, (3) major adjustments/ multiple minor adjustments needed, (4) not usable. RESULTS The quantitative evaluation revealed a maximum median 95% HD of 6.9 mm for the rectum and minimum median 95% HD of 2.7 mm for the bladder. Maximal and minimal median DSC were detected for bladder with 0.97 and for penile bulb with 0.73, respectively. Using a tolerance level of 3 mm, the highest and lowest sDSC were determined for rectum (0.94) and anal canal (0.68), respectively. Qualitative evaluation resulted in a mean score of 1.2 for AICs over all organs and patients across all expert ratings. For the different autocontoured structures, the highest mean score of 1.0 was observed for anal canal, sacrum, femur left and right, and pelvis left, whereas for prostate the lowest mean score of 2.0 was detected. In total, 80% of the contours were rated be clinically acceptable, 16% to require minor and 4% major adjustments for online adaptive MRgRT. CONCLUSION In this study, an AI-based autocontouring was successfully trained for online adaptive MR-guided radiotherapy on the 1.5 T MR-Linac system. The developed model can automatically generate contours accepted by physicians (80%) or only with the need of minor corrections (16%) for the irradiation of primary prostate on the clinically employed sequences.
Collapse
Affiliation(s)
- Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Monica Lo Russo
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Nikos Paragios
- TheraPanacea, Paris, France; CentraleSupelec, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Rabe M, Dietrich O, Forbrig R, Niyazi M, Belka C, Corradini S, Landry G, Kurz C. Repeatability quantification of brain diffusion-weighted imaging for future clinical implementation at a low-field MR-linac. Radiat Oncol 2024; 19:31. [PMID: 38448888 PMCID: PMC10916154 DOI: 10.1186/s13014-024-02424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Longitudinal assessments of apparent diffusion coefficients (ADCs) derived from diffusion-weighted imaging (DWI) during intracranial radiotherapy at magnetic resonance imaging-guided linear accelerators (MR-linacs) could enable early response assessment by tracking tumor diffusivity changes. However, DWI pulse sequences are currently unavailable in clinical practice at low-field MR-linacs. Quantifying the in vivo repeatability of ADC measurements is a crucial step towards clinical implementation of DWI sequences but has not yet been reported on for low-field MR-linacs. This study assessed ADC measurement repeatability in a phantom and in vivo at a 0.35 T MR-linac. METHODS Eleven volunteers and a diffusion phantom were imaged on a 0.35 T MR-linac. Two echo-planar imaging DWI sequence variants, emphasizing high spatial resolution ("highRes") and signal-to-noise ratio ("highSNR"), were investigated. A test-retest study with an intermediate outside-scanner-break was performed to assess repeatability in the phantom and volunteers' brains. Mean ADCs within phantom vials, cerebrospinal fluid (CSF), and four brain tissue regions were compared to literature values. Absolute relative differences of mean ADCs in pre- and post-break scans were calculated for the diffusion phantom, and repeatability coefficients (RC) and relative RC (relRC) with 95% confidence intervals were determined for each region-of-interest (ROI) in volunteers. RESULTS Both DWI sequence variants demonstrated high repeatability, with absolute relative deviations below 1% for water, dimethyl sulfoxide, and polyethylene glycol in the diffusion phantom. RelRCs were 7% [5%, 12%] (CSF; highRes), 12% [9%, 22%] (CSF; highSNR), 9% [8%, 12%] (brain tissue ROIs; highRes), and 6% [5%, 7%] (brain tissue ROIs; highSNR), respectively. ADCs measured with the highSNR variant were consistent with literature values for volunteers, while smaller mean values were measured for the diffusion phantom. Conversely, the highRes variant underestimated ADCs compared to literature values, indicating systematic deviations. CONCLUSIONS High repeatability of ADC measurements in a diffusion phantom and volunteers' brains were measured at a low-field MR-linac. The highSNR variant outperformed the highRes variant in accuracy and repeatability, at the expense of an approximately doubled voxel volume. The observed high in vivo repeatability confirms the potential utility of DWI at low-field MR-linacs for early treatment response assessment.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and LMU University Hospital Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and LMU University Hospital Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
García-Figueiras R, Baleato-González S, Luna A, Padhani AR, Vilanova JC, Carballo-Castro AM, Oleaga-Zufiria L, Vallejo-Casas JA, Marhuenda A, Gómez-Caamaño A. How Imaging Advances Are Defining the Future of Precision Radiation Therapy. Radiographics 2024; 44:e230152. [PMID: 38206833 DOI: 10.1148/rg.230152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Radiation therapy is fundamental in the treatment of cancer. Imaging has always played a central role in radiation oncology. Integrating imaging technology into irradiation devices has increased the precision and accuracy of dose delivery and decreased the toxic effects of the treatment. Although CT has become the standard imaging modality in radiation therapy, the development of recently introduced next-generation imaging techniques has improved diagnostic and therapeutic decision making in radiation oncology. Functional and molecular imaging techniques, as well as other advanced imaging modalities such as SPECT, yield information about the anatomic and biologic characteristics of tumors for the radiation therapy workflow. In clinical practice, they can be useful for characterizing tumor phenotypes, delineating volumes, planning treatment, determining patients' prognoses, predicting toxic effects, assessing responses to therapy, and detecting tumor relapse. Next-generation imaging can enable personalization of radiation therapy based on a greater understanding of tumor biologic factors. It can be used to map tumor characteristics, such as metabolic pathways, vascularity, cellular proliferation, and hypoxia, that are known to define tumor phenotype. It can also be used to consider tumor heterogeneity by highlighting areas at risk for radiation resistance for focused biologic dose escalation, which can impact the radiation planning process and patient outcomes. The authors review the possible contributions of next-generation imaging to the treatment of patients undergoing radiation therapy. In addition, the possible roles of radio(geno)mics in radiation therapy, the limitations of these techniques, and hurdles in introducing them into clinical practice are discussed. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Sandra Baleato-González
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Antonio Luna
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Anwar R Padhani
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Joan C Vilanova
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Ana M Carballo-Castro
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Laura Oleaga-Zufiria
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Juan Antonio Vallejo-Casas
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Ana Marhuenda
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Antonio Gómez-Caamaño
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| |
Collapse
|
4
|
Abstract
Magnetic resonance imaging-guided radiation therapy (MRIgRT) has improved soft tissue contrast over computed tomography (CT) based image-guided RT. Superior visualization of the target and surrounding radiosensitive structures has the potential to improve oncological outcomes partly due to safer dose-escalation and adaptive planning. In this review, we highlight the workflow of adaptive MRIgRT planning, which includes simulation imaging, daily MRI, identifying isocenter shifts, contouring, plan optimization, quality control, and delivery. Increased utilization of MRIgRT will depend on addressing technical limitations of this technology, while addressing treatment efficacy, cost-effectiveness, and workflow training.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida; Miami, FL
| | - Luise A Künzel
- National Center for Tumor Diseases (NCT), Dresden; German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden Rossendorf, Dresden, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University of Tübingen, Tübingen, Germany..
| |
Collapse
|
5
|
Bryant JM, Doniparthi A, Weygand J, Cruz-Chamorro R, Oraiqat IM, Andreozzi J, Graham J, Redler G, Latifi K, Feygelman V, Rosenberg SA, Yu HHM, Oliver DE. Treatment of Central Nervous System Tumors on Combination MR-Linear Accelerators: Review of Current Practice and Future Directions. Cancers (Basel) 2023; 15:5200. [PMID: 37958374 PMCID: PMC10649155 DOI: 10.3390/cancers15215200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent visualization of central nervous system (CNS) tumors due to its superior soft tissue contrast. Magnetic resonance-guided radiotherapy (MRgRT) has historically been limited to use in the initial treatment planning stage due to cost and feasibility. MRI-guided linear accelerators (MRLs) allow clinicians to visualize tumors and organs at risk (OARs) directly before and during treatment, a process known as online MRgRT. This novel system permits adaptive treatment planning based on anatomical changes to ensure accurate dose delivery to the tumor while minimizing unnecessary toxicity to healthy tissue. These advancements are critical to treatment adaptation in the brain and spinal cord, where both preliminary MRI and daily CT guidance have typically had limited benefit. In this narrative review, we investigate the application of online MRgRT in the treatment of various CNS malignancies and any relevant ongoing clinical trials. Imaging of glioblastoma patients has shown significant changes in the gross tumor volume over a standard course of chemoradiotherapy. The use of adaptive online MRgRT in these patients demonstrated reduced target volumes with cavity shrinkage and a resulting reduction in radiation dose to uninvolved tissue. Dosimetric feasibility studies have shown MRL-guided stereotactic radiotherapy (SRT) for intracranial and spine tumors to have potential dosimetric advantages and reduced morbidity compared with conventional linear accelerators. Similarly, dosimetric feasibility studies have shown promise in hippocampal avoidance whole brain radiotherapy (HA-WBRT). Next, we explore the potential of MRL-based multiparametric MRI (mpMRI) and genomically informed radiotherapy to treat CNS disease with cutting-edge precision. Lastly, we explore the challenges of treating CNS malignancies and special limitations MRL systems face.
Collapse
Affiliation(s)
- John Michael Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ajay Doniparthi
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA;
| | - Joseph Weygand
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ruben Cruz-Chamorro
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ibrahim M. Oraiqat
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jacqueline Andreozzi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jasmine Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Hsiang-Hsuan Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Daniel E. Oliver
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| |
Collapse
|
6
|
McDonald BA, Salzillo T, Mulder S, Ahmed S, Dresner A, Preston K, He R, Christodouleas J, Mohamed ASR, Philippens M, van Houdt P, Thorwarth D, Wang J, Shukla Dave A, Boss M, Fuller CD. Prospective evaluation of in vivo and phantom repeatability and reproducibility of diffusion-weighted MRI sequences on 1.5 T MRI-linear accelerator (MR-Linac) and MR simulator devices for head and neck cancers. Radiother Oncol 2023; 185:109717. [PMID: 37211282 PMCID: PMC10527507 DOI: 10.1016/j.radonc.2023.109717] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Diffusion-weighted imaging (DWI) on MRI-linear accelerator (MR-linac) systems can potentially be used for monitoring treatment response and adaptive radiotherapy in head and neck cancers (HNC) but requires extensive validation. We performed technical validation to compare six total DWI sequences on an MR-linac and MR simulator (MR sim) in patients, volunteers, and phantoms. METHODS Ten human papillomavirus-positive oropharyngeal cancer patients and ten healthy volunteers underwent DWI on a 1.5 T MR-linac with three DWI sequences: echo planar imaging (EPI), split acquisition of fast spin echo signals (SPLICE), and turbo spin echo (TSE). Volunteers were also imaged on a 1.5 T MR sim with three sequences: EPI, BLADE (vendor tradename), and readout segmentation of long variable echo trains (RESOLVE). Participants underwent two scan sessions per device and two repeats of each sequence per session. Repeatability and reproducibility within-subject coefficient of variation (wCV) of mean ADC were calculated for tumors and lymph nodes (patients) and parotid glands (volunteers). ADC bias, repeatability/reproducibility metrics, SNR, and geometric distortion were quantified using a phantom. RESULTS In vivo repeatability/reproducibility wCV for parotids were 5.41%/6.72%, 3.83%/8.80%, 5.66%/10.03%, 3.44%/5.70%, 5.04%/5.66%, 4.23%/7.36% for EPIMR-linac, SPLICE, TSE, EPIMR sim, BLADE, RESOLVE. Repeatability/reproducibility wCV for EPIMR-linac, SPLICE, TSE were 9.64%/10.28%, 7.84%/8.96%, 7.60%/11.68% for tumors and 7.80%/9.95%, 7.23%/8.48%, 10.82%/10.44% for nodes. All sequences except TSE had phantom ADC biases within ± 0.1x10-3 mm2/s for most vials (EPIMR-linac, SPLICE, and BLADE had 2, 3, and 1 vials out of 13 with larger biases, respectively). SNR of b = 0 images was 87.3, 180.5, 161.3, 171.0, 171.9, 130.2 for EPIMR-linac, SPLICE, TSE, EPIMR sim, BLADE, RESOLVE. CONCLUSION MR-linac DWI sequences demonstrated near-comparable performance to MR sim sequences and warrant further clinical validation for treatment response assessment in HNC.
Collapse
Affiliation(s)
| | | | - Samuel Mulder
- The University of Texas MD Anderson Cancer Center, USA
| | - Sara Ahmed
- The University of Texas MD Anderson Cancer Center, USA
| | | | | | - Renjie He
- The University of Texas MD Anderson Cancer Center, USA
| | | | | | | | | | | | - Jihong Wang
- The University of Texas MD Anderson Cancer Center, USA
| | | | | | | |
Collapse
|
7
|
Almansour H, Schick F, Nachbar M, Afat S, Fritz V, Thorwarth D, Zips D, Bertram F, Müller AC, Nikolaou K, Othman AE, Wegener D. Longitudinal monitoring of Apparent Diffusion Coefficient (ADC) in patients with prostate cancer undergoing MR-guided radiotherapy on an MR-Linac at 1.5 T: a prospective feasibility study. Radiol Oncol 2023; 57:184-190. [PMID: 37341194 DOI: 10.2478/raon-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Hybrid MRI linear accelerators (MR-Linac) might enable individualized online adaptation of radiotherapy using quantitative MRI sequences as diffusion-weighted imaging (DWI). The purpose of this study was to investigate the dynamics of lesion apparent diffusion coefficient (ADC) in patients with prostate cancer undergoing MR-guided radiation therapy (MRgRT) on a 1.5T MR-Linac. The ADC values at a diagnostic 3T MRI scanner were used as the reference standard. PATIENTS AND AND METHODS In this prospective single-center study, patients with biopsy-confirmed prostate cancer who underwent both an MRI exam at a 3T scanner (MRI3T) and an exam at a 1.5T MR-Linac (MRL) at baseline and during radiotherapy were included. Lesion ADC values were measured by a radiologist and a radiation oncologist on the slice with the largest lesion. ADC values were compared before vs. during radiotherapy (during the second week) on both systems via paired t-tests. Furthermore, Pearson correlation coefficient and inter-reader agreement were computed. RESULTS A total of nine male patients aged 67 ± 6 years [range 60 - 67 years] were included. In seven patients, the cancerous lesion was in the peripheral zone, and in two patients the lesion was in the transition zone. Inter-reader reliability regarding lesion ADC measurement was excellent with an intraclass correlation coefficient of (ICC) > 0.90 both at baseline and during radiotherapy. Thus, the results of the first reader will be reported. In both systems, there was a statistically significant elevation of lesion ADC during radiotherapy (mean MRL-ADC at baseline was 0.97 ± 0.18 × 10-3 mm2/s vs. mean MRL-ADC during radiotherapy 1.38 ± 0.3 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.41 ± 0.20 × 10-3 mm2/s, p < 0.001). Mean MRI3T-ADC at baseline was 0.78 ± 0.165 × 10-3 mm2/s vs. mean MRI3T-ADC during radiotherapy 0.99 ± 0.175 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.21 ± 0.96 × 10-3 mm2/s p < 0.001). The absolute ADC values from MRL were consistently significantly higher than those from MRI3T at baseline and during radiotherapy (p < = 0.001). However, there was a strong positive correlation between MRL-ADC and MRI3T-ADC at baseline (r = 0.798, p = 0.01) and during radiotherapy (r = 0.863, p = 0.003). CONCLUSIONS Lesion ADC as measured on MRL increased significantly during radiotherapy and ADC measurements of lesions on both systems showed similar dynamics. This indicates that lesion ADC as measured on the MRL may be used as a biomarker for evaluation of treatment response. In contrast, absolute ADC values as calculated by the algorithm of the manufacturer of the MRL showed systematic deviations from values obtained on a diagnostic 3T MRI system. These preliminary findings are promising but need large-scale validation. Once validated, lesion ADC on MRL might be used for real-time assessment of tumor response in patients with prostate cancer undergoing MR-guided radiation therapy.
Collapse
Affiliation(s)
- Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Fritz Schick
- Section for Experimental Radiology, Department of Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Marcel Nachbar
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Victor Fritz
- Section for Experimental Radiology, Department of Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Felix Bertram
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Arndt-Christian Müller
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
- Department of Radiation Oncology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| |
Collapse
|
8
|
Klaar R, Rabe M, Gaass T, Schneider MJ, Benlala I, Eze C, Corradini S, Belka C, Landry G, Kurz C, Dinkel J. Ventilation and perfusion MRI at a 0.35 T MR-Linac: feasibility and reproducibility study. Radiat Oncol 2023; 18:58. [PMID: 37013541 PMCID: PMC10069152 DOI: 10.1186/s13014-023-02244-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Hybrid devices that combine radiation therapy and MR-imaging have been introduced in the clinical routine for the treatment of lung cancer. This opened up not only possibilities in terms of accurate tumor tracking, dose delivery and adapted treatment planning, but also functional lung imaging. The aim of this study was to show the feasibility of Non-uniform Fourier Decomposition (NuFD) MRI at a 0.35 T MR-Linac as a potential treatment response assessment tool, and propose two signal normalization strategies for enhancing the reproducibility of the results. METHODS Ten healthy volunteers (median age 28 ± 8 years, five female, five male) were repeatedly scanned at a 0.35 T MR-Linac using an optimized 2D+t balanced steady-state free precession (bSSFP) sequence for two coronal slice positions. Image series were acquired in normal free breathing with breaks inside and outside the scanner as well as deep and shallow breathing. Ventilation- and perfusion-weighted maps were generated for each image series using NuFD. For intra-volunteer ventilation map reproducibility, a normalization factor was defined based on the linear correlation of the ventilation signal and diaphragm position of each scan as well as the diaphragm motion amplitude of a reference scan. This allowed for the correction of signal dependency on the diaphragm motion amplitude, which varies with breathing patterns. The second strategy, which can be used for ventilation and perfusion, eliminates the dependency on the signal amplitude by normalizing the ventilation/perfusion maps with the average ventilation/perfusion signal within a selected region-of-interest (ROI). The position and size dependency of this ROI was analyzed. To evaluate the performance of both approaches, the normalized ventilation/perfusion-weighted maps were compared and the deviation of the mean ventilation/perfusion signal from the reference was calculated for each scan. Wilcoxon signed-rank tests were performed to test whether the normalization methods can significantly improve the reproducibility of the ventilation/perfusion maps. RESULTS The ventilation- and perfusion-weighted maps generated with the NuFD algorithm demonstrated a mostly homogenous distribution of signal intensity as expected for healthy volunteers regardless of the breathing maneuver and slice position. Evaluation of the ROI's size and position dependency showed small differences in the performance. Applying both normalization strategies improved the reproducibility of the ventilation by reducing the median deviation of all scans to 9.1%, 5.7% and 8.6% for the diaphragm-based, the best and worst performing ROI-based normalization, respectively, compared to 29.5% for the non-normalized scans. The significance of this improvement was confirmed by the Wilcoxon signed rank test with [Formula: see text] at [Formula: see text]. A comparison of the techniques against each other revealed a significant difference in the performance between best ROI-based normalization and worst ROI ([Formula: see text]) and between best ROI-based normalization and scaling factor ([Formula: see text]), but not between scaling factor and worst ROI ([Formula: see text]). Using the ROI-based approach for the perfusion-maps, the uncorrected deviation of 10.2% was reduced to 5.3%, which was shown to be significant ([Formula: see text]). CONCLUSIONS Using NuFD for non-contrast enhanced functional lung MRI at a 0.35 T MR-Linac is feasible and produces plausible ventilation- and perfusion-weighted maps for volunteers without history of chronic pulmonary diseases utilizing different breathing patterns. The reproducibility of the results in repeated scans significantly benefits from the introduction of the two normalization strategies, making NuFD a potential candidate for fast and robust early treatment response assessment of lung cancer patients during MR-guided radiotherapy.
Collapse
Affiliation(s)
- Rabea Klaar
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Gaass
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Moritz J. Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Ilyes Benlala
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, F-33600 Pessac, France
- CHU Bordeaux, Service d’Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d’Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-thoracique de Bordeaux, F-33600 Pessac, France
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
9
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.M.B.)
| |
Collapse
|
10
|
Lagendijk JJW, Raaymakers BW, Intven MPW, van der Voort van Zyp JRN. ESTRO Breur lecture 2022: Real-time MRI-guided radiotherapy: The next generation standard? Radiother Oncol 2022; 176:244-248. [PMID: 36446518 DOI: 10.1016/j.radonc.2022.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jan J W Lagendijk
- Department of Radiotherapy, Division Imaging and Oncology, University Medical Centre Utrecht, The Netherlands
| | - Bas W Raaymakers
- Department of Radiotherapy, Division Imaging and Oncology, University Medical Centre Utrecht, The Netherlands
| | - Martijn P W Intven
- Department of Radiotherapy, Division Imaging and Oncology, University Medical Centre Utrecht, The Netherlands.
| | | |
Collapse
|
11
|
Gurney-Champion OJ, Landry G, Redalen KR, Thorwarth D. Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy. Semin Radiat Oncol 2022; 32:377-388. [DOI: 10.1016/j.semradonc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Whiteside L, McDaid L, Hales RB, Rodgers J, Dubec M, Huddart RA, Choudhury A, Eccles CL. To see or not to see: Evaluation of magnetic resonance imaging sequences for use in MR Linac-based radiotherapy treatment. J Med Imaging Radiat Sci 2022; 53:362-373. [PMID: 35850925 DOI: 10.1016/j.jmir.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND/PURPOSE This work evaluated the suitability of MR derived sequences for use in online adaptive RT workflows on a 1.5 Tesla (T) MR-Linear Accelerator (MR Linac). MATERIALS/METHODS Non-patient volunteers were recruited to an ethics approved MR Linac imaging study. Participants attended 1-3 imaging sessions in which a combination of DIXON, 2D and 3D volumetric T1 and T2 weighted images were acquired axially, with volunteers positioned using immobilisation devices typical for radiotherapy to the anatomical region being scanned. Images from each session were appraised by three independent reviewers to determine optimal sequences over six anatomical regions: head and neck, female and male pelvis, thorax (lung), thorax (breast/chest wall) and abdomen. Site specific anatomical structures were graded by the perceived ability to accurately contour a typical organ at risk. Each structure was independently graded on a 4-point Likert scale as 'Very Clear', 'Clear', 'Unclear' or 'Not visible' by observers, consisting of radiographers (therapeutic and diagnostic) and clinicians. RESULTS From July 2019 to September 2019, 18 non-patient volunteers underwent 24 imaging sessions in the following anatomical regions: head and neck (n=3), male pelvis (n=4), female pelvis (n=5), lung/oesophagus (n=5) abdomen (n=4) and chest wall/breast (n=3). T2 sequences were the most preferred for perceived ability to contour anatomy in both male and female pelvis. For all other sites T1 weighted DIXON sequences were most favourable. CONCLUSION This study has determined the preferential sequence selection for organ visualisation, as a pre-requisite to our institution adopting MR-guided radiotherapy for a more diverse range of disease sites.
Collapse
Affiliation(s)
- Lee Whiteside
- The Christie NHS Foundation Trust, Department of Radiotherapy, Manchester, United Kingdom.
| | - Lisa McDaid
- The Christie NHS Foundation Trust, Department of Radiotherapy, Manchester, United Kingdom
| | - Rosie B Hales
- The Christie NHS Foundation Trust, Department of Radiotherapy, Manchester, United Kingdom
| | - John Rodgers
- The Christie NHS Foundation Trust, Department of Radiotherapy, Manchester, United Kingdom
| | - Michael Dubec
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, United Kingdom
| | - Robert A Huddart
- The Institute of Cancer Research, London UK; The Royal Marsden, London, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Clinical Oncology, The Christie NHS Foundation Trust, United Kingdom
| | - Cynthia L Eccles
- The Christie NHS Foundation Trust, Department of Radiotherapy, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
13
|
Pham TT, Lim S, Lin M. Predicting neoadjuvant chemoradiotherapy response with functional imaging and liquid biomarkers in locally advanced rectal cancer. Expert Rev Anticancer Ther 2022; 22:1081-1098. [PMID: 35993178 DOI: 10.1080/14737140.2022.2114457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Non-invasive predictive quantitative biomarkers are required to guide treatment individualization in patients with locally advanced rectal cancer (LARC) in order to maximise therapeutic outcomes and minimise treatment toxicity. Magnetic resonance imaging (MRI), positron emission tomography (PET) and blood biomarkers have the potential to predict chemoradiotherapy (CRT) response in LARC. AREAS COVERED This review examines the value of functional imaging (MRI and PET) and liquid biomarkers (circulating tumor cells (CTCs) and circulating tumor nucleic acid (ctNA)) in the prediction of CRT response in LARC. Selected imaging and liquid biomarker studies are presented and the current status of the most promising imaging (apparent diffusion co-efficient (ADC), Ktrans, SUVmax, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) and liquid biomarkers (circulating tumor cells (CTCs), circulating tumor nucleic acid (ctNA)) is discussed. The potential applications of imaging and liquid biomarkers for treatment stratification and a pathway to clinical translation are presented. EXPERT OPINION Functional imaging and liquid biomarkers provide novel ways of predicting CRT response. The clinical and technical validation of the most promising imaging and liquid biopsy biomarkers in multi-centre studies with harmonised acquisition techniques is required. This will enable clinical trials to investigate treatment escalation or de-escalation pathways in rectal cancer.
Collapse
Affiliation(s)
- Trang Thanh Pham
- South West Sydney Clinical School, Faculty of Medicine and Health, University of New South Wales, Liverpool NSW Australia 2170.,Department of Radiation Oncology, Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool NSW Australia 2170.,Ingham Institute for Applied Medical Research, Liverpool NSW Australia 2170
| | - Stephanie Lim
- Ingham Institute for Applied Medical Research, Liverpool NSW Australia 2170.,Department of Medical Oncology, Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown Australia 2560.,School of Medicine, Western Sydney University, Campbelltown, Sydney 2560
| | - Michael Lin
- South West Sydney Clinical School, Faculty of Medicine and Health, University of New South Wales, Liverpool NSW Australia 2170.,School of Medicine, Western Sydney University, Campbelltown, Sydney 2560.,Department of Nuclear Medicine, Liverpool Hospital, Liverpool NSW Australia 2170
| |
Collapse
|
14
|
Habrich J, Boeke S, Nachbar M, Nikolaou K, Schick F, Gani C, Zips D, Thorwarth D. Repeatability of diffusion-weighted magnetic resonance imaging in head and neck cancer at a 1.5 T MR-Linac. Radiother Oncol 2022; 174:141-148. [PMID: 35902042 DOI: 10.1016/j.radonc.2022.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Functional information acquired through diffusion-weighted magnetic resonance imaging (DW-MRI) may be beneficial for personalized head and neck cancer (HNC) radiotherapy. Technical validation is required before DW-MRI based radiotherapy interventions can be realized clinically. The aim of this study was to assess the repeatability of apparent diffusion coefficients (ADC) derived from DW-MRI in HNC using echo-planar imaging (EPI) on a 1.5 T MR-Linac. MATERIAL AND METHODS A total of eleven HNC patients underwent test/retest DW-MRI scans at least once per week during fractionated radiotherapy at the MR-Linac. An EPI DW-MRI test scan (b=0, 150, 500 s/mm2) was acquired before the start of adaptive MR-guided radiotherapy in addition to an identical retest scan after irradiation. Volumes-of-interest (VOI) were defined manually for parotid (PTs) and submandibular glands (SMs), gross tumor volume (GTV) and lymph nodes (LNs). Mean ADC was calculated for all VOI in all test/retest scans. Absolute/relative repeatability coefficients (RCs/relRCs) as well as intraclass correlation coefficients (ICCs) were determined for all VOI. RESULTS A total of 81 datasets were analyzed. Mean test ADC values were 1380/1416, 950/1010, 1520 and 1344·10-6 mm2/s for left/right SM and PT, GTV and LNs, respectively. Accordingly, RC (relRC) values were determined as 271/281 (19.4/21.8%) and 138/155 (13.3/15.2%), 457 (31.3%) and 310·10-6 mm2/s (23.5%). ICC resulted in 0.80/0.87, 0.97/0.94, 0.75 and 0.83 for left/right SM and PT, GTV and LNs, respectively. CONCLUSION The repeatability of ADC derived from EPI DW-MRI at the 1.5 T MR-Linac appears reasonable to be used for future biologically adapted MR-guided radiotherapy.
Collapse
Affiliation(s)
- Jonas Habrich
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany.
| | - Simon Boeke
- German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, University of Tübingen, Germany
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Germany
| | - Fritz Schick
- Section for Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University of Tübingen, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, University of Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Keall PJ, Brighi C, Glide-Hurst C, Liney G, Liu PZY, Lydiard S, Paganelli C, Pham T, Shan S, Tree AC, van der Heide UA, Waddington DEJ, Whelan B. Integrated MRI-guided radiotherapy - opportunities and challenges. Nat Rev Clin Oncol 2022; 19:458-470. [PMID: 35440773 DOI: 10.1038/s41571-022-00631-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/25/2022]
Abstract
MRI can help to categorize tissues as malignant or non-malignant both anatomically and functionally, with a high level of spatial and temporal resolution. This non-invasive imaging modality has been integrated with radiotherapy in devices that can differentially target the most aggressive and resistant regions of tumours. The past decade has seen the clinical deployment of treatment devices that combine imaging with targeted irradiation, making the aspiration of integrated MRI-guided radiotherapy (MRIgRT) a reality. The two main clinical drivers for the adoption of MRIgRT are the ability to image anatomical changes that occur before and during treatment in order to adapt the treatment approach, and to image and target the biological features of each tumour. Using motion management and biological targeting, the radiation dose delivered to the tumour can be adjusted during treatment to improve the probability of tumour control, while simultaneously reducing the radiation delivered to non-malignant tissues, thereby reducing the risk of treatment-related toxicities. The benefits of this approach are expected to increase survival and quality of life. In this Review, we describe the current state of MRIgRT, and the opportunities and challenges of this new radiotherapy approach.
Collapse
Affiliation(s)
- Paul J Keall
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia.
| | - Caterina Brighi
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Carri Glide-Hurst
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Gary Liney
- Ingham Institute of Applied Medical Research, Sydney, New South Wales, Australia
| | - Paul Z Y Liu
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Suzanne Lydiard
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Trang Pham
- Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Shanshan Shan
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Alison C Tree
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, UK
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David E J Waddington
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Brendan Whelan
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Welz S, Paulsen F, Pfannenberg C, Reimold M, Reischl G, Nikolaou K, La Fougère C, Alber M, Belka C, Zips D, Thorwarth D. Dose escalation to hypoxic subvolumes in head and neck cancer: A randomized phase II study using dynamic [ 18F]FMISO PET/CT. Radiother Oncol 2022; 171:30-36. [PMID: 35395276 DOI: 10.1016/j.radonc.2022.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Tumor hypoxia is a major cause of resistance to radiochemotherapy in locally advanced head-and-neck cancer (LASCCHN). We present results of a randomized phase II trial on hypoxia dose escalation (DE) in LASCCHN based on dynamic [18F]FMISO (dynFMISO) positron emission tomography (PET). The purpose was to confirm the prognostic value of hypoxia PET and assess feasibility, toxicity and efficacy of hypoxia-DE. MATERIALS AND METHODS Patients with LASCCHN underwent baseline dynFMISO PET/CT. Hypoxic volumes (HV) were derived from dynFMISO data. Patients with hypoxic tumors (HV>0) were randomized into standard radiotherapy (ST: 70Gy/35fx) or dose escalation (DE: 77Gy/35fx) to the HV. Patients with non-hypoxic tumors were treated with ST. After a minimum follow-up of 2 years, feasibility, acute/late toxicity and local control (LC) were analyzed. RESULTS The study was closed prematurely due to slow accrual. Between 2009 and 2017, 53 patients were enrolled, 39 (74%) had hypoxic tumors and were randomized into ST or DE. For non-hypoxic patients, 100% 5-year LC was observed compared to 74% in patients with hypoxic tumors (p=0.039). The difference in 5-year LC between DE (16/19) and ST (10/17) was 25%, p=0.150. No relevant differences related to acute and late toxicities between the groups were observed. CONCLUSION This study confirmed the prognostic value of hypoxia PET in LASCCHN for LC. Outcome after hypoxia DE appears promising and may support the concept of DE. Slow accrual and premature closure may partly be due to a high complexity of the study setup which needs to be considered for future multicenter trials.
Collapse
Affiliation(s)
- Stefan Welz
- Department of Radiation Oncology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Christina Pfannenberg
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Matthias Reimold
- Department of Nuclear Medicine, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Christian La Fougère
- Department of Nuclear Medicine, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Markus Alber
- Section for Medical Physics, Department of Radiation Oncology, Heidelberg University, Heidelberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University of Munich, Germany; Department of Radiation Oncology, LMU Munich, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), partner site Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Muren LP, Redalen KR, Thorwarth D. Five years, 20 volumes and 300 publications of Physics and Imaging in Radiation Oncology. Phys Imaging Radiat Oncol 2022; 21:123-125. [PMID: 35265751 PMCID: PMC8899405 DOI: 10.1016/j.phro.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
18
|
de Leon J, Crawford D, Moutrie Z, Alvares S, Hogan L, Pagulayan C, Jelen U, Loo C, Aylward JD, Condon K, Dunkerley N, Heinke MY, Sampaio S, Simon K, Twentyman T, Jameson MG. Early experience with MR-guided adaptive radiotherapy using a 1.5 T MR-Linac: First 6 months of operation using adapt to shape workflow. J Med Imaging Radiat Oncol 2021; 66:138-145. [PMID: 34643065 DOI: 10.1111/1754-9485.13336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The magnetic resonance linear accelerator (MRL) offers improved soft tissue visualization to guide daily adaptive radiotherapy treatment. This manuscript aims to report initial experience using a 1.5 T MRL in the first 6 months of operation, including training, workflows, timings and dosimetric accuracy. METHODS All staff received training in MRI safety and MRL workflows. Initial sites chosen for treatment were stereotactic and hypofractionated prostate, thoraco-abdomino-pelvic metastasis, prostate bed and bladder. The Adapt To Shape (ATS) workflow was chosen to be the focus of treatment as it is the most robust solution for daily adaptive radiotherapy. A workflow was created addressing patient suitability, simulation, planning, treatment and peer review. Treatment times were recorded breaking down into the various stages of treatment. RESULTS A total of 37 patients were treated and 317 fractions delivered (of which 313 were delivered using an ATS workflow) in our initial 6 months. Average treatment times over the entire period were 50 and 38 min for stereotactic and non-stereotactic treatments respectively. Average treatment times reduced each month. The average difference between reference planned and ionization chamber measured dose was 0.0 ± 1.4%. CONCLUSION The MRL was successfully established in an Australian setting. A focus on training and creating a detailed workflow from patient selection, review and treatment are paramount to establishing new treatment programmes.
Collapse
Affiliation(s)
| | | | - Zoë Moutrie
- GenesisCare, Sydney, New South Wales, Australia
| | | | | | | | | | - Conrad Loo
- GenesisCare, Sydney, New South Wales, Australia
| | - Jack D Aylward
- GenesisCare, Sydney, New South Wales, Australia.,Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | | | | | | | | | - Kathy Simon
- GenesisCare, Sydney, New South Wales, Australia
| | | | - Michael G Jameson
- GenesisCare, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Lawrence LSP, Chan RW, Chen H, Keller B, Stewart J, Ruschin M, Chugh B, Campbell M, Theriault A, Stanisz GJ, MacKenzie S, Myrehaug S, Detsky J, Maralani PJ, Tseng CL, Czarnota GJ, Sahgal A, Lau AZ. Accuracy and precision of apparent diffusion coefficient measurements on a 1.5 T MR-Linac in central nervous system tumour patients. Radiother Oncol 2021; 164:155-162. [PMID: 34592363 DOI: 10.1016/j.radonc.2021.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE MRI linear accelerators (MR-Linacs) may allow treatment adaptation to be guided by quantitative MRI including diffusion-weighted imaging (DWI). The aim of this study was to evaluate the accuracy and precision of apparent diffusion coefficient (ADC) measurements from DWI on a 1.5 T MR-Linac in patients with central nervous system (CNS) tumours through comparison with a diagnostic scanner. MATERIALS AND METHODS CNS patients were treated using a 1.5 T Elekta Unity MR-Linac. DWI was acquired during MR-Linac treatment and on a Philips Ingenia 1.5 T. The agreement between the two scanners on median ADC over the gross tumour/clinical target volumes (GTV/CTV) and in brain regions (white/grey matter, cerebrospinal fluid (CSF)) was computed. Repeated scans were used to estimate ADC repeatability. Daily changes in ADC over the GTV of high-grade gliomas were characterized from MR-Linac scans. RESULTS DWI from 59 patients was analyzed. MR-Linac ADC measurements showed a small bias relative to Ingenia measurements in white matter, grey matter, GTV, and CTV (bias: -0.05 ± 0.03, -0.08 ± 0.05, -0.1 ± 0.1, -0.08 ± 0.07 μm2/ms). ADC differed substantially in CSF (bias: -0.5 ± 0.3 μm2/ms). The repeatability of MR-Linac ADC over white/grey matter was similar to previous reports (coefficients of variation for median ADC: 1.4%/1.8%). MR-Linac ADC changes in the GTV were detectable. CONCLUSIONS It is possible to obtain ADC measurements in the brain on a 1.5 T MR-Linac that are comparable to those of diagnostic-quality scanners. This technical validation study adds to the foundation for future studies that will correlate brain tumour ADC with clinical outcomes.
Collapse
Affiliation(s)
- Liam S P Lawrence
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Rachel W Chan
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Brian Keller
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - James Stewart
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Brige Chugh
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Physics, Ryerson University, Toronto, Canada
| | - Mikki Campbell
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Aimee Theriault
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Neurosurgery and Paediatric Neurosurgery, Medical University, Lublin, Poland
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Neurosurgery and Paediatric Neurosurgery, Medical University, Lublin, Poland
| | - Scott MacKenzie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Pejman J Maralani
- Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Greg J Czarnota
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Angus Z Lau
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| |
Collapse
|
20
|
Salzillo TC, Taku N, Wahid KA, McDonald BA, Wang J, van Dijk LV, Rigert JM, Mohamed ASR, Wang J, Lai SY, Fuller CD. Advances in Imaging for HPV-Related Oropharyngeal Cancer: Applications to Radiation Oncology. Semin Radiat Oncol 2021; 31:371-388. [PMID: 34455992 DOI: 10.1016/j.semradonc.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While there has been an overall decline of tobacco and alcohol-related head and neck cancer in recent decades, there has been an increased incidence of HPV-associated oropharyngeal cancer (OPC). Recent research studies and clinical trials have revealed that the cancer biology and clinical progression of HPV-positive OPC is unique relative to its HPV-negative counterparts. HPV-positive OPC is associated with higher rates of disease control following definitive treatment when compared to HPV-negative OPC. Thus, these conditions should be considered unique diseases with regards to treatment strategies and survival. In order to sufficiently characterize HPV-positive OPC and guide treatment strategies, there has been a considerable effort to diagnose, prognose, and track the treatment response of HPV-associated OPC through advanced imaging research. Furthermore, HPV-positive OPC patients are prime candidates for radiation de-escalation protocols, which will ideally reduce toxicities associated with radiation therapy and has prompted additional imaging research to detect radiation-induced changes in organs at risk. This manuscript reviews the various imaging modalities and current strategies for tackling these challenges as well as provides commentary on the potential successes and suggested improvements for the optimal treatment of these tumors.
Collapse
Affiliation(s)
- Travis C Salzillo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Nicolette Taku
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Kareem A Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Brigid A McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Jarey Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Lisanne V van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Jillian M Rigert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Jihong Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
21
|
Wegener D, Zips D, Gani C, Boeke S, Nikolaou K, Othman AE, Almansour H, Paulsen F, Müller AC. [Primary treatment of prostate cancer using 1.5 T MR-linear accelerator]. Radiologe 2021; 61:839-845. [PMID: 34297139 PMCID: PMC8410708 DOI: 10.1007/s00117-021-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Hintergrund Der potenzielle Nutzen des verbesserten Weichteilkontrastes von MR-Sequenzen gegenüber der Computertomographie (CT) für die Radiotherapie des Prostatakarzinoms ist bekannt und führt zu konsistenteren und kleineren Zielvolumina sowie verbesserter Risikoorganschonung. Hybridgeräte aus Magnetresonanztomographie (MRT) und Linearbeschleuniger (MR-Linac) stellen eine neue vielversprechende Erweiterung der radioonkologischen Therapieoptionen dar. Material und Methoden Dieser Artikel gibt eine Übersicht über bisherige Erfahrungen, Indikationen, Vorteile und Herausforderungen für die Radiotherapie des primären Prostatakarzinoms mit dem 1,5-T-MR-Linac. Ergebnisse Alle strahlentherapeutischen Therapieindikationen für das primäre Prostatakarzinom können mit dem 1,5-T-MR-Linac abgedeckt werden. Die potenziellen Vorteile umfassen die tägliche MR-basierte Lagekontrolle in Bestrahlungsposition und die Möglichkeit der täglichen Echtzeitanpassung des Bestrahlungsplans an die aktuelle Anatomie der Beckenorgane (adaptive Strahlentherapie). Zusätzlich werden am 1,5-T-MR-Linac funktionelle MRT-Sequenzen für individuelles Response-Assessment für die Therapieanpassung untersucht. Dadurch soll das therapeutische Fenster weiter optimiert werden. Herausforderungen stellen u. a. die technische Komplexität und die Dauer der Behandlungssitzung dar. Schlussfolgerung Der 1,5-T-MR-Linac erweitert das radioonkologische Spektrum in der Therapie des Prostatakarzinoms und bietet Vorteile durch tagesaktuelle MRT-basierte Zielvolumendefinition und Planadaptation. Weitere klinische Untersuchungen sind notwendig, um die Patienten zu identifizieren, die von der Behandlung am MR-Linac gegenüber anderen strahlentherapeutischen Methoden besonders profitieren.
Collapse
Affiliation(s)
- Daniel Wegener
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| | - Daniel Zips
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Cihan Gani
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Simon Boeke
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Konstantin Nikolaou
- Universitätsklinik für Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
| | - Ahmed E Othman
- Universitätsklinik für Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
- Universitätsklink für Neuroradiologie, Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
| | - Haidara Almansour
- Universitätsklinik für Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
| | - Frank Paulsen
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | | |
Collapse
|
22
|
Automatic 3D Monte-Carlo-based secondary dose calculation for online verification of 1.5 T magnetic resonance imaging guided radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 19:6-12. [PMID: 34307914 PMCID: PMC8295847 DOI: 10.1016/j.phro.2021.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
First implementation of an independent 3D-secondary dose calculation (3D-SDC). Validation of the 3D-SDC solution using patient plans and experimental plan QA. Online SDC of central targets is feasible with a median calculation time of 1:23 min. Peripheral targets with small beam numbers need alternative validation strategies.
Background and purpose Hybrid magnetic resonance linear accelerator (MR-Linac) systems represent a novel technology for online adaptive radiotherapy. 3D secondary dose calculation (SDC) of online adapted plans is required to assure patient safety. Currently, no 3D-SDC solution is available for 1.5T MR-Linac systems. Therefore, the aim of this project was to develop and validate a method for online automatic 3D-SDC for adaptive MR-Linac treatments. Materials and methods An accelerator head model was designed for an 1.5T MR-Linac system, neglecting the magnetic field. The use of this model for online 3D-SDC of MR-Linac plans was validated in a three-step process: (1) comparison to measured beam data, (2) investigation of performance and limitations in a planning phantom and (3) clinical validation using n = 100 patient plans from different tumor entities, comparing the developed 3D-SDC with experimental plan QA. Results The developed model showed median gamma passing rates compared to MR-Linac base data of 84.7%, 100% and 99.1% for crossplane, inplane and depth-dose-profiles, respectively. Comparison of 3D-SDC and full dose calculation in a planning phantom revealed that with ⩾5 beams gamma passing rates >95% can be achieved for central target locations. With a median calculation time of 1:23 min, 3D-SDC of online adapted clinical MR-Linac plans demonstrated a median gamma passing rate of 98.9% compared to full dose calculation, whereas experimental plan QA reached 99.5%. Conclusion Here, we describe the first technical 3D-SDC solution for online adaptive MR-guided radiotherapy. For clinical situations with peripheral targets and a small number of beams additional verification appears necessary. Further improvement may include 3D-SDC with consideration of the magnetic field.
Collapse
|
23
|
Cusumano D, Boldrini L, Dhont J, Fiorino C, Green O, Güngör G, Jornet N, Klüter S, Landry G, Mattiucci GC, Placidi L, Reynaert N, Ruggieri R, Tanadini-Lang S, Thorwarth D, Yadav P, Yang Y, Valentini V, Verellen D, Indovina L. Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives. Phys Med 2021; 85:175-191. [PMID: 34022660 DOI: 10.1016/j.ejmp.2021.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last years, technological innovation in Radiotherapy (RT) led to the introduction of Magnetic Resonance-guided RT (MRgRT) systems. Due to the higher soft tissue contrast compared to on-board CT-based systems, MRgRT is expected to significantly improve the treatment in many situations. MRgRT systems may extend the management of inter- and intra-fraction anatomical changes, offering the possibility of online adaptation of the dose distribution according to daily patient anatomy and to directly monitor tumor motion during treatment delivery by means of a continuous cine MR acquisition. Online adaptive treatments require a multidisciplinary and well-trained team, able to perform a series of operations in a safe, precise and fast manner while the patient is waiting on the treatment couch. Artificial Intelligence (AI) is expected to rapidly contribute to MRgRT, primarily by safely and efficiently automatising the various manual operations characterizing online adaptive treatments. Furthermore, AI is finding relevant applications in MRgRT in the fields of image segmentation, synthetic CT reconstruction, automatic (on-line) planning and the development of predictive models based on daily MRI. This review provides a comprehensive overview of the current AI integration in MRgRT from a medical physicist's perspective. Medical physicists are expected to be major actors in solving new tasks and in taking new responsibilities: their traditional role of guardians of the new technology implementation will change with increasing emphasis on the managing of AI tools, processes and advanced systems for imaging and data analysis, gradually replacing many repetitive manual tasks.
Collapse
Affiliation(s)
- Davide Cusumano
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Luca Boldrini
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | | | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Milan, Italy
| | - Olga Green
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Görkem Güngör
- Acıbadem MAA University, School of Medicine, Department of Radiation Oncology, Maslak Istanbul, Turkey
| | - Núria Jornet
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Spain
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Munich, Germany
| | | | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy.
| | - Nick Reynaert
- Department of Medical Physics, Institut Jules Bordet, Belgium
| | - Ruggero Ruggieri
- Dipartimento di Radioterapia Oncologica Avanzata, IRCCS "Sacro cuore - don Calabria", Negrar di Valpolicella (VR), Italy
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tüebingen, Tübingen, Germany
| | - Poonam Yadav
- Department of Human Oncology School of Medicine and Public Heath University of Wisconsin - Madison, USA
| | - Yingli Yang
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Vincenzo Valentini
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Dirk Verellen
- Department of Medical Physics, Iridium Cancer Network, Belgium; Faculty of Medicine and Health Sciences, Antwerp University, Antwerp, Belgium
| | - Luca Indovina
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
24
|
McDonald BA, Vedam S, Yang J, Wang J, Castillo P, Lee B, Sobremonte A, Ahmed S, Ding Y, Mohamed ASR, Balter P, Hughes N, Thorwarth D, Nachbar M, Philippens MEP, Terhaard CHJ, Zips D, Böke S, Awan MJ, Christodouleas J, Fuller CD. Initial Feasibility and Clinical Implementation of Daily MR-Guided Adaptive Head and Neck Cancer Radiation Therapy on a 1.5T MR-Linac System: Prospective R-IDEAL 2a/2b Systematic Clinical Evaluation of Technical Innovation. Int J Radiat Oncol Biol Phys 2021; 109:1606-1618. [PMID: 33340604 PMCID: PMC7965360 DOI: 10.1016/j.ijrobp.2020.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE This prospective study is, to our knowledge, the first report of daily adaptive radiation therapy (ART) for head and neck cancer (HNC) using a 1.5T magnetic resonance imaging-linear accelerator (MR-linac) with particular focus on safety and feasibility and dosimetric results of an online rigid registration-based adapt to position (ATP) workflow. METHODS AND MATERIALS Ten patients with HNC received daily ART on a 1.5T/7MV MR-linac, 6 using ATP only and 4 using ATP with 1 offline adapt-to-shape replan. Setup variability with custom immobilization masks was assessed by calculating the mean systematic error (M), standard deviation of the systematic error (Σ), and standard deviation of the random error (σ) of the isocenter shifts. Quality assurance was performed with a cylindrical diode array using 3%/3 mm γ criteria. Adaptive treatment plans were summed for each patient to compare the delivered dose with the planned dose from the reference plan. The impact of dosimetric variability between adaptive fractions on the summation plan doses was assessed by tracking the number of optimization constraint violations at each individual fraction. RESULTS The random errors (mm) for the x, y, and z isocenter shifts, respectively, were M = -0.3, 0.7, 0.1; Σ = 3.3, 2.6, 1.4; and σ = 1.7, 2.9, 1.0. The median (range) γ pass rate was 99.9% (90.9%-100%). The differences between the reference and summation plan doses were -0.61% to 1.78% for the clinical target volume and -11.74% to 8.11% for organs at risk (OARs), although an increase greater than 2% in OAR dose only occurred in 3 cases, each for a single OAR. All cases had at least 2 fractions with 1 or more constraint violations. However, in nearly all instances, constraints were still met in the summation plan despite multiple single-fraction violations. CONCLUSIONS Daily ART on a 1.5T MR-linac using an online ATP workflow is safe and clinically feasible for HNC and results in delivered doses consistent with planned doses.
Collapse
Affiliation(s)
- Brigid A McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Sastry Vedam
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jihong Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela Castillo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Belinda Lee
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angela Sobremonte
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sara Ahmed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yao Ding
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Peter Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neil Hughes
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | | | - Chris H J Terhaard
- Department of Radiotherapy, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Simon Böke
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Musaddiq J Awan
- Department of Radiation Oncology, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - John Christodouleas
- Elekta, Inc., Stockholm, Sweden; Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
25
|
Boldrini L, Intven M, Bassetti M, Valentini V, Gani C. MR-Guided Radiotherapy for Rectal Cancer: Current Perspective on Organ Preservation. Front Oncol 2021; 11:619852. [PMID: 33859937 PMCID: PMC8042309 DOI: 10.3389/fonc.2021.619852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Online MRI-guided radiotherapy (MRgRT) is one of the most recent technological advances in radiotherapy. MRgRT permits the visualization of tumorous and healthy tissue while the patient is on the treatment table and online daily plan adaptations following the observed anatomical changes. In the context of rectal cancer, online MRgRT is a very promising modality due to the pronounced geographical variability of tumor tissues and the surrounding healthy tissues. This current paper will discuss the possible applications of online MRgRT, in particular, in terms of radiotherapy dose escalation and response prediction in organ preservation approaches for rectal cancer.
Collapse
Affiliation(s)
- Luca Boldrini
- Unità Operativa Complessa Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Martijn Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Michael Bassetti
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Vincenzo Valentini
- Unità Operativa Complessa Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Cihan Gani
- Department of Radiation Oncology, Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site, Tübingen, Germany
| |
Collapse
|
26
|
Boeke S, Mönnich D, van Timmeren JE, Balermpas P. MR-Guided Radiotherapy for Head and Neck Cancer: Current Developments, Perspectives, and Challenges. Front Oncol 2021; 11:616156. [PMID: 33816247 PMCID: PMC8017313 DOI: 10.3389/fonc.2021.616156] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Based on the development of new hybrid machines consisting of an MRI and a linear accelerator, magnetic resonance image guided radiotherapy (MRgRT) has revolutionized the field of adaptive treatment in recent years. Although an increasing number of studies have been published, investigating technical and clinical aspects of this technique for various indications, utilizations of MRgRT for adaptive treatment of head and neck cancer (HNC) remains in its infancy. Yet, the possible benefits of this novel technology for HNC patients, allowing for better soft-tissue delineation, intra- and interfractional treatment monitoring and more frequent plan adaptations appear more than obvious. At the same time, new technical, clinical, and logistic challenges emerge. The purpose of this article is to summarize and discuss the rationale, recent developments, and future perspectives of this promising radiotherapy modality for treating HNC.
Collapse
Affiliation(s)
- Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - David Mönnich
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Thorwarth D, Low DA. Technical Challenges of Real-Time Adaptive MR-Guided Radiotherapy. Front Oncol 2021; 11:634507. [PMID: 33763369 PMCID: PMC7982516 DOI: 10.3389/fonc.2021.634507] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
In the past few years, radiotherapy (RT) has experienced a major technological innovation with the development of hybrid machines combining magnetic resonance (MR) imaging and linear accelerators. This new technology for MR-guided cancer treatment has the potential to revolutionize the field of adaptive RT due to the opportunity to provide high-resolution, real-time MR imaging before and during treatment application. However, from a technical point of view, several challenges remain which need to be tackled to ensure safe and robust real-time adaptive MR-guided RT delivery. In this manuscript, several technical challenges to MR-guided RT are discussed. Starting with magnetic field strength tradeoffs, the potential and limitations for purely MR-based RT workflows are discussed. Furthermore, the current status of real-time 3D MR imaging and its potential for real-time RT are summarized. Finally, the potential of quantitative MR imaging for future biological RT adaptation is highlighted.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Daniel A Low
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Cusumano D, Boldrini L, Yadav P, Casà C, Lee SL, Romano A, Piras A, Chiloiro G, Placidi L, Catucci F, Votta C, Mattiucci GC, Indovina L, Gambacorta MA, Bassetti M, Valentini V. Delta Radiomics Analysis for Local Control Prediction in Pancreatic Cancer Patients Treated Using Magnetic Resonance Guided Radiotherapy. Diagnostics (Basel) 2021; 11:diagnostics11010072. [PMID: 33466307 PMCID: PMC7824764 DOI: 10.3390/diagnostics11010072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study is to investigate the role of Delta Radiomics analysis in the prediction of one-year local control (1yLC) in patients affected by locally advanced pancreatic cancer (LAPC) and treated using Magnetic Resonance guided Radiotherapy (MRgRT). A total of 35 patients from two institutions were enrolled: A 0.35 Tesla T2*/T1 MR image was acquired for each case during simulation and on each treatment fraction. Physical dose was converted in biologically effective dose (BED) to compensate for different radiotherapy schemes. Delta Radiomics analysis was performed considering the gross tumour volume (GTV) delineated on MR images acquired at BED of 20, 40, and 60 Gy. The performance of the delta features in predicting 1yLC was investigated in terms of Wilcoxon Mann-Whitney test and area under receiver operating characteristic (ROC) curve (AUC). The most significant feature in predicting 1yLC was the variation of cluster shade calculated at BED = 40 Gy, with a p-value of 0.005 and an AUC of 0.78 (0.61-0.94). Delta Radiomics analysis on low-field MR images might play a promising role in 1yLC prediction for LAPC patients: further studies including an external validation dataset and a larger cohort of patients are recommended to confirm the validity of this preliminary experience.
Collapse
Affiliation(s)
- Davide Cusumano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Luca Boldrini
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Poonam Yadav
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, USA; (P.Y.); (M.B.)
| | - Calogero Casà
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
- Correspondence: ; Tel.: +39-06-3015-5226
| | - Sangjune Laurence Lee
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 1N4, Canada;
| | - Angela Romano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Antonio Piras
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Giuditta Chiloiro
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Francesco Catucci
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Claudio Votta
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Gian Carlo Mattiucci
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Luca Indovina
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Maria Antonietta Gambacorta
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Michael Bassetti
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, USA; (P.Y.); (M.B.)
| | - Vincenzo Valentini
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| |
Collapse
|
29
|
Gani C, Boeke S, McNair H, Ehlers J, Nachbar M, Mönnich D, Stolte A, Boldt J, Marks C, Winter J, Künzel LA, Gatidis S, Bitzer M, Thorwarth D, Zips D. Marker-less online MR-guided stereotactic body radiotherapy of liver metastases at a 1.5 T MR-Linac - Feasibility, workflow data and patient acceptance. Clin Transl Radiat Oncol 2021; 26:55-61. [PMID: 33319073 PMCID: PMC7723999 DOI: 10.1016/j.ctro.2020.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Stereotactic body radiotherapy (SBRT) is an established ablative treatment for liver tumors with excellent local control rates. Magnetic resonance imaging guided radiotherapy (MRgRT) provides superior soft tissue contrast and may therefore facilitate a marker-less liver SBRT workflow. The goal of the present study was to investigate feasibility, workflow parameters, toxicity and patient acceptance of MRgSBRT on a 1.5 T MR-Linac. METHODS Ten consecutive patients with liver metastases treated on a 1.5 T MR-Linac were included in this prospective trial. Tumor delineation was performed on four-dimensional computed tomography scans and both exhale triggered and free-breathing T2 MRI scans from the MR-Linac. An internal target volume based approach was applied. Organ at risk constraints were based on the UKSABR guidelines (Version 6.1). Patient acceptance regarding device specific aspects was assessed and toxicity was scored according to the common toxicity criteria of adverse events, version 5. RESULTS Nine of ten tumors were clearly visible on the 1.5 T MR-Linac. No patient had fiducial markers placed for treatment. All patients were treated with three or five fractions. Median dose to 98% of the gross tumor volume was 38.5 Gy. The median time from "patient identity check" until "beam-off" was 31 min. Median beam on time was 9.6 min. Online MRgRT was well accepted in general and no treatment had to be interrupted on patient request. No event of symptomatic radiation induced liver disease was observed after a median follow-up of ten month (range 3-17 months). CONCLUSION Our early experience suggests that online 1.5 T MRgSBRT of liver metastases represents a promising new non-invasive marker-free treatment modality based on high image quality, clinically reasonable in-room times and high patient acceptance. Further studies are necessary to assess clinical outcome, to validate advanced motion management and to explore the benefit of online response adaptive liver SBRT.
Collapse
Affiliation(s)
- Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S. Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H. McNair
- Department of Radiotherapy, The Royal Marsden Hospital NHS Foundation Trust, United Kingdom
| | - J. Ehlers
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - M. Nachbar
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - D. Mönnich
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - A. Stolte
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - J. Boldt
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - C. Marks
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - J. Winter
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Luise A. Künzel
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - S. Gatidis
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital, Eberhard Karls University, Tübingen, Germany
| | - M. Bitzer
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology and Infectious Diseases, Eberhard Karls University, Tübingen, Germany
| | - D. Thorwarth
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - D. Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Bonomo P, Lo Russo M, Nachbar M, Boeke S, Gatidis S, Zips D, Thorwarth D, Gani C. 1.5 T MR-linac planning study to compare two different strategies of rectal boost irradiation. Clin Transl Radiat Oncol 2021; 26:86-91. [PMID: 33336086 PMCID: PMC7732969 DOI: 10.1016/j.ctro.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To compare treatment plans of two different rectal boost strategies: up-front versus adaptive boost at the 1.5 T MR-Linac. METHODS Patients with locally advanced rectal cancer (LARC) underwent standard neoadjuvant radiochemotherapy with 50.4 Gy in 28 fractions. T2-weighted MRI prior and after the treatment session were acquired to contour gross tumor volumes (GTVs) and organs at risk (OARs). The datasets were used to simulate four different boost strategies (all with 15 Gy/5 fractions in addition to 50.4 Gy): up-front boost (5 daily fractions in the first week of treatment) and an adaptive boost (one boost fraction per week). Both strategies were planned using standard and reduced PTV margins. Intra-fraction motion was assessed by pre- and post-treatment MRI-based contours. RESULTS Five patients were included and a total of 44 MRI sets were evaluated. The median PTV volumes of the adaptive boost were significantly smaller than for the up-front boost (81.4 cm3 vs 44.4 cm3 for PTV with standard margins; 31.2 cm3 vs 15 cm3 for PTV with reduced margins; p = 0.031). With reduced margins the rectum was significantly better spared with an adaptive boost rather than with an up-front boost: V60Gy and V65Gy were 41.2% and 24.8% compared with 59% and 29.9%, respectively (p = 0.031). Median GTV intra-fractional motion was 2 mm (range 0-8 mm). CONCLUSIONS The data suggest that the adaptive boost strategy exploiting tumor-shrinkage and reduced margin might result in better sparing of rectum and anal canal. Individual margin assessment, motion management and real-time adaptive radiotherapy appear attractive applications of the 1.5 T MR-Linac for further testing of individualized and safe dose escalation in patients with rectal cancer.
Collapse
Affiliation(s)
- Pierluigi Bonomo
- Department of Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Monica Lo Russo
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, University-Hospital Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center (DKFZ) Heidelberg and German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
- German Cancer Research Center (DKFZ) Heidelberg and German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center (DKFZ) Heidelberg and German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|