1
|
Gupta S, Kaur R, Sohal JS, Singh SV, Das K, Sharma MK, Singh J, Sharma S, Dhama K. Countering Zoonotic Diseases: Current Scenario and Advances in Diagnostics, Monitoring, Prophylaxis and Therapeutic Strategies. Arch Med Res 2024; 55:103037. [PMID: 38981342 DOI: 10.1016/j.arcmed.2024.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Human life and health have interacted reciprocally with the surrounding environment and animal fauna for ages. This relationship is evident in developing nations, where human life depends more on the animal population for food, transportation, clothing, draft power, and fuel sources, among others. This inseparable link is a potent source of public health issues, especially in outbreaks of zoonotic diseases transmitted from animals to humans. Zoonotic diseases are referred to as diseases that are naturally transmitted between vertebrate animals and humans. Among the globally emerging diseases in the last decade, 75% are of animal origin, most of which are life-threatening. Since most of them are caused by potent new pathogens capable of long-distance transmission, the impact is widespread and has serious public health and economic consequences. Various other factors also contribute to the transmission, spread, and outbreak of zoonotic diseases, among which industrialization-led globalization followed by ecological disruption and climate change play a critical role. In this regard, all the possible strategies, including advances in rapid and confirmatory disease diagnosis and surveillance/monitoring, immunization/vaccination, therapeutic approaches, appropriate prevention and control measures to be adapted, and awareness programs, need to be adopted collaboratively among different health sectors in medical, veterinary, and concerned departments to implement the necessary interventions for the effective restriction, minimization, and timely control of zoonotic threats. The present review focuses on the current scenario of zoonotic diseases and their counteracting approaches to safeguard their health impact on humans.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India.
| | - Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Jagdip Singh Sohal
- Centre for Vaccine and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, West Bengal, India
| | - Manish Kumar Sharma
- Department of Biotechnology, Dr. Rammanohar Lohia Avadh University, Uttar Pradesh, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences, Saket Nagar, Madhya Pradesh, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, LUVAS, Hisar, Haryana, India; Division of Veterinary Physiology and Biochemistry, SKUAST-J, Jammu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
2
|
Manning L. Responsible innovation: Mitigating the food safety aspects of cultured meat production. J Food Sci 2024; 89:4638-4659. [PMID: 38980973 DOI: 10.1111/1750-3841.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
There is much interest in cultured (cultivated) meat as a potential solution to concerns over the ecological and environmental footprint of food production, especially from animal-derived food products. The aim of this critical review is to undertake a structured analysis of existing literature to (i) identify the range of materials that could be used within the cultured meat process; (ii) explore the potential biological and chemical food safety issues that arise; (iii) identify the known and also novel aspects of the food safety hazard portfolio that will inform hazard analysis and risk assessment approaches, and (iv) position a responsible innovation framework that can be utilized to mitigate food safety concerns with specific emphasis on cultured meat. Although a number of potential food safety hazards are identified that need to be considered within a food safety plan, further research is required to validate and verify that these food safety hazards have been suitably controlled and, where possible, eliminated. The responsible innovation framework developed herein, which extends beyond hazard analysis and traditional risk assessment approaches, can be applied in multiple contexts, including this use case of cultured meat production.
Collapse
Affiliation(s)
- Louise Manning
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, UK
| |
Collapse
|
3
|
Alcaro S, Rocca R, Rotundo MG, Bianco F, Scordamaglia L. Morzeddhu: A Unique Example of a Traditional and Sustainable Typical Dish from Catanzaro. Foods 2024; 13:1810. [PMID: 38928752 PMCID: PMC11203147 DOI: 10.3390/foods13121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
"Morzeddhu" in the local dialect of Catanzaro ("Morzello" in Italian) is an official typical dish of the capital of the Calabria region. It is a peasant dish, almost unknown at an international level, that labels, in an extraordinary way, the culinary identity of Catanzaro, a city founded around the X century. After America's discovery, its preparation was optimized and definitively fixed. Its recipe is strictly based on a cow's "fifth quarter" combined with spicy and typical Mediterranean vegetables. Remarkably, no pork meat is used, and when all traditional ingredients are included in the complex and quite long preparation of this special dish, it can deserve the title of "Illustrissimo". This review provides a scientific description of Illustrissimo, emphasizing its unique properties and connection to the circular economy, food security, and the Mediterranean diet. We also highlight its unique quality compared to other alternatives through an analysis of their nutritional facts and bioactive compounds. Nutritionally, offal and fifth quarter components are a rich source of high-quality protein, with lower levels of total fat and saturated fatty acids compared to other meat cuts. In essence, this dish offers a great example of a high-quality yet affordable meal, aligning perfectly with a Mediterranean diet.
