1
|
Mao Z, Ding Z, Liu Z, Shi Y, Zhang Q. miR-21-5p Modulates Airway Inflammation and Epithelial-Mesenchymal Transition Processes in a Mouse Model of Combined Allergic Rhinitis and Asthma Syndrome. Int Arch Allergy Immunol 2024; 185:775-785. [PMID: 38588656 PMCID: PMC11309074 DOI: 10.1159/000538252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Combined allergic rhinitis and asthma syndrome (CARAS) is a concurrent allergic symptom of diseases of allergic rhinitis and asthma. However, the mechanism of CARAS remains unclear. The study aimed to investigate the impact of microRNA-21 (miR-21) on CARAS via targeting poly (ADP-ribose) polymerase-1 (PARP-1) and phosphoinositide 3-kinase (PI3K)/AKT pathways. METHODS The levels of miR-21-5p and PARP-1 in CARAS patients were detected by quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). An ovalbumin-sensitized mouse model of CARAS was established. And knock down of miR-21-5p was constructed by intranasally administering with miR-21-5p shRNA-encoding adeno-associated virus vector. Airway resistance and airway inflammatory response were detected. ELISA was used to evaluate IL-4/IL-5/IL-13 levels in bronchoalveolar lavage fluid (BALF). Expression levels of E-cadherin, fibronectin, and α-SMA were determined using Western blotting. The levels of PARP-1 and the activation of PI3K/AKT were assayed. RESULTS Downregulation of miR-21-5p relieved pathophysiological symptoms of asthma including airway hyperreactivity and inflammatory cell infiltration. Downregulation of miR-21-5p significantly reduced the levels of IL4, IL-5, and IL-13 in BALF. Additionally, downregulation of miR-21-5p inhibited the epithelial-mesenchymal transition (EMT) process in CARAS mice. Furthermore, miR-21-5p regulated PARP-1 and was involved in PI3K/AKT activation in CARAS mice. CONCLUSION Downregulation of miR-21-5p ameliorated CARAS-associated lung injury by alleviating airway inflammation, inhibiting the EMT process, and regulating PARP-1/PI3K/AKT in a mouse model of CARAS.
Collapse
Affiliation(s)
- Zhengdao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Ziqi Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Zhiguang Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yujia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
2
|
Oit-Wiscombe I, Soomets U, Altraja A. Antioxidant Glutathione Analogues UPF1 and UPF17 Modulate the Expression of Enzymes Involved in the Pathophysiology of Chronic Obstructive Pulmonary Disease. Curr Issues Mol Biol 2024; 46:2343-2354. [PMID: 38534765 PMCID: PMC10969540 DOI: 10.3390/cimb46030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Increased oxidative stress (OS) and systemic inflammation are key players in the pathophysiology of chronic obstructive pulmonary disease (COPD). We aimed to clarify the effects of synthetic glutathione (GSH) analogue peptides UPF1 and UPF17 on the mRNA levels of enzymes involved in systemic inflammation and GSH metabolism in peripheral blood mononuclear cells (PBMCs) from patients with acute exacerbation of COPD (AE-COPD) and stable COPD along with non-obstructive smokers and non-smokers. UPF1 and UPF17 increased the expression of enzymes involved in the formation of the antioxidant capacity: superoxide dismutase 1 (SOD1) and the catalytic subunit of glutamyl-cysteine ligase (GCLC) in patients with AE-COPD and stable COPD, but also in non-obstructive smokers and non-smokers. Similarly, both UPF1 and UPF17 increased the expression of inflammatory enzymes poly(ADP-ribose) polymerase-1 (PARP-1), dipeptidyl peptidase 4 (DPP4), and cyclooxygenase-2 (COX-2). Both UPF analogues acted in a gender-dependent manner by increasing the expression of certain anti-inflammatory (histone deacetylase 2 (HDAC2)) and GSH metabolism pathway (SOD1 and GSH reductase (GSR))-related enzymes in females and decreasing them in males. UPF1 and UPF17 are able to increase the expression of the enzymes involved in GSH metabolism and could serve as a lead for designing potential COPD therapies against excessive OS.
Collapse
Affiliation(s)
- Ingrid Oit-Wiscombe
- Department of Pulmonology, University of Tartu, 50406 Tartu, Estonia;
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ursel Soomets
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Alan Altraja
- Department of Pulmonology, University of Tartu, 50406 Tartu, Estonia;
- Lung Clinic, Tartu University Hospital, 50411 Tartu, Estonia
| |
Collapse
|
3
|
Wang J, Ghonim MA, Ibba SV, Luu HH, Aydin Y, Greer PA, Boulares AH. Promotion of a synthetic degradation of activated STAT6 by PARP-1 inhibition: roles of poly(ADP-ribosyl)ation, calpains and autophagy. J Transl Med 2022; 20:521. [PMID: 36348405 PMCID: PMC9644602 DOI: 10.1186/s12967-022-03715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background We reported that PARP-1 regulates genes whose products are crucial for asthma, in part, by controlling STAT6 integrity speculatively through a calpain-dependent mechanism. We wished to decipher the PARP-1/STAT6 relationship in the context of intracellular trafficking and promoter occupancy of the transcription factor on target genes, its integrity in the presence of calpains, and its connection to autophagy. Methods This study was conducted using primary splenocytes or fibroblasts derived from wild-type or PARP-1−/− mice and Jurkat T cells to mimic Th2 inflammation. Results We show that the role for PARP-1 in expression of IL-4-induced genes (e.g. gata-3) in splenocytes did not involve effects on STAT6 phosphorylation or its subcellular trafficking, rather, it influenced its occupancy of gata-3 proximal and distal promoters in the early stages of IL-4 stimulation. At later stages, PARP-1 was crucial for STAT6 integrity as its inhibition, pharmacologically or by gene knockout, compromised the fate of the transcription factor. Calpain-1 appeared to preferentially degrade JAK-phosphorylated-STAT6, which was blocked by calpastatin-mediated inhibition or by genetic knockout in mouse fibroblasts. The STAT6/PARP-1 relationship entailed physical interaction and modification by poly(ADP-ribosyl)ation independently of double-strand-DNA breaks. Poly(ADP-ribosyl)ation protected phosphorylated-STAT6 against calpain-1-mediated degradation. Additionally, our results show that STAT6 is a bonafide substrate for chaperone-mediated autophagy in a selective and calpain-dependent manner in the human Jurkat cell-line. The effects were partially blocked by IL-4 treatment and PARP-1 inhibition. Conclusions The results demonstrate that poly(ADP-ribosyl)ation plays a critical role in protecting activated STAT6 during Th2 inflammation, which may be synthetically targeted for degradation by inhibiting PARP-1.
Collapse
|
4
|
Demény MA, Virág L. The PARP Enzyme Family and the Hallmarks of Cancer Part 2: Hallmarks Related to Cancer Host Interactions. Cancers (Basel) 2021; 13:2057. [PMID: 33923319 PMCID: PMC8123211 DOI: 10.3390/cancers13092057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) modify target proteins with a single ADP-ribose unit or with a poly (ADP-ribose) (PAR) polymer. PARP inhibitors (PARPis) recently became clinically available for the treatment of BRCA1/2 deficient tumors via the synthetic lethality paradigm. This personalized treatment primarily targets DNA damage-responsive PARPs (PARP1-3). However, the biological roles of PARP family member enzymes are broad; therefore, the effects of PARPis should be viewed in a much wider context, which includes complex effects on all known hallmarks of cancer. In the companion paper (part 1) to this review, we presented the fundamental roles of PARPs in intrinsic cancer cell hallmarks, such as uncontrolled proliferation, evasion of growth suppressors, cell death resistance, genome instability, replicative immortality, and reprogrammed metabolism. In the second part of this review, we present evidence linking PARPs to cancer-associated inflammation, anti-cancer immune response, invasion, and metastasis. A comprehensive overview of the roles of PARPs can facilitate the identification of novel cancer treatment opportunities and barriers limiting the efficacy of PARPi compounds.
Collapse
Affiliation(s)
- Máté A. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Curtin N, Bányai K, Thaventhiran J, Le Quesne J, Helyes Z, Bai P. Repositioning PARP inhibitors for SARS-CoV-2 infection(COVID-19); a new multi-pronged therapy for acute respiratory distress syndrome? Br J Pharmacol 2020; 177:3635-3645. [PMID: 32441764 PMCID: PMC7280733 DOI: 10.1111/bph.15137] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Clinically approved PARP inhibitors (PARPi) have a mild adverse effect profile and are well tolerated as continuous daily oral therapy. We review the evidence that justifies the repurposing of PARPi to block the proliferation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and combat the life-threatening sequelae of coronavirus disease 2019 (COVID-19) by several mechanisms. PARPi can effectively decrease IL-6, IL-1 and TNF-α levels (key interleukins in SARS-CoV-2-induced cytokine storm) and can alleviate subsequent lung fibrosis, as demonstrated in murine experiments and clinical trials. PARPi can tune macrophages towards a tolerogenic phenotype. PARPi may also counteract SARS-CoV-2-induced and inflammation-induced cell death and support cell survival. PARPi is effective in animal models of acute respiratory distress syndrome (ARDS), asthma and ventilator-induced lung injury. PARPi may potentiate the effectiveness of tocilizumab, anakinra, sarilumab, adalimumab, canakinumab or siltuximab therapy. The evidence suggests that PARPi would benefit COVID-19 patients and trials should be undertaken.
Collapse
Affiliation(s)
- Nicola Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Krisztián Bányai
- Institute for Veterinary Medical ResearchCentre for Agricultural ResearchBudapestHungary
| | | | - John Le Quesne
- MRC Toxicology UnitUniversity of CambridgeLeicesterUK
- Leicester Cancer Research CentreUniversity of Leicester, Leicester Royal InfirmaryLeicesterUK
- Glenfield HospitalUniversity Hospitals Leicester NHS TrustLeicesterUK
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School; Centre for Neuroscience and János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- MTA‐DE Lendület Laboratory of Cellular MetabolismDebrecenHungary
- Research Center for Molecular Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
6
|
Pazzaglia S, Pioli C. Multifaceted Role of PARP-1 in DNA Repair and Inflammation: Pathological and Therapeutic Implications in Cancer and Non-Cancer Diseases. Cells 2019; 9:cells9010041. [PMID: 31877876 PMCID: PMC7017201 DOI: 10.3390/cells9010041] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
PARP-1 (poly(ADP-ribose)-polymerase 1), mainly known for its protective role in DNA repair, also regulates inflammatory processes. Notably, defects in DNA repair and chronic inflammation may both predispose to cancer development. On the other hand, inhibition of DNA repair and inflammatory responses can be beneficial in cancer therapy and PARP inhibitors are currently used for their lethal effects on tumor cells. Furthermore, excess of PARP-1 activity has been associated with many tumors and inflammation-related clinical conditions, including asthma, sepsis, arthritis, atherosclerosis, and neurodegenerative diseases, to name a few. Activation and inhibition of PARP represent, therefore, a double-edged sword that can be exploited for therapeutic purposes. In our review, we will discuss recent findings highlighting the composite multifaceted role of PARP-1 in cancer and inflammation-related diseases.
Collapse
Affiliation(s)
- Simonetta Pazzaglia
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| | - Claudio Pioli
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| |
Collapse
|
7
|
Bohio AA, Sattout A, Wang R, Wang K, Sah RK, Guo X, Zeng X, Ke Y, Boldogh I, Ba X. c-Abl-Mediated Tyrosine Phosphorylation of PARP1 Is Crucial for Expression of Proinflammatory Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1521-1531. [PMID: 31399520 PMCID: PMC6731455 DOI: 10.4049/jimmunol.1801616] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribosyl)ation is a rapid and transient posttranslational protein modification mostly catalyzed by poly(ADP-ribose) polymerase-1 (PARP1). Fundamental roles of activated PARP1 in DNA damage repair and cellular response pathways are well established; however, the precise mechanisms by which PARP1 is activated independent of DNA damage, and thereby playing a role in expression of inflammatory genes, remain poorly understood. In this study, we show that, in response to LPS or TNF-α exposure, the nonreceptor tyrosine kinase c-Abl undergoes nuclear translocation and interacts with and phosphorylates PARP1 at the conserved Y829 site. Tyrosine-phosphorylated PARP1 is required for protein poly(ADP-ribosyl)ation of RelA/p65 and NF-κB-dependent expression of proinflammatory genes in murine RAW 264.7 macrophages, human monocytic THP1 cells, or mouse lungs. Furthermore, LPS-induced airway lung inflammation was reduced by inhibition of c-Abl activity. The present study elucidated a novel signaling pathway to activate PARP1 and regulate gene expression, suggesting that blocking the interaction of c-Abl with PARP1 or pharmaceutical inhibition of c-Abl may improve the outcomes of PARP1 activation-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Aman Sattout
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ruoxi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ke Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun 130024, China; and
| | - Xiaolan Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yueshuang Ke
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China;
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
8
|
Foncerrada G, Culnan DM, Capek KD, González-Trejo S, Cambiaso-Daniel J, Woodson LC, Herndon DN, Finnerty CC, Lee JO. Inhalation Injury in the Burned Patient. Ann Plast Surg 2018; 80:S98-S105. [PMID: 29461292 PMCID: PMC5825291 DOI: 10.1097/sap.0000000000001377] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inhalation injury causes a heterogeneous cascade of insults that increase morbidity and mortality among the burn population. Despite major advancements in burn care for the past several decades, there remains a significant burden of disease attributable to inhalation injury. For this reason, effort has been devoted to finding new therapeutic approaches to improve outcomes for patients who sustain inhalation injuries.The three major injury classes are the following: supraglottic, subglottic, and systemic. Treatment options for these three subtypes differ based on the pathophysiologic changes that each one elicits.Currently, no consensus exists for diagnosis or grading of the injury, and there are large variations in treatment worldwide, ranging from observation and conservative management to advanced therapies with nebulization of different pharmacologic agents.The main pathophysiologic change after a subglottic inhalation injury is an increase in the bronchial blood flow. An induced mucosal hyperemia leads to edema, increases mucus secretion and plasma transudation into the airways, disables the mucociliