1
|
Deng X, Lin B, Wang F, Xu P, Wang N. Mangiferin attenuates osteoporosis by inhibiting osteoblastic ferroptosis through Keap1/Nrf2/SLC7A11/GPX4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155282. [PMID: 38176266 DOI: 10.1016/j.phymed.2023.155282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Ferroptosis is a crucial contributor to impaired osteoblast function in osteoporosis. Mangiferin, a xanthonoid glucoside isolated from mangoes, exhibits anti-osteoporosis effects. However, its potential mechanism is not fully understood. PURPOSE This study explores the potencies of mangiferin on osteoblastic ferroptosis and deciphers its direct target in the context of solute carrier family 7-member 11 (SLC7A11)/glutathione peroxidases 4 (GPX4) pathway. METHODS In vivo models include bilateral ovariectomy induced osteoporosis mice, iron-dextran induced iron-overloaded mice, and nuclear factor-erythroid 2-related factor 2 (Nrf2)-knockout mice. Mice are orally administrated mangiferin (10, 50 or 100 mg.kg-1.d-1) for 12 weeks. In vitro osteoblast models include iron-dextran induced iron-overloaded cells, erastin induced ferroptosis cells, and gene knockout cells. RNA sequencing is applied for investigating the underlying mechanisms. The direct target of mangiferin is studied using a cellular thermal shift assay, silico docking, and surface plasmon resonance. RESULTS Mangiferin promotes bone formation and inhibits ferroptosis in vivo models (osteoporosis mice, iron-overloaded mice) and in vitro models (ferroptosis osteoblast, iron-overloaded osteoblasts). Mechanismly, mangiferin directly binds to the kelch-like ECH-associated protein 1 (Keap1) and activates the downstream Nrf2/SLC7A11/GPX4 pathway in both the in vivo and in vitro models. Mangiferin failed to restore the osteoporosis and ferroptosis in Nrf2-knockout mice. Silencing Nrf2, SLC7A11 or GPX4 abolished the anti-ferroptosis effect of mangiferin in erastin-induced cells. Addition of the ferroptosis agonist RSL-3 also blocked the protective effects of mangiferin on iron-overloaded cells. Furthermore, mangiferin had better effects on osteogenesis than the ferroptosis inhibitor (ferrostatin-1) and the Nrf2 agonists (sulforaphane, dimethyl fumarate, and bardoxolone). CONCLUSIONS We identify for the first time mangiferin as a ferroptosis inhibitor and a direct Keap1 conjugator that promotes bone formation and alleviates osteoporosis. This work also provides a potentially practical pharmacological approach for treating ferroptosis-driven diseases.
Collapse
Affiliation(s)
- Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Fang Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Nani Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China.
| |
Collapse
|
2
|
Gossypitrin, A Naturally Occurring Flavonoid, Attenuates Iron-Induced Neuronal and Mitochondrial Damage. Molecules 2021; 26:molecules26113364. [PMID: 34199597 PMCID: PMC8199700 DOI: 10.3390/molecules26113364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
The disruption of iron homeostasis is an important factor in the loss of mitochondrial function in neural cells, leading to neurodegeneration. Here, we assessed the protective action of gossypitrin (Gos), a naturally occurring flavonoid, on iron-induced neuronal cell damage using mouse hippocampal HT-22 cells and mitochondria isolated from rat brains. Gos was able to rescue HT22 cells from the damage induced by 100 µM Fe(II)-citrate (EC50 8.6 µM). This protection was linked to the prevention of both iron-induced mitochondrial membrane potential dissipation and ATP depletion. In isolated mitochondria, Gos (50 µM) elicited an almost complete protection against iron-induced mitochondrial swelling, the loss of mitochondrial transmembrane potential and ATP depletion. Gos also prevented Fe(II)-citrate-induced mitochondrial lipid peroxidation with an IC50 value (12.45 µM) that was about nine time lower than that for the tert-butylhydroperoxide-induced oxidation. Furthermore, the flavonoid was effective in inhibiting the degradation of both 15 and 1.5 mM 2-deoxyribose. It also decreased Fe(II) concentration with time, while increasing O2 consumption rate, and impairing the reduction of Fe(III) by ascorbate. Gos-Fe(II) complexes were detected by UV-VIS and IR spectroscopies, with an apparent Gos-iron stoichiometry of 2:1. Results suggest that Gos does not generally act as a classical antioxidant, but it directly affects iron, by maintaining it in its ferric form after stimulating Fe(II) oxidation. Metal ions would therefore be unable to participate in a Fenton-type reaction and the lipid peroxidation propagation phase. Hence, Gos could be used to treat neuronal diseases associated with iron-induced oxidative stress and mitochondrial damage.
Collapse
|
3
|
Morozkina SN, Nhung Vu TH, Generalova YE, Snetkov PP, Uspenskaya MV. Mangiferin as New Potential Anti-Cancer Agent and Mangiferin-Integrated Polymer Systems-A Novel Research Direction. Biomolecules 2021; 11:79. [PMID: 33435313 PMCID: PMC7827323 DOI: 10.3390/biom11010079] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
For a long time, the pharmaceutical industry focused on natural biologically active molecules due to their unique properties, availability and significantly less side-effects. Mangiferin is a naturally occurring C-glucosylxantone that has substantial potential for the treatment of various diseases thanks to its numerous biological activities. Many research studies have proven that mangiferin possesses antioxidant, anti-infection, anti-cancer, anti-diabetic, cardiovascular, neuroprotective properties and it also increases immunity. It is especially important that it has no toxicity. However, mangiferin is not being currently applied to clinical use because its oral bioavailability as well as its absorption in the body are too low. To improve the solubility, enhance the biological action and bioavailability, mangiferin integrated polymer systems have been developed. In this paper, we review molecular mechanisms of anti-cancer action as well as a number of designed polymer-mangiferin systems. Taking together, mangiferin is a very promising anti-cancer molecule with excellent properties and the absence of toxicity.
Collapse
Affiliation(s)
- Svetlana N. Morozkina
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| | - Thi Hong Nhung Vu
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| | - Yuliya E. Generalova
- Department of Analytical Chemistry, Faculty of Industrial Technology of Dosage Forms, Saint Petersburg State Chemical Pharmaceutical University, Prof. Popova Street 14A, 197022 Saint-Petersburg, Russia;
| | - Petr P. Snetkov
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| | - Mayya V. Uspenskaya
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| |
Collapse
|
4
|
Therapeutic potential of mangiferin in the treatment of various neuropsychiatric and neurodegenerative disorders. Neurochem Int 2020; 143:104939. [PMID: 33346032 DOI: 10.1016/j.neuint.2020.104939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/02/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022]
Abstract
Xanthones are important chemical class of bioactive products that confers therapeutic benefits. Of several xanthones, mangiferin is known to be distributed widely across several fruits, vegetables and medicinal plants. Mangiferin has been shown to exert neuroprotective effects in both in-vitro and in-vivo models. Mangiferin attenuates cerebral infarction, cerebral edema, lipid peroxidation (MDA), neuronal damage, etc. Mangiferin further potentiate levels of endogenous antioxidants to confer protection against the oxidative stress inside the neurons. Mangiferin is involved in the regulation of various signaling pathways that influences the production and levels of proinflammatory cytokines in brain. Mangiferin cosunteracted the neurotoxic effect of amyloid-beta, MPTP, rotenone, 6-OHDA etc and confer protection to neurons. These evidence suggested that the mangiferin may be a potential therapeutic strategy for the treatment of various neurological disorders. The present review demonstrated the pharmacodynamics-pharmacokinetics of mangiferin and neurotherapeutic potential in several neurological disorders with underlying mechanisms.
Collapse
|
5
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer's and Parkinson's disease models. Pharmacol Res 2019; 146:104336. [PMID: 31271846 DOI: 10.1016/j.phrs.2019.104336] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are recognized as the universal neurodegenerative diseases, with the involvement of misfolded proteins pathology, leading to oxidative stress, glial cells activation, neuroinflammation, mitochondrial dysfunction, and cellular apoptosis. Several discoveries indicate that accumulation of pathogenic proteins, i.e. amyloid β (Aβ), the microtubule-binding protein tau, and α-synuclein, are parallel with oxidative stress, neuroinflammation, and mitochondrial dysfunction. Whether the causative factors are misfolded proteins or these pathophysiological changes, leading to neurodegeneration still remain ambiguous. Importantly, directing pharmacological researches towards the prevention of AD and PD seem a promising approach to detect these complicating mechanisms, and provide new insight into therapy for AD and PD patients. Mangiferin (MGF, 2-C-β-D-glucopyranosyl-1, 3, 6, 7-tetrahydroxyxanthone), well-known as a natural product, is detached from multiple plants, including Mangifera indica L. With the structure of C-glycosyl and phenolic moiety, MGF possesses multipotent properties starting from anti-oxidant effects, to the alleviation of mitochondrial dysfunction, neuroinflammation, and cellular apoptosis. In particular, MGF can cross the blood-brain barrier to exert neuronal protection. Different researches implicate that MGF is able to protect the central nervous system from oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis under in vitro and in vivo models. Additional facts support that MGF plays a role in improving the declined memory and cognition of rat models. Taken together, the neuroprotective capacity of MGF may stand out as an agent candidate for AD and PD therapy.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Mangiferin and Morin Attenuate Oxidative Stress, Mitochondrial Dysfunction, and Neurocytotoxicity, Induced by Amyloid Beta Oligomers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2856063. [PMID: 30013719 PMCID: PMC6022276 DOI: 10.1155/2018/2856063] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/28/2018] [Accepted: 04/12/2018] [Indexed: 11/18/2022]
Abstract
Amyloid beta- (Aβ-) mediated ROS overproduction disrupts intraneuronal redox balance and exacerbates mitochondrial dysfunction which leads to neuronal injury. Polyphenols have been investigated as therapeutic agents that promote neuroprotective effects in experimental models of brain injury and neurodegenerative diseases. The aim of this study was to identify the neuroprotective effects of morin and mangiferin against Aβ oligomers in cultured cortical neurons and organotypic slices as well as their mechanisms of action. Cell death caused by Aβ oligomers in neuronal cultures was decreased in the presence of micromolar concentrations of mangiferin or morin, which in turn attenuated oxidative stress. The neuroprotective effects of antioxidants against Aβ were associated with the reduction of Aβ-induced calcium load to mitochondria; mitochondrial membrane depolarization; and release of cytochrome c from mitochondria, a key trigger of apoptosis. Additionally, we observed that both polyphenols activated the endogenous enzymatic antioxidant system and restored oxidized protein levels. Finally, Aβ induced an impairment of energy homeostasis due to a decreased respiratory capacity that was mitigated by morin and mangiferin. Overall, the beneficial effects of polyphenols in preventing mitochondrial dysfunction and neuronal injury in AD cell models suggest that morin and mangiferin hold promise for the treatment of this neurological disorder.
Collapse
|
7
|
Dorighello GG, Inada NM, Paim BA, Pardo-Andreu GL, Vercesi AE, Oliveira HCF. Mangifera indica L. extract (Vimang®) reduces plasma and liver cholesterol and leucocyte oxidative stress in hypercholesterolemic LDL receptor deficient mice. Cell Biol Int 2018; 42:747-753. [PMID: 29427465 DOI: 10.1002/cbin.10950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/03/2018] [Indexed: 01/16/2023]
Abstract
Cardiovascular diseases are major causes of death worldwide. Beyond the classical cholesterol risk factor, other conditions such as oxidative stress are well documented to promote atherosclerosis. The Mangifera indica L. extract (Vimang®) was reported to present antioxidant and hypocholesterolemic properties. Thus, here we evaluate the effects of Vimang treatment on risk factors of the atherosclerosis prone model of familial hypercholesterolemia, the LDL receptor knockout mice. Mice were treated with Vimang during 2 weeks and were fed a cholesterol-enriched diet during the second week. The Vimang treated mice presented significantly reduced levels of plasma (15%) and liver (20%) cholesterol, increased plasma total antioxidant capacity (10%) and decreased reactive oxygen species (ROS) production by spleen mononuclear cells (50%), P < 0.05 for all. In spite of these benefits, the average size of aortic atherosclerotic lesions stablished in this short experimental period did not change significantly in Vimang treated mice. Therefore, in this study we demonstrated that Vimang has protective effects on systemic and tissue-specific risk factors, but it is not sufficient to promote a reduction in the initial steps of atherosclerosis development. In addition, we disclosed a new antioxidant target of Vimang, the spleen mononuclear cells that might be relevant for more advanced stages of atherosclerosis.
Collapse
Affiliation(s)
- Gabriel G Dorighello
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, São Paulo, Brazil
| | - Natália M Inada
- Faculty of Medical Sciences, Department of Clinical Pathology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Bruno A Paim
- Faculty of Medical Sciences, Department of Clinical Pathology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Gilberto L Pardo-Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos de La Universidad de La Habana, La Habana, Cuba
| | - Anibal E Vercesi
- Faculty of Medical Sciences, Department of Clinical Pathology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Sandoval-Gallegos EM, Ramírez-Moreno E, Lucio JGD, Arias-Rico J, Cruz-Cansino N, Ortiz MI, Cariño-Cortés R. In Vitro Bioaccessibility and Effect of Mangifera indica (Ataulfo) Leaf Extract on Induced Dyslipidemia. J Med Food 2017; 21:47-56. [PMID: 28850305 DOI: 10.1089/jmf.2017.0042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death in the world, and epidemiological evidence points to dietary habits, stress, and obesity as major risk factors promoting pathological conditions like atherosclerosis, hypertension, and thrombosis. Current therapeutic approaches for CVDs rely on lifestyle changes and/or the use of drug agents. However, since the efficacy of such interventions is often limited by poor compliance and/or significant side effects, continued research on new preventive and therapeutic approaches is much needed. Our study is aimed to determine the bioaccessibility, total content of phenolic compounds, and antioxidant capacity (DPPH·, ABTS·+) of a methanolic extract from Mangifera indica L. leaves (MEM), and its lipid-lowering effect on an induced dyslipidemia model in Wistar rats. Our results showed that mangiferin is the main component of MEM. The extract showed a total content of polyphenol compounds of 575.28 gallic acid equivalents per dry matter basis (GAE/g db), antioxidant activity 77.68 μmol Trolox equivalents per gram (TE/g) db as measured by DPPH· and 20,630 μmol TE/g db by ABTS·+, and 12% of phenolic compounds were bioaccessible, and 100 mg/kg of MEM reduced hyperlipidemia levels induced in Wistar rats. Further study on the potential use of MEM as a nutraceutical to prevent CVDs in high-fat diet consumers is required.
Collapse
Affiliation(s)
| | - Esther Ramírez-Moreno
- 1 Interdisciplinary Research Center, Academic Area of Nutrition, Institute of Health Sciences , Pachuca, México
| | - Juan Gayosso De Lucio
- 2 Academic Area of Pharmacy, Institute of Health Sciences, Autonomous University of Hidalgo State , Pachuca, México
| | - José Arias-Rico
- 3 Academic Area of Nurse, Institute of Health Sciences, Autonomous University of Hidalgo State , Pachuca, México
| | - Nelly Cruz-Cansino
- 1 Interdisciplinary Research Center, Academic Area of Nutrition, Institute of Health Sciences , Pachuca, México
| | - Mario I Ortiz
- 4 Academic Area of Medicine, Autonomous University of Hidalgo State , Pachuca, México
| | - Raquel Cariño-Cortés
- 4 Academic Area of Medicine, Autonomous University of Hidalgo State , Pachuca, México
| |
Collapse
|
9
|
Zhang YN, Wang J, Qi B, Wu SG, Chen HR, Luo HY, Yin DJ, Lü FJ, Zhang HJ, Qi GH. Evaluation of mango saponin in broilers: effects on growth performance, carcass characteristics, meat quality and plasma biochemical indices. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1143-1149. [PMID: 28111445 PMCID: PMC5494488 DOI: 10.5713/ajas.16.0847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/17/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The objective of the present study was to determine whether mango saponin (MS) could be used as a feed additive in broiler chicks by evaluating growth performance, carcass characteristics, meat quality, and plasma biochemical indices. METHODS A total of 216 1-d-old Arbor Acres male broiler chicks were randomly assigned into three dietary treatments supplemented with 0 (control), 0.14% (MS 0.14%), or 0.28% (MS 0.28%) MS. Each treatment had six replicates (cages) with 12 chicks each. The feeding trial lasted for six weeks. RESULTS Compared with the control, dietary supplemented with 0.14% or 0.28% MS increased average daily weight gain of chicks in the grower (22 to 42 d) and the whole (1 to 42 d) phases, and the final body weight of chicks on d 42 was higher in MS supplemented groups (p<0.05). Lower L45 min* (lightness) and L24 h* values, lower b24 h* (yellowness) value, and higher a45 min* (redness) and a24 h* values of the breast muscle were observed in chicks fed with 0.28% MS on d 42 (p<0.05). The total antioxidant capacity in plasma increased in MS 0.14% group on d 21 (p<0.001). Lower contents of plasma total cholesterol and triglyceride were observed in chicks fed with 0.28% MS on d 21 and d 42, whereas the group supplemented with 0.14% MS only decreased plasma triglyceride content on d 21 (p<0.05). The glucose content in plasma decreased in MS 0.28% group on d 42 (p<0.001). CONCLUSION Overall, MS could be used as a feed additive in broiler chicks, and the supplemental level of 0.28% MS in diet could improve growth performance, meat quality, and plasma lipid metabolism in broiler chicks.
Collapse
Affiliation(s)
- Y. N. Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081,
China
| | - J. Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081,
China
| | - B. Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081,
China
| | - S. G. Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081,
China
| | - H. R. Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737,
China
| | - H. Y. Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737,
China
| | - D. J. Yin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081,
China
| | - F. J. Lü
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081,
China
| | - H. J. Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081,
China
| | - G. H. Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081,
China
| |
Collapse
|
10
|
Bhatt L, Joshi V. Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2017; 6:284-289. [PMID: 28894627 PMCID: PMC5580954 DOI: 10.5455/jice.20170701075019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/09/2017] [Indexed: 01/05/2023]
Abstract
AIM The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). MATERIALS AND METHODS Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. RESULTS The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. CONCLUSION These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX.
Collapse
Affiliation(s)
- Laxit Bhatt
- Department of Pharmacology, Shree Devi College of Pharmacy, Mangalore, Karnataka, India
- Department of Pharmacology & Toxicology, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Viraj Joshi
- Department of Quality Assurance, Shree Devi College of Pharmacy, Mangalore, Karnataka, India
| |
Collapse
|
11
|
de la Vega-Hernández K, Antuch M, Cuesta-Rubio O, Núñez-Figueredo Y, Pardo-Andreu GL. Discerning the antioxidant mechanism of rapanone: A naturally occurring benzoquinone with iron complexing and radical scavenging activities. J Inorg Biochem 2017; 170:134-147. [PMID: 28237732 DOI: 10.1016/j.jinorgbio.2017.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 02/01/2023]
Abstract
Oxidative stress resulting from iron and reactive oxygen species (ROS) homeostasis breakdown has been implicated in several diseases. Therefore, molecules capable of binding iron and/or scavenging ROS may be reasonable strategies for protecting cells. Rapanone is a naturally occurring hydroxyl-benzoquinone with a privileged chelating structure. In this work, we addressed the antioxidant properties of rapanone concerning its iron-chelating and scavenging activities, and its protective potential against iron and tert-butyl hydroperoxide-induced damage to mitochondria. Experimental determinations revealed the formation of rapanone-Fe(II)/Fe(III) complexes. Additionally, the electrochemical assays indicated that rapanone oxidized Fe(II) and O2-, thus inhibiting Fenton-Haber-Weiss reactions. Furthermore, rapanone displayed an increased 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability in the presence of Fe(II). The above results explained the capacity of rapanone to provide near-full protection against iron and tert-butyl hydroperoxide induced mitochondrial lipid peroxidation in energized organelles, which fail under non-energized condition. We postulate that rapanone affords protection against iron and reactive oxygen species by means of both iron chelating and iron-stimulated free radical scavenging activity.
Collapse
Affiliation(s)
- Karen de la Vega-Hernández
- Departamento de Farmacia, Instituto de Farmacia y Alimentos, Universidad de La Habana, Ave. 23 # 21425 e/ 214 y 222, La Coronela, La Lisa, CP 13600, La Habana, Cuba
| | - Manuel Antuch
- Departamento de Química-Física, Facultad de Química, Universidad de la Habana, Ave. Zapata y G, Vedado, CP 10400 La Habana, Cuba
| | | | | | - Gilberto L Pardo-Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Calle 222, No. 2317 entre 23 y 31, La Coronela, La Lisa, CP 13600 La Habana, Cuba.
| |
Collapse
|
12
|
Núñez Selles AJ, Daglia M, Rastrelli L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors 2016; 42:475-491. [PMID: 27219221 DOI: 10.1002/biof.1299] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Mangiferin (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) is a natural bioactive xanthonoid that can be found in many plant species, among which the mango tree (Mangifera indica L), a plant widely used in the traditional medicinal, is one of its primary sources. The use of mangiferin for cancer treatment has attracted the attention of research groups around the World. Single administration of mangiferin or in combination with known anticancer chemicals has shown the potential benefits of this molecule in lung, brain, breast, cervix, and prostate cancers, and leukemia. Mangiferin mechanisms of action against cancer cells through in vitro, ex vivo, or in vivo models are discussed besides its antioxidant and anti-inflammatory properties. Nevertheless, pharmaceutical development and, therefore, clinical trials on cancer targets are still lacking. © 2016 BioFactors, 42(5):475-491, 2016.
Collapse
Affiliation(s)
- Alberto J Núñez Selles
- National Evangelic University, Research Division, Paseo De Los Periodistas 54, Santo Domingo, Dominican Republic
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Luca Rastrelli
- Dipartimento Di Farmacia, Università Degli Studi Di Salerno, via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
13
|
Lei J, Zhou C, Hu H, Hu L, Zhao M, Yang Y, Chuai Y, Ni J, Cai J. Mangiferin aglycone attenuates radiation-induced damage on human intestinal epithelial cells. J Cell Biochem 2012; 113:2633-42. [PMID: 22422649 DOI: 10.1002/jcb.24138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent studies suggest that mangiferin aglycone (norathyriol) has great potential as a novel radioprotector without any known toxic side effects. In this study, we assessed the protective effects of mangiferin aglycone against radiation-induced injuries on normal human intestinal epithelial cells (HIECs), while using mangiferin as a reference compound. The in vitro experiments showed that pretreatment of either mangiferin aglycone or mangiferin could inhibit cytotoxic effects of ionizing irradiation (IR) on HIECs. Cellular changes were estimated by measuring cell viability, clonogenic surviving rate, and apoptotic rate. Compared to mangiferin, we found mangiferin aglycone had greater radioprotective effects of mangiferin aglycone on HIECs. It has been demonstrated that the cytotoxicity of ionizing radiation relates to its capacity to induce DNA damage. In view of this, we monitored DNA double-strand breaks (DSBs) using γH2AX foci formation to test whether mangiferin aglycone and mangiferin could modulate genotoxic effects of radiation. It shows that mangiferin aglycone could eliminate 46.8% of the total DSBs of the cells exposed to 2 Gy IR, which is significantly better than mangiferin. Complementing earlier results from our group, it appears possible to conclude that mangiferin aglycone presents potential useful effects on IR-induced damage and may be a better radioprotective agent than mangiferin therapeutically.
Collapse
Affiliation(s)
- Jixiao Lei
- Faculty of Naval Medicine, Department of Radiation Medicine, Second Military Medical University, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shah KA, Patel MB, Patel RJ, Parmar PK. Mangifera indica (mango). Pharmacogn Rev 2012; 4:42-8. [PMID: 22228940 PMCID: PMC3249901 DOI: 10.4103/0973-7847.65325] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/06/2010] [Accepted: 07/10/2010] [Indexed: 12/13/2022] Open
Abstract
Mangifera indica, commonly used herb in ayurvedic medicine. Although review articles on this plant are already published, but this review article is presented to compile all the updated information on its phytochemical and pharmacological activities, which were performed widely by different methods. Studies indicate mango possesses antidiabetic, anti-oxidant, anti-viral, cardiotonic, hypotensive, anti-inflammatory properties. Various effects like antibacterial, anti fungal, anthelmintic, anti parasitic, anti tumor, anti HIV, antibone resorption, antispasmodic, antipyretic, antidiarrhoeal, antiallergic, immunomodulation, hypolipidemic, anti microbial, hepatoprotective, gastroprotective have also been studied. These studies are very encouraging and indicate this herb should be studied more extensively to confirm these results and reveal other potential therapeutic effects. Clinical trials using mango for a variety of conditions should also be conducted.
Collapse
Affiliation(s)
- K A Shah
- Department of Pharmacognosy, K. B. Raval College of Pharmacy, Shertha - 382 324, Gandhinagar, Gujarat, India
| | | | | | | |
Collapse
|
15
|
Pierson JT, Dietzgen RG, Shaw PN, Roberts-Thomson SJ, Monteith GR, Gidley MJ. Major Australian tropical fruits biodiversity: Bioactive compounds and their bioactivities. Mol Nutr Food Res 2011; 56:357-87. [DOI: 10.1002/mnfr.201100441] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/30/2011] [Accepted: 09/20/2011] [Indexed: 01/03/2023]
|
16
|
Mangiferin attenuates methylmercury induced cytotoxicity against IMR-32, human neuroblastoma cells by the inhibition of oxidative stress and free radical scavenging potential. Chem Biol Interact 2011; 193:129-40. [PMID: 21703249 DOI: 10.1016/j.cbi.2011.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 06/04/2011] [Accepted: 06/06/2011] [Indexed: 01/18/2023]
Abstract
Mangiferin (MGN), a C-glucosylxanthone was investigated for its ability to protect against methylmercury (MeHg) induced neurotoxicity by employing IMR-32 (human neuroblastoma) cell line. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and clonogenic cell survival assays confirmed the efficacy of MGN supplementation in attenuating MeHg-induced cytotoxicity. Pre-treatment with MGN significantly (p<0.01) inhibited MeHg-induced DNA damage (micronuclei, olive tail moment and % tail DNA) thereby demonstrating MGN's antigenotoxic potential. Also, pre-treatment with MGN significantly reduced MeHg-induced oxidative stress, intra-cellular Ca(2+) influx and inhibited depolarization of mitochondrial membrane. MGN pre-treated cells demonstrated a significant (p<0.05) increase in the GSH and GST levels followed by a significant (p<0.05) decrease in malondialdehyde (MDA) formation. In addition, inhibition of MeHg induced apoptotic cell death by MGN was demonstrated by microscopic, Annexin-V FITC and DNA fragmentation assays and further confirmed by western blot analysis. The present findings indicated the protective effect of MGN against MeHg induced toxicity, which may be attributed to its anti-genotoxic, anti-apoptotic and anti-lipid peroxidative potential plausibly because of its free radical scavenging ability, which reduced the oxidative stress and in turn facilitated the down-regulation of mitochondrial apoptotic signalling pathways.
Collapse
|
17
|
Figueredo YN, García-Pupo L, Cuesta Rubio O, Delgado Hernández R, Naal Z, Curti C, Pardo Andreu GL. A strong protective action of guttiferone-A, a naturally occurring prenylated benzophenone, against iron-induced neuronal cell damage. J Pharmacol Sci 2011; 116:36-46. [PMID: 21512303 DOI: 10.1254/jphs.10273fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 µM. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA-Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.
Collapse
Affiliation(s)
- Yanier Núñez Figueredo
- Laboratorio de Farmacología Molecular, Centro de Investigación y Desarrollo de Medicamentos, Ciudad Habana, Cuba
| | | | | | | | | | | | | |
Collapse
|
18
|
Duang XY, Wang Q, Zhou XD, Huang DM. Mangiferin: A possible strategy for periodontal disease to therapy. Med Hypotheses 2011; 76:486-8. [DOI: 10.1016/j.mehy.2010.11.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/25/2010] [Indexed: 12/01/2022]
|
19
|
Márquez L, Pérez-Nievas BG, Gárate I, García-Bueno B, Madrigal JLM, Menchén L, Garrido G, Leza JC. Anti-inflammatory effects of Mangifera indica L. extract in a model of colitis. World J Gastroenterol 2010; 16:4922-31. [PMID: 20954278 PMCID: PMC2957600 DOI: 10.3748/wjg.v16.i39.4922] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of aqueous extract from Mangifera indica L. (MIE) on dextran sulfate sodium (DSS)-induced colitis in rats.
METHODS: MIE (150 mg/kg) was administered in two different protocols: (1) rectally, over 7 d at the same time as DSS administration; and (2) once daily over 14 d (by oral gavage, 7 d before starting DSS, and rectally for 7 d during DSS administration). General observations of clinical signs were performed. Anti-inflammatory activity of MIE was assessed by myeloperoxidase (MPO) activity. Colonic lipid peroxidation was determined by measuring the levels of thiobarbituric acid reactive substances (TBARS). Reduced glutathione (GSH) levels, expression of inflammatory related mediators [inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, respectively] and cytokines [tumor necrosis factor (TNF)-α and TNF receptors 1 and 2] in colonic tissue were also assessed. Interleukin (IL)-6 and TNF-α serum levels were also measured.
RESULTS: The results demonstrated that MIE has anti-inflammatory properties by improvement of clinical signs, reduction of ulceration and reduced MPO activity when administered before DSS. In addition, administration of MIE for 14 d resulted in an increase in GSH and reduction of TBARS levels and iNOS, COX-2, TNF-α and TNF R-2 expression in colonic tissue, and a decrease in IL-6 and TNF-α serum levels.
CONCLUSION: MIE has anti-inflammatory activity in a DSS-induced rat colitis model and preventive administration (prior to DSS) seems to be a more effective protocol.
Collapse
|
20
|
Maioli MA, Alves LC, Campanini AL, Lima MC, Dorta DJ, Groppo M, Cavalheiro AJ, Curti C, Mingatto FE. Iron chelating-mediated antioxidant activity of Plectranthus barbatus extract on mitochondria. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.02.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Ang E, Liu Q, Qi M, Liu HG, Yang X, Chen H, Zheng MH, Xu J. Mangiferin attenuates osteoclastogenesis, bone resorption, and RANKL-induced activation of NF-κB and ERK. J Cell Biochem 2010; 112:89-97. [DOI: 10.1002/jcb.22800] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Preissler T, Martins MR, Pardo-Andreu GL, Henriques JAP, Quevedo J, Delgado R, Roesler R. Mangifera indica
extract (Vimang) impairs aversive memory without affecting open field behaviour or habituation in rats. Phytother Res 2009; 23:859-62. [DOI: 10.1002/ptr.2713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Campos-Esparza MR, Sánchez-Gómez MV, Matute C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium 2009; 45:358-68. [PMID: 19201465 DOI: 10.1016/j.ceca.2008.12.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/24/2008] [Accepted: 12/31/2008] [Indexed: 11/26/2022]
Abstract
Excessive activation of glutamate receptors, or excitotoxicity, contributes to acute and chronic neurological disorders including stroke. We previously showed that two natural polyphenol antioxidants, mangiferin and morin, are neuroprotective in a model of ischemic brain damage. In this study, we analyzed the molecular mechanisms underlying neuroprotection by mangiferin and morin in an in vitro model of excitotoxic neuronal death involving NMDA receptor overactivation. We observed that both polyphenols reduce the formation of reactive oxygen species, activate the enzymatic antioxidant system, and restore the mitochondrial membrane potential. Moreover, both antioxidants inhibit glutamate-induced activation of calpains, normalize the levels of phosphorylated Akt kinase and Erk1/2, as well as of cytosolic Bax, inhibit AIF release from mitochondria, and regulate the nuclear translocation of NF-kappaB. Each of these effects contributes to the substantial reduction of apoptotic neuronal death induced by glutamate. These results demonstrate that mangiferin and morin exhibit excellent antioxidant and antiapoptotic properties, supporting their clinical application as trial neuroprotectors in pathologies involving excitotoxic neuronal death.
Collapse
Affiliation(s)
- María Rosario Campos-Esparza
- Departamento de Neurociencias, Facultad de Medicina y Odontología. Universidad del País Vasco, and CIBERNED, Leioa, Spain
| | | | | |
Collapse
|
24
|
Pinto-Basto D, Silva JP, Queiroz MJR, Moreno AJ, Coutinho OP. Antioxidant activity of synthetic diarylamines: A mitochondrial and cellular approach. Mitochondrion 2009; 9:17-26. [DOI: 10.1016/j.mito.2008.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/23/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
|
25
|
Pardo-Andreu GL, Paim BA, Castilho RF, Velho JA, Delgado R, Vercesi AE, Oliveira HCF. Mangifera indica L. extract (Vimang) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse. Pharmacol Res 2008; 57:332-8. [PMID: 18450471 DOI: 10.1016/j.phrs.2008.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/13/2008] [Accepted: 03/13/2008] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is linked to a number of oxidative events ranging from low-density lipoprotein (LDL) oxidation to the increased production of intracellular reactive oxygen species (ROS). We have recently demonstrated that liver mitochondria isolated from the atherosclerosis-prone hypercholesterolemic LDL receptor knockout (LDLr(-/-)) mice have lower content of NADP(H)-linked substrates than the controls and, as consequence, higher sensitivity to oxidative stress and mitochondrial membrane permeability transition (MPT). In the present work, we show that oral supplementation with the antioxidants Mangifera indica L. extract (Vimang) or its main polyphenol mangiferin shifted the sensitivity of LDLr(-/-) liver mitochondria to MPT to control levels. These in vivo treatments with Vimang and mangiferin also significantly reduced ROS generation by both isolated LDLr(-/-) liver mitochondria and spleen lymphocytes. In addition, these antioxidant treatments prevented mitochondrial NAD(P)H-linked substrates depletion and NADPH spontaneous oxidation. In summary, Vimang and mangiferin spared the endogenous reducing equivalents (NADPH) in LDLr(-/-) mice mitochondria correcting their lower antioxidant capacity and restoring the organelle redox homeostasis. The effective bioavailability of these compounds makes them suitable antioxidants with potential use in atherosclerosis susceptible conditions.
Collapse
Affiliation(s)
- Gilberto L Pardo-Andreu
- Departamento de Investigaciones Biomédicas, Centro de Química Farmacéutica, Calle 200, Esq. 21, Playa, Ciudad de La Habana, Cuba.
| | | | | | | | | | | | | |
Collapse
|
26
|
Pardo-Andreu GL, Barrios MF, Curti C, Hernández I, Merino N, Lemus Y, Martínez I, Riaño A, Delgado R. Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver. Pharmacol Res 2008; 57:79-86. [DOI: 10.1016/j.phrs.2007.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/06/2023]
|
27
|
Pardo-Andreu GL, Sánchez-Baldoquín C, Avila-González R, Yamamoto ETS, Revilla A, Uyemura SA, Naal Z, Delgado R, Curti C. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity. Pharmacol Res 2006; 54:389-95. [PMID: 17000117 DOI: 10.1016/j.phrs.2006.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 07/11/2006] [Accepted: 08/03/2006] [Indexed: 11/27/2022]
Abstract
A standard aqueous stem bark extract from selected species of Mangifera indica L. (Anacardiaceae)--Vimang, whose major polyphenolic component is mangiferin, displays potent in vitro and in vivo antioxidant activity. The present study provides evidence that the Vimang-Fe(III) mixture is more effective at scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals, as well as in protecting against t-butyl hydroperoxide-induced mitochondrial lipid peroxidation and hypoxia/reoxygenation-induced hepatocytes injury, compared to Vimang alone. Voltammetric assays demonstrated that Vimang, in line with the high mangiferin content of the extract, behaves electrochemically like mangiferin, as well as interacts with Fe(III) in close similarity with mangiferin's interaction with the cation. These results justify the high efficiency of Vimang as an agent protecting from iron-induced oxidative damage. We propose Vimang as a potential therapy against the deleterious action of reactive oxygen species generated during iron-overload, such as that occurring in diseases like beta-thalassemia, Friedreich's ataxia and haemochromatosis.
Collapse
Affiliation(s)
- Gilberto L Pardo-Andreu
- Departamento de Investigaciones Biomédicas, Centro de Química Farmacéutica, Calle 200, Esq. 21, Playa, Ciudad de La Habana, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gómez-Zaleta B, Ramírez-Silva MT, Gutiérrez A, González-Vergara E, Güizado-Rodríguez M, Rojas-Hernández A. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2006; 64:1002-9. [PMID: 16455291 DOI: 10.1016/j.saa.2005.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 09/12/2005] [Indexed: 05/06/2023]
Abstract
The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the pK(a) values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The pK(a) values determined with this procedure were as follows: H(4)(MGF)=H(3)(MGF)(-)+H(+), pKa1 (6-H)=6.52+/-0.06; H(3)(MGF)(-)=H(2)(MGF)(2-)+H(+), pKa2 (3-H)=7.97+/-0.06; H(2)(MGF)(2-)=H(MGF)(3-)+H(+), pKa3 (7-H)=9.44+/-0.04; H(MGF)(3-)=(MGF)(4-)+H(+), pKa4 (1-H)=12.10+/-0.01; where it has been considered mangiferin C(19)H(18)O(11) as H(4)(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional (1)H,(13)C, 2D correlated (1)H/(13)C performed by (g)-HSQC and (g)-HMBC methods; are also presented. pK(a) values determination of H(4)(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.
Collapse
Affiliation(s)
- Berenice Gómez-Zaleta
- Universidad Autónoma Metropolitana-Iztapalapa, Depto. Química, Area de Química Analítica, Apdo. Postal 55-534, 09340 México DF, México
| | | | | | | | | | | |
Collapse
|
29
|
Hernández P, Delgado R, Walczak H. Mangifera indica L. extract protects T cells from activation-induced cell death. Int Immunopharmacol 2006; 6:1496-505. [PMID: 16846844 DOI: 10.1016/j.intimp.2006.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/17/2006] [Accepted: 03/31/2006] [Indexed: 01/02/2023]
Abstract
The aqueous stem bark extract of Mangifera indica L. (Vimang) has been reported to have antioxidant properties. AIDS is characterized by up-regulation of CD95 ligand (CD95L) expression and enhancement of activation-induced cell death (AICD). Recent studies demonstrate oxidative signals combined with simultaneous calcium (Ca(2+)) influx into the cytosol are required for induction of CD95L expression. In this study we show that M. indica extract attenuated anti-CD3-induced accumulation of reactive oxygen species (ROS) and intracellular free Ca(2+) and consequently, downregulates CD95L mRNA expression and CD95-mediated AICD. In addition, TCR triggering caused an elevation in the antioxidant enzyme manganous superoxide dismutase (Mn-SOD) and the increase in c-Jun N-terminal kinase (JNK) phosphorylation, both effects being prevented by M. indica extract. We provide a number of evidences regarding how M. indica extract enhance T-cell survival by inhibiting AICD, a finding associated with a decrease in oxidative stress generated through the TCR signaling pathway in activated T cells.
Collapse
Affiliation(s)
- Patricia Hernández
- Department of Biomedical Research, Center of Pharmaceutical Chemistry, PO Box 16042, Atabey, Playa, Havana, Cuba.
| | | | | |
Collapse
|
30
|
Rodríguez J, Di Pierro D, Gioia M, Monaco S, Delgado R, Coletta M, Marini S. Effects of a natural extract from Mangifera indica L, and its active compound, mangiferin, on energy state and lipid peroxidation of red blood cells. Biochim Biophys Acta Gen Subj 2006; 1760:1333-42. [PMID: 16860486 DOI: 10.1016/j.bbagen.2006.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 04/11/2006] [Accepted: 04/18/2006] [Indexed: 12/16/2022]
Abstract
Following oxidative stress, modifications of several biologically important macromolecules have been demonstrated. In this study we investigated the effect of a natural extract from Mangifera indica L (Vimang), its main ingredient mangiferin and epigallocatechin gallate (EGCG) on energy metabolism, energy state and malondialdehyde (MDA) production in a red blood cell system. Analysis of MDA, high energy phosphates and ascorbate was carried out by high performance liquid chromatography (HPLC). Under the experimental conditions, concentrations of MDA and ATP catabolites were affected in a dose-dependent way by H2O2. Incubation with Vimang (0.1, 1, 10, 50 and 100 microg/mL), mangiferin (1, 10, 100 microg/mL) and EGCG (0.01, 0.1, 1, 10 microM) significantly enhances erythrocyte resistance to H2O2-induced reactive oxygen species production. In particular, we demonstrate the protective activity of these compounds on ATP, GTP and total nucleotides (NT) depletion after H2O2-induced damage and a reduction of NAD and ADP, which both increase because of the energy consumption following H2O2 addition. Energy charge potential, decreased in H2O2-treated erythrocytes, was also restored in a dose-dependent way by these substances. Their protective effects might be related to the strong free radical scavenging ability described for polyphenols.
Collapse
Affiliation(s)
- Janet Rodríguez
- Department of Biomedical Research, Center of Pharmaceutical Chemistry, 200 y 21 Atabey Playa, P.O. Box 16042, Havana, Cuba
| | | | | | | | | | | | | |
Collapse
|
31
|
Understanding local Mediterranean diets: A multidisciplinary pharmacological and ethnobotanical approach. Pharmacol Res 2005; 52:353-66. [PMID: 16051496 DOI: 10.1016/j.phrs.2005.06.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 02/01/2023]
Abstract
Epidemiological data indicate a beneficial effect of Mediterranean diets on human health, especially on the prevalence of cardiovascular disease. These observations are supported by recent intervention studies. However, very little is known about the current role of local Mediterranean food products, which are consumed on a less regular basis and their contribution to a healthy diet. The European consortium "Local Food-Nutraceuticals" collected 127 locally consumed wild or semi-wild plants in three Mediterranean countries, i.e. Greece, Italy, and Spain, in order to assess their ethnobotanical features as well as their biological activities. The project also includes a second line of research, the study of local conceptions about these food resources. All pharmacological assays were conducted with ethanolic extracts prepared from the dried plant material. The biological activities of the extracts were assessed with the following 12 different assays covering a broad range of mechanisms considered crucial in the pathology of chronic, aging-related diseases. Four antioxidant tests: DPPH scavenging, prevention of oxyhaemoglobin bleaching, prevention of lipid peroxidation (malondialdehyde formation), and protection from DNA damage (Comet assay); three enzyme inhibition tests: inhibition of xanthine oxidase, inhibition of myeloperoxidase-catalysed guaiacol oxidation as well as the inhibition of acetylcholine esterase; one test investigating the inhibition of cytokine-induced cell activation (including the extracts' potential cytotoxicity); one assay measuring the anti-proliferation potential; one test assessing the anti-diabetic activity (PPARgamma) as well as one assay investigating the extracts' effect on mood disorder-related biochemical parameters (hSERT). Furthermore, the polyphenol content of all extracts was determined using the Folin-Ciocalteaus method. The assays revealed diverse biological effects for the tested extracts ranging from no activity to almost complete inhibition/activation. Moreover, the experimental matrix led to the identification of a sub-set of extracts, i.e. Berberis vulgaris, Reichardia picroides, Scandix australis, Satureja montana, Thymus piperella, Lythrum salicaria and Vitis vinifera, showing high activity in a broad range of assays. In summary, the in vitro observed modulations and effects exerted by extracts derived from local food plants suggest that these plants may contribute to the observed better aging of rural Mediterranean populations.
Collapse
|
32
|
Andreu GLP, Delgado R, Velho JA, Curti C, Vercesi AE. Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition. Arch Biochem Biophys 2005; 439:184-93. [PMID: 15979560 DOI: 10.1016/j.abb.2005.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/06/2005] [Accepted: 05/08/2005] [Indexed: 10/25/2022]
Abstract
Mitochondrial permeability transition (MPT) is a Ca(2+)-dependent, cyclosporine A-sensitive, non-selective inner membrane permeabilization induced by a wide range of agents or conditions, which has often been associated with necrotic or apoptotic cell death. When mitochondria isolated from livers of rats treated with the natural occurring glucosyl xanthone mangiferin (40 mg/kg body weight) were exposed in vitro to Ca(2+), they underwent CsA, NEM, and ADP-sensitive high amplitude swelling and associated membrane potential dissipation, release of pre-accumulated Ca(2+), oxidation of thiol groups, and depletion of GSH, without changes in the NAD(P)H redox state. The same treatment reduced the phosphorylation rate of mitochondria and the resting respiration by around 4 and 11%, respectively, as well as generation of reactive oxygen species (ROS) by organelle. The in vitro exposure of untreated mitochondria to mangiferin plus Ca(2+) also resulted in oxidation of thiol groups, in the same way that the compound inhibited the Ca(2+)-induced peroxidation of mitochondrial membrane lipids. The spectrum of mangiferin during its oxidation by the H(2)O(2)/HRP system showed a characteristic absorption peak at 380 nm, which decreased immediately after reaction was started; two isosbestic points at around 336 and 412 nm, with a blue shift in the position of the maxima absorption of mangiferin were observed, suggesting their conversion into one oxidation product. Glutathione abolished this decrease of absorbance, suggesting that the oxidation product of mangiferin forms adducts with GSH. We propose that Ca(2+) increases levels of mitochondria-generated ROS, which reacts with mangiferin producing quinoid derivatives, which in turn react with the most accessible mitochondrial thiol groups, thus triggering MPT. It seems probable that the free radical scavenging activity of mangiferin shifts its anti-oxidant protection to the thiol arylation. An interesting proposition is that accumulation of mangiferin quinoid products would take place in cells exposed to an overproduction of ROS, such as cancer cells, where the occurrence of MPT-mediated apoptosis may be a cellular defence mechanism against excessive ROS formation.
Collapse
Affiliation(s)
- Gilberto Lázaro Pardo Andreu
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas 13083-970 Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
33
|
Calixto JB. Twenty-five years of research on medicinal plants in Latin America: a personal view. JOURNAL OF ETHNOPHARMACOLOGY 2005; 100:131-4. [PMID: 16006081 DOI: 10.1016/j.jep.2005.06.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2005] [Indexed: 05/03/2023]
Abstract
In this short article, I have discussed (on the base of the Web of Science data base search), the expressive progress of Latin American scientific production in peer review journals in the field of plants over the last 25 years. In addition, some effort has been made towards discussing the relevance of medicinal plants for the development of standardized phytomedicines with proof of quality, safety and efficacy, and a few examples of success have been briefly mentioned.
Collapse
Affiliation(s)
- João B Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88049-900 Florianópolis, SC, Brazil.
| |
Collapse
|