Collapse
Affiliation(s)
- Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA, Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy;
- Antica Congrega Tre Colli, Viale De Filippis, 320, 88100 Catanzaro, Italy; (F.B.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA, Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy;
| | - Maria Grazia Rotundo
- Associazione CRISEA, Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy;
| | - Francesco Bianco
- Antica Congrega Tre Colli, Viale De Filippis, 320, 88100 Catanzaro, Italy; (F.B.)
| | - Luigi Scordamaglia
- Antica Congrega Tre Colli, Viale De Filippis, 320, 88100 Catanzaro, Italy; (F.B.)
- Fondazione Filiera Italia per la Distintività del Cibo, del Sistema Agroalimentare e della Trasformazione, Via Ventiquattro Maggio 43, 00184 Roma, Italy
| |
Collapse
|
4
|
Raine J, Tolwinski N, Gruber J, Mathuru AS. Evaluating the inter-species transmission risk of amyloid beta peptide aggregates via ingestion. Alzheimers Res Ther 2024; 16:123. [PMID: 38849926 PMCID: PMC11157902 DOI: 10.1186/s13195-024-01487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Recent reports suggest that amyloid beta (Aβ) peptides can exhibit prion-like pathogenic properties. Transmission of Aβ peptide and the development of associated pathologies after surgeries with contaminated instruments and intravenous or intracerebral inoculations have now been reported across fish, rodents, primates, and humans. This raises a worrying prospect of Aβ peptides also having other characteristics typical of prions, such as evasion of the digestive process. We asked if such transmission of Aβ aggregates via ingestion was possible. METHODS We made use of a transgenic Drosophila melanogaster line expressing human Aβ peptide prone to aggregation. Fly larvae were fed to adult zebrafish under two feeding schemes. The first was a short-term, high-intensity scheme over 48 h to determine transmission and retention in the gut. The second, long-term scheme specifically examined retention and accumulation in the brain. The gut and brain tissues were examined by histology, western blotting, and mass spectrometric analyses. RESULTS None of the analyses could detect Aβ aggregates in the guts of zebrafish following ingestion, despite being easily detectable in the feed. Additionally, there was no detectable accumulation of Aβ in the brain tissue or development of associated pathologies after prolonged feeding. CONCLUSIONS While human Aβ aggregates do not appear to be readily transmissible by ingestion across species, two prospects remain open. First, this mode of transmission, if occurring, may stay below a detectable threshold and may take much longer to manifest. A second possibility is that the human Aβ peptide is not able to trigger self-propagation or aggregation in other species. Either possibility requires further investigation, taking into account the possibility of such transmission from agricultural species used in the food industry.
Collapse
Affiliation(s)
- Joshua Raine
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas Tolwinski
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jan Gruber
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajay S Mathuru
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Digital Medicine (WisDM) Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
5
|
Adeola AC, Bello SF, Abdussamad AM, Adedokun RAM, Olaogun SC, Abdullahi N, Mark AI, Onoja AB, Sanke OJ, Mangbon GF, Ibrahim J, Dawuda PM, Salako AE, Kdidi S, Yahyaoui MH. Single nucleotide polymorphisms (SNPs) in the open reading frame (ORF) of prion protein gene (PRNP) in Nigerian livestock species. BMC Genomics 2024; 25:177. [PMID: 38355406 PMCID: PMC10865551 DOI: 10.1186/s12864-024-10070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.
Collapse
Affiliation(s)
- Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China.
| | - Semiu F Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, 510642, Guangzhou, China
| | - Abdussamad M Abdussamad
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Rahamon A M Adedokun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Nasiru Abdullahi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Akanbi I Mark
- Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Nigeria
| | - Anyebe B Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Nigeria
| | | | - Jebi Ibrahim
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, Maseru, South Africa
| | - Adebowale E Salako
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Samia Kdidi
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, 4119, Medenine, Tunisia
| | - Mohamed Habib Yahyaoui
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, 4119, Medenine, Tunisia
| |
Collapse
|
6
|
Adeola AC, Bello SF, Abdussamad AM, Mark AI, Sanke OJ, Onoja AB, Nneji LM, Abdullahi N, Olaogun SC, Rogo LD, Mangbon GF, Pedro SL, Hiinan MP, Mukhtar MM, Ibrahim J, Saidu H, Dawuda PM, Bala RK, Abdullahi HL, Salako AE, Kdidi S, Yahyaoui MH, Yin TT. Scrapie-associated polymorphisms of the prion protein gene (PRNP) in Nigerian native goats. Gene X 2023; 855:147121. [PMID: 36535463 DOI: 10.1016/j.gene.2022.147121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Scrapie is a fatal prion protein disease stiffly associated with single nucleotide polymorphism (SNPs) of the prion protein gene (PRNP). The prevalence of this deadly disease has been reported in small ruminants, including goats. The Nigerian goats are hardy, trypano-tolerant, and contribute to the protein intake of the increasing population. Although scrapie has been reported in Nigerian goats, there is no study on the polymorphism of the PRNP gene. Herein, we evaluated the genetic and allele distributions of PRNP polymorphism in 132 Nigerian goats and compared them with publicly available studies on scrapie-affected goats. We utilized Polyphen-2, PROVEAN and AMYCO programs to examine structural variations produced by the non-synonymous SNPs. Our study revealed 29 SNPs in Nigerian goats, of which 14 were non-synonymous, and 23 were novel. There were significant differences (P < 0.001) in the allele frequencies of PRNP codons 139, 146, 154 and 193 in Nigerian goats compared with scrapie-affected goats, except for Northern Italian goats at codon 154. Based on the prediction by Polyphen-2, R139S and N146S were 'benign', R154H was 'probably damaging', and T193I was 'possibly damaging'. In contrast, PROVEAN predicted 'neutral' for all non-synonymous SNPs, while AMYCO showed a similar amyloid propensity of PRNP for resistant haplotype and two haplotypes of Nigerian goats. Our study is the first to investigate the polymorphism of scrapie-related genes in Nigerian goats.
Collapse
Affiliation(s)
- Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China; Centre for Biotechnology Research, Bayero University, Kano, Nigeria.
| | - Semiu F Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Abdussamad M Abdussamad
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria; Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Akanbi I Mark
- Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Nigeria
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Nigeria
| | - Anyebe B Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lotanna M Nneji
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Nasiru Abdullahi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lawal D Rogo
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | | | | | - Manasseh P Hiinan
- Small Ruminant Section, Solomon Kesinton Agro-Allied Limited Iperu-Remo, Ogun State, Nigeria
| | - Muhammad M Mukhtar
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Jebi Ibrahim
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Nigeria
| | - Hayatu Saidu
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, South Africa
| | - Rukayya K Bala
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Hadiza L Abdullahi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria; Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Adebowale E Salako
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Samia Kdidi
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, Medenine 4119, Tunisia
| | - Mohamed Habib Yahyaoui
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, Medenine 4119, Tunisia
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Ray A, Bonorden MJL, Pandit R, Nkhata KJ, Bishayee A. Infections and immunity: associations with obesity and related metabolic disorders. J Pathol Transl Med 2023; 57:28-42. [PMID: 36647284 PMCID: PMC9846011 DOI: 10.4132/jptm.2022.11.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/14/2022] [Indexed: 01/18/2023] Open
Abstract
About one-fourth of the global population is either overweight or obese, both of which increase the risk of insulin resistance, cardiovascular diseases, and infections. In obesity, both immune cells and adipocytes produce an excess of pro-inflammatory cytokines that may play a significant role in disease progression. In the recent coronavirus disease 2019 (COVID-19) pandemic, important pathological characteristics such as involvement of the renin-angiotensin-aldosterone system, endothelial injury, and pro-inflammatory cytokine release have been shown to be connected with obesity and associated sequelae such as insulin resistance/type 2 diabetes and hypertension. This pathological connection may explain the severity of COVID-19 in patients with metabolic disorders. Many studies have also reported an association between type 2 diabetes and persistent viral infections. Similarly, diabetes favors the growth of various microorganisms including protozoal pathogens as well as opportunistic bacteria and fungi. Furthermore, diabetes is a risk factor for a number of prion-like diseases. There is also an interesting relationship between helminths and type 2 diabetes; helminthiasis may reduce the pro-inflammatory state, but is also associated with type 2 diabetes or even neoplastic processes. Several studies have also documented altered circulating levels of neutrophils, lymphocytes, and monocytes in obesity, which likely modifies vaccine effectiveness. Timely monitoring of inflammatory markers (e.g., C-reactive protein) and energy homeostasis markers (e.g., leptin) could be helpful in preventing many obesity-related diseases.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, Philippi, WV, USA,Corresponding Author: Amitabha Ray, MD, PhD, College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA Tel: +1-304-457-6587, Fax: +1-304-457-6308, E-mail:
| | | | - Rajashree Pandit
- Division of Medical & Behavioral Health, Pueblo Community College, Pueblo, CO, USA
| | | | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
8
|
Zaharioiu AM, Şandru C, Ionete EI, Marin F, Ionete RE, Soare A, Constantinescu M, Bucura F, Niculescu VC. Eco-Friendly Alternative Disposal through the Pyrolysis Process of Meat and Bone Meal. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6593. [PMID: 36233935 PMCID: PMC9572508 DOI: 10.3390/ma15196593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The capitalization of agri-food waste is essential for the sustainability of a circular economy. This work focuses on a solution to eliminate such waste, meat and bone meal (MBM), which is produced in large quantities by the food industry and is prohibited for use as animal feed under the European directives. Therefore, with the focus of converting waste to energy, the catalytic pyrolysis of MBM in the presence of mesoporous silica nanocatalysts (SBA-3 and SBA-16 materials and metallic derivates) was investigated in a home-made reactor for the production of renewable energy. The mesoporous silica materials were synthesized using relatively simple methods and then characterized in order to determine their morpho-structural characteristics. The MBM pyrolysis behavior under different experimental conditions was examined in detail, both in the presence and absence of the new catalysts. The resulting MBM-based pyrolysis products, MBMPYOILs and MBMPYGASs, were also assessed as potential alternative fuels, highlighting comparable energy values to conventional fuels. The outcomes of this investigation offer a potential pathway to the clean production of gas and oil, thus promoting the high-grade utilization of MBM waste.
Collapse
|
9
|
Moynihan E, Avraam C, Siddiqui S, Neff R. Optimization Based Modeling for the Food Supply Chain's Resilience to Outbreaks. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.887819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scant research focuses on the resiliency of food supply chain networks to outbreaks, despite the estimated 600 million global foodborne illnesses annually. Outbreaks that cross country, state and provincial lines are virulent due to the number of people they can affect and difficulty controlling them. Research is needed on food supply chain networks, which are not well-characterized in relation to foodborne illnesses or generally. This paper introduces the United States Food, Energy, and State Transportation (US-FEAST) model and demonstrates its applicability via analysis of a hypothetical demand shock resulting from multistate food contamination. US-FEAST is an optimization-based model across all fifty states with yearly timesteps to 2030. It is a framework integrating food system data from multiple individual data sources. To calibrate, we develop a bilevel optimization routine to generate synthetic, state-level data and provide estimates of otherwise unavailable data at the intersections of the food and transportation systems. The results of US-FEAST elucidate potential heterogenous state-level variations in response, regional changes in food flows, vulnerabilities in the supply chain, and implications for food system resilience. While the generated data and scenarios are not empirical evidence, they provide insights to aid in planning by projecting outcomes and intervention effects. Our results estimate a 23% beef production decrease and 4% price decrease provide a road map toward data needs for quantifying food system resilience to foodborne illness. US-FEAST and its framework may have global utility for studying food safety in national and international food supply chain networks.
Collapse
|
10
|
Gene-Edited Cell Models to Study Chronic Wasting Disease. Viruses 2022; 14:v14030609. [PMID: 35337016 PMCID: PMC8950194 DOI: 10.3390/v14030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders affecting both humans and animals. They are caused by the misfolded isoform of the cellular prion protein (PrPC), PrPSc, and currently no options exist to prevent or cure prion diseases. Chronic wasting disease (CWD) in deer, elk and other cervids is considered the most contagious prion disease, with extensive shedding of infectivity into the environment. Cell culture models provide a versatile platform for convenient quantification of prions, for studying the molecular and cellular biology of prions, and for performing high-throughput screening of potential therapeutic compounds. Unfortunately, only a very limited number of cell lines are available that facilitate robust and persistent propagation of CWD prions. Gene-editing using programmable nucleases (e.g., CRISPR-Cas9 (CC9)) has proven to be a valuable tool for high precision site-specific gene modification, including gene deletion, insertion, and replacement. CC9-based gene editing was used recently for replacing the PrP gene in mouse and cell culture models, as efficient prion propagation usually requires matching sequence homology between infecting prions and prion protein in the recipient host. As expected, such gene-editing proved to be useful for developing CWD models. Several transgenic mouse models were available that propagate CWD prions effectively, however, mostly fail to reproduce CWD pathogenesis as found in the cervid host, including CWD prion shedding. This is different for the few currently available knock-in mouse models that seem to do so. In this review, we discuss the available in vitro and in vivo models of CWD, and the impact of gene-editing strategies.
Collapse
|
11
|
Shaheen MNF. The concept of one health applied to the problem of zoonotic diseases. Rev Med Virol 2022; 32:e2326. [PMID: 35060214 DOI: 10.1002/rmv.2326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Zoonotic diseases are a burden on healthcare systems globally, particularly underdeveloped nations. Numerous vertebrate animals (e.g., birds, mammals and reptiles) serve as amplifier hosts or reservoirs for viral zoonoses. The spread of zoonotic disease is associated with environmental factors, climate change, animal health as well as other human activities including globalization, urbanization and travel. Diseases at the human-animal environment interface (e.g., zoonotic diseases, vector-borne diseases, food/water borne diseases) continue to pose risk to animals and humans with a great significant mortality and morbidity. It is estimated that of 1400 infectious diseases known to affect humans, 60% of them are of animal origin. In addition, 75% of the emerging infectious diseases have a zoonotic nature, worldwide. The one health concept plays an important role in the control and prevention of zoonoses by integrating animal, human, and environmental health through collaboration and communication among osteopaths, wildlife, physicians, veterinarians professionals, public health and environmental experts, nurses, dentists, physicists, biomedical engineers, plant pathologists, biochemists, and others. No one sector, organization, or person can address issues at the animal-human-ecosystem interface alone.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Center, Giza, Egypt
| |
Collapse
|
12
|
Soladoye PO, Juárez M, Estévez M, Fu Y, Álvarez C. Exploring the prospects of the fifth quarter in the 21st century. Compr Rev Food Sci Food Saf 2022; 21:1439-1461. [PMID: 35029308 DOI: 10.1111/1541-4337.12879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
A variable proportion of slaughtered livestock, generally referred to as the fifth quarter, is not part of the edible dressed meat and regarded as animal byproduct. In order for the fifth quarter to play a significant role in the current effort toward a circular bio-based economy, it has to successfully support food security, social inclusivity, environmental sustainability, and a viable economy. The high volume of these low-value streams and their nutrient-dense nature can facilitate their position as a very important candidate to explore within the context of a circular bio-based economy to achieve some of the United Nations Sustainable Development Goals (UN-SDGs). While these sources have been traditionally used for various applications across different cultures and industries, it seems evident that their full potential has not yet been exploited, leaving these products more like an environmental burden rather than valuable resources. With innovation and well-targeted interdisciplinary collaborations, the potential of the fifth quarter can be fully realized. The present review intends to explore these low-value streams, their current utilization, and their potential to tackle the global challenges of increasing protein demands while preventing environmental degradation. Factors that limit widespread applications of the fifth quarter across industries and cultures will also be discussed.
Collapse
Affiliation(s)
- Philip O Soladoye
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Manuel Juárez
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Mario Estévez
- IPROCAR Research Institute, University of Extremadura, Caceres, Spain
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
13
|
Hadi J, Brightwell G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021; 10:1226. [PMID: 34071292 PMCID: PMC8230205 DOI: 10.3390/foods10061226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
Food security and environmental issues have become global crises that need transformative solutions. As livestock production is becoming less sustainable, alternative sources of proteins are urgently required. These include cultured meat, plant-based meat, insect protein and single-cell protein. Here, we describe the food safety aspects of these novel protein sources, in terms of their technological backgrounds, environmental impacts and the necessary regulatory framework for future mass-scale production. Briefly, cultured meat grown in fetal bovine serum-based media can be exposed to viruses or infectious prion, in addition to other safety risks associated with the use of genetic engineering. Plant-based meat may contain allergens, anti-nutrients and thermally induced carcinogens. Microbiological risks and allergens are the primary concerns associated with insect protein. Single-cell protein sources are divided into microalgae, fungi and bacteria, all of which have specific food safety risks that include toxins, allergens and high ribonucleic acid (RNA) contents. The environmental impacts of these alternative proteins can mainly be attributed to the production of growth substrates or during cultivation. Legislations related to novel food or genetic modification are the relevant regulatory framework to ensure the safety of alternative proteins. Lastly, additional studies on the food safety aspects of alternative proteins are urgently needed for providing relevant food governing authorities with sufficient data to oversee that the technological progress in this area is balanced with robust safety standards.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand;
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand;
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
14
|
Reddy BL, Saier MHJ. The Causal Relationship between Eating Animals and Viral Epidemics. Microb Physiol 2020; 30:2-8. [PMID: 32957108 PMCID: PMC7573891 DOI: 10.1159/000511192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
For decades it has been known that infectious agents including pathogenic protozoans, bacteria, and viruses, adapted to a particular animal host, can mutate to gain the ability to infect another host, and the mechanisms involved have been studied in great detail. Although an infectious agent in one animal can alter its host range with relative ease, no example of a plant virus changing its host organism to an animal has been documented. One prevalent pathway for the transmission of infectious agents between hosts involves ingestion of the flesh of one organism by another. In this article we document numerous examples of viral and prion diseases transmitted by eating animals. We suggest that the occurrence of cross-species viral epidemics can be substantially reduced by shifting to a more vegetarian diet and enforcing stricter laws that ban the slaughter and trade of wild and endangered species.
Collapse
Affiliation(s)
- Bhaskara L Reddy
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California, USA
| | - Milton H Jr Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California, USA,
| |
Collapse
|
15
|
Zhang H, Wang B, Li B, Lin Y, Yang H, Ding D, Xue Y, Tang J. Comparative proteomic analysis of mitochondrial proteins from maize CMS-C sterile, maintainer and restorer anthers. THE PLANT GENOME 2020; 13:e20022. [PMID: 33016607 DOI: 10.1002/tpg2.20022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The maize C system of cytoplasmic male sterility (CMS) and its fertility restoration gene Rf4 have been widely used for maize hybrid production; however, the underlying mechanism is still uncertain. The sterility factor functions in mitochondria, where it interacts directly or indirectly with the restorer. Mitoproteomics can capture all participants involved in CMS and restoration at the organelle level. In the present study, we identified and quantified anther mitochondrial proteins from CMS, maintainer and restorer lines. We obtained 14,528 unique peptides belonging to 3,369 proteins. Comparative analysis of 1840 high-confidence proteins revealed 68 were differentially accumulated proteins likely involved in CMS or its restoration within mitochondria. These proteins were mainly associated with fatty acid metabolism, amino acid metabolism and protein-processing pathways. These results suggest that an energy deficiency caused by the sterility factor hinders other proteins or protein complexes required for pollen development through nuclear-mitochondrial interaction. The restorer factor may boost the energy generation by activating alternative metabolic pathways and by improving the post-translation processing efficiency of proteins in energy-producing complexes to restore pollen fertility. Our findings may aid detailed molecular analysis and contribute to a better understanding of maize CMS-C restoration and sterility.
Collapse
Affiliation(s)
- Huaisheng Zhang
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Bin Wang
- College of Agronomy, Henan Science and Technology University, Luoyang, China
| | - Bing Li
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Yanan Lin
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Huili Yang
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Yadong Xue
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Jihua Tang
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
16
|
Giaccone G, Moda F. PMCA Applications for Prion Detection in Peripheral Tissues of Patients with Variant Creutzfeldt-Jakob Disease. Biomolecules 2020; 10:biom10030405. [PMID: 32151109 PMCID: PMC7175161 DOI: 10.3390/biom10030405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Prion diseases are neurodegenerative and invariably fatal conditions that affect humans and animals. In particular, Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE) are paradigmatic forms of human and animal prion diseases, respectively. Human exposure to BSE through contaminated food caused the appearance of the new variant form of CJD (vCJD). These diseases are caused by an abnormal prion protein named PrPSc (or prion), which accumulates in the brain and leads to the onset of the disease. Their definite diagnosis can be formulated only at post-mortem after biochemical and neuropathological identification of PrPSc. Thanks to the advent of an innovative technique named protein misfolding cyclic amplification (PMCA), traces of PrPSc, undetectable with the standard diagnostic techniques, were found in peripheral tissues of patients with vCJD, even at preclinical stages. The technology is currently being used in specialized laboratories and can be exploited for helping physicians in formulating an early and definite diagnosis of vCJD using peripheral tissues. However, this assay is currently unable to detect prions associated with the sporadic CJD (sCJD) forms, which are more frequent than vCJD. This review will focus on the most recent advances and applications of PMCA in the field of vCJD and other human prion disease diagnosis.
Collapse
|
17
|
Rodriguez AE, Nowzari H. The long-term risks and complications of bovine-derived xenografts: A case series. J Indian Soc Periodontol 2019; 23:487-492. [PMID: 31543624 PMCID: PMC6737859 DOI: 10.4103/jisp.jisp_656_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The frequency of dental implant related surgeries that involve soft tissue and bone augmentation procedures has increased significantly. Bovine-derived substitutes have been by far the most commonly used xenografts in dentistry. Albeit literature is replete with clinical studies in favor of bovine-derived graft materials, bibliographical data reporting on risks and clinical complications is scarce. Clinical impression and concern for patient safety led to the report we have provided. The aim of the present case series was to raise awareness on the long-term risks and late clinical complications of bovine-derived graft materials. Patients were referred to a private practice due to bone augmentation complications. Demographics, significant medical and dental findings are reported. Complications included sinus and maxillary bone pathoses, displacement of the graft materials, oroantral communications, implant failure, foreign body reactions, encapsulation, chronic inflammation, soft tissue fenestrations and associated cysts. Bovine-derived graft materials were not biodegradable. Resolution of the associated lesions and symptoms was achieved after the removal of the bone graft materials. The surgical removal of the xenograft materials may require advanced clinical skills because of the different configurations clinicians might encounter of the non-resorbed and migrated particles. The authors’ concern is that patient morbidity may not be reduced with xenografts, due to the inherent risks and associated complications. Clinicians seeking to provide functional and esthetic outcomes should be aware of the complications of the bovine-derived graft materials. The long-term safety of xenografts and their potential association with disease are valid concerns.
Collapse
|
18
|
Wilson K, Atkinson KM, Fergusson DA, Brown A, Forster A, Murphy MSQ, Tinmouth AT, Keelan J. Problems with precaution: the transfusion medicine experience. JOURNAL OF RISK RESEARCH 2017; 22:137-49. [PMID: 29348731 PMCID: PMC5770215 DOI: 10.1080/13669877.2017.1351478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The precautionary principle is a dominant paradigm governing risk-based decision-making. Today, there are increasing pressures to re-examine aggressive precautionary approaches, and to assess how the principle should be applied in the modern system. In this paper, we examined three key applications of precautionary approaches in the field of transfusion medicine to provide insight into the risks and benefits of these approaches. The three case studies examined were the donor deferral policies to safeguard against transfusion transmission of human immunodeficiency virus, variant Creutzfeldt-Jacob disease, and, lastly, xenotropic murine leukemia virus-related virus. Characterization of precautionary applications was conducted using an embedded case study design. Our findings indicate that transfusion transmission mitigation strategies have become increasingly aggressive in the face of theoretical risks. In contrast, the review processes for implementation and reversal of precautionary policies have been slow, and historical donor deferral policies are still in place today. Application of precautionary approaches has proved challenging with both benefits and pitfalls. In light of emerging threats to the blood system, policy-makers should consider the implementation of frameworks to guide the appropriate application of precaution in transfusion medicine in the future.
Collapse
Affiliation(s)
- Kumanan Wilson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Departments of Medicine, and Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Canada
| | - Katherine M. Atkinson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Dean A. Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Departments of Medicine, Surgery, & of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Canada
| | - Adalsteinn Brown
- Institute for Health Policy, Management & Evaluation, University of Toronto, Toronto, Canada
| | - Alan Forster
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Malia S. Q. Murphy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Alan T. Tinmouth
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Jennifer Keelan
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Gaudino S, Gangemi E, Colantonio R, Botto A, Ruberto E, Calandrelli R, Martucci M, Vita MG, Masullo C, Cerase A, Colosimo C. Neuroradiology of human prion diseases, diagnosis and differential diagnosis. Radiol Med 2017; 122:369-385. [PMID: 28110369 DOI: 10.1007/s11547-017-0725-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/03/2017] [Indexed: 01/14/2023]
Abstract
Human transmissible spongiform encephalopathies (TSEs), or prion diseases, are invariably fatal conditions associated with a range of clinical presentations. TSEs are classified as sporadic [e.g. sporadic Creutzfeldt-Jakob disease (sCJD), which is the most frequent form], genetic (e.g. Gerstmann-Straussler-Scheinker disease, fatal familial insomnia, and inherited CJD), and acquired or infectious (e.g. Kuru, iatrogenic CJD, and variant CJD). In the past, brain imaging played a supporting role in the diagnosis of TSEs, whereas nowadays magnetic resonance imaging (MRI) plays such a prominent role that MRI findings have been included in the diagnostic criteria for sCJD. Currently, MRI is required for all patients with a clinical suspicion of TSEs. Thus, MRI semeiotics of TSEs should become part of the cultural baggage of any radiologist. The purposes of this update on the neuroradiology of CJD are to (i) review the pathophysiology and clinical presentation of TSEs, (ii) describe both typical and atypical MRI findings of CJD, and (iii) illustrate diseases mimicking CJD, underlining the MRI key findings useful in the differential diagnosis.
Collapse
Affiliation(s)
- Simona Gaudino
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | - Emma Gangemi
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Raffaella Colantonio
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Annibale Botto
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Emanuela Ruberto
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Rosalinda Calandrelli
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Matia Martucci
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Maria Gabriella Vita
- Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Carlo Masullo
- Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Alfonso Cerase
- Unit of Neuroimaging and Neurointervention, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Università Senese, "Santa Maria alle Scotte" University and NHS Hospital, Viale Mario Bracci, 16, 53100, Siena, Italy
| | - Cesare Colosimo
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| |
Collapse
|
20
|
Lianou A, Panagou EZ, Nychas GJE. Meat Safety—I Foodborne Pathogens and Other Biological Issues. LAWRIE´S MEAT SCIENCE 2017. [PMCID: PMC7152306 DOI: 10.1016/b978-0-08-100694-8.00017-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This chapter presents information pertinent to foodborne pathogens (bacteria and bacterial toxins, viruses, parasites) and other biological issues (prions) with importance to the safety of meat and meat products. Aspects covered refer mainly to the characteristics of the most important pathogenic organisms, their distribution in the environment, their transmission routes to humans, as well as their epidemiology and association with sporadic or epidemic foodborne illness. Current and emerging challenges to meat safety management also are discussed.
Collapse
|
21
|
Kim Y, Rodriguez AE, Nowzari H. The Risk of Prion Infection through Bovine Grafting Materials. Clin Implant Dent Relat Res 2016; 18:1095-1102. [PMID: 26856530 DOI: 10.1111/cid.12391] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bovine-derived grafting materials are frequently used in a variety of bone augmentation techniques. The aim of this paper is to assess the unique safety issue of bovine-derived grafting materials that is rarely addressed in dental literature: risk of bovine spongiform encephalopathy (BSE). METHODS The validity of the current BSE diagnostic methods, surveillance and epidemiological trends in affected countries, and BSE infectivity in bovine bone before and after manufacturing processing were reviewed and analyzed. RESULTS Prion screening has significant limits. Humans are not safe from the infection of prion disease of other species. Prions can and do break the species barrier. There is evidence there may be tens of thousands of infectious carriers in the western countries alone. This raises concern about the potential for perpetuation of infection via medical procedures. CONCLUSION The limited ability to screen prions within the animal genome, along with a long latency period to manifestation of the disease (1 to over 50 years) in infected patients, provides a framework for discussing posible long-term risks of the xenografts that are used so extensively in dentistry. We suggest abolishing the use of bovine bone.
Collapse
Affiliation(s)
- Yeoungsug Kim
- Private practice, K-205, Banpodong 929, Sechogu, Seoul, Korea
| | - Angel Emmanuel Rodriguez
- Resident, Periodontology and Oral Biology Program, Henry M. Goldman School of Dental Medicine, Boston University
| | - Hessam Nowzari
- Private practice, 120 South Spalding Drive, Suite 201, Beverly Hills, CA, 90212, USA
| |
Collapse
|
22
|
Abstract
Zoonotic diseases are the main contributor to emerging infectious diseases (EIDs) and present a major threat to global public health. Bushmeat is an important source of protein and income for many African people, but bushmeat-related activities have been linked to numerous EID outbreaks, such as Ebola, HIV, and SARS. Importantly, increasing demand and commercialization of bushmeat is exposing more people to pathogens and facilitating the geographic spread of diseases. To date, these linkages have not been systematically assessed. Here we review the literature on bushmeat and EIDs for sub-Saharan Africa, summarizing pathogens (viruses, fungi, bacteria, helminths, protozoan, and prions) by bushmeat taxonomic group to provide for the first time a comprehensive overview of the current state of knowledge concerning zoonotic disease transmission from bushmeat into humans. We conclude by drawing lessons that we believe are applicable to other developing and developed regions and highlight areas requiring further research to mitigate disease risk.
Collapse
|
23
|
Lee J, Hyeon JW, Kim SY, Hwang KJ, Ju YR, Ryou C. Review: Laboratory diagnosis and surveillance of Creutzfeldt-Jakob disease. J Med Virol 2014; 87:175-86. [PMID: 24978677 DOI: 10.1002/jmv.24004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
Abstract
Creutzfeldt-Jakob disease (CJD) is a representative human transmissible spongiform encephalopathy associated with central nervous system degeneration. Prions, the causative agents of CJD, are composed of misfolded prion proteins and are able to self-replicate. While CJD is a rare disease affecting only 1-1.5 people per million worldwide annually, it has attracted both scientific and public attention as a threatening disease since an epidemic of variant CJD (vCJD) cases appeared in the mid-1990s. Due to its unconventional transmission and invariable fatality, CJD poses a serious risk to public health. The hundreds of sporadic, genetic, and iatrogenic CJD cases as well as potential zoonotic transmission suggest that CJD is an ongoing concern for the field of medicine. Nevertheless, treatment aimed at clinical prevention and treatment that reverses the course of disease does not exist currently. Active surveillance and effective laboratory diagnosis of CJD are, therefore, critical. In this report, the surveillance systems and laboratory tests used currently to diagnose CJD in different countries are reviewed. The current efforts to improve surveillance and diagnosis for CJD using molecular and biochemical findings are also described.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Zoonoses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Diseases Control & Prevention, Chungcheongbuk-do, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Zhang Z, Wang R, Xu L, Yuan F, Zhou X, Yang L, Yin X, Xu B, Zhao D. Molecular cloning and sequence analysis of prion protein gene in Xiji donkey in China. Gene 2013; 529:345-50. [PMID: 23954254 DOI: 10.1016/j.gene.2013.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/22/2013] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
Prion diseases are a group of human and animal neurodegenerative disorders caused by the deposition of an abnormal isoform prion protein (PrP(Sc)) encoded by a single copy prion protein gene (PRNP). Prion disease has been reported in many herbivores but not in Equus and the species barrier might be playing a role in resistance of these species to the disease. Therefore, analysis of genotype of prion protein (PrP) in these species may help understand the transmission of the disease. Xiji donkey is a rare species of Equus not widely reared in Ningxia, China, for service, food and medicine, but its PRNP has not been studied. Based on the reported PrP sequence in GenBank we designed primers and amplified, cloned and sequenced the PRNP of Xiji donkey. The sequence analysis showed that the Xiji donkey PRNP was consisted of an open reading frame of 768 nucleotides encoding 256 amino acids. Amino acid residues unique to donkey as compared with some Equus animals, mink, cow, sheep, human, dog, sika deer, rabbit and hamster were identified. The results showed that the amino acid sequence of Xiji donkey PrP starts with the consensus sequence MVKSH, with almost identical amino acid sequence to the PrP of other Equus species in this study. Amino acid sequence analysis showed high identity within species and close relation to the PRNP of sika deer, sheep, dog, camel, cow, mink, rabbit and hamster with 83.1-99.7% identity. The results provided the PRNP data for an additional Equus species, which should be useful to the study of the prion disease pathogenesis, resistance and cross species transmission.
Collapse
Affiliation(s)
- Zhuming Zhang
- State Key Laboratories for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; College of Agriculture, Ningxia University, Yinchuan 750021, China
| | | | | | | | | | | | | | | | | |
Collapse
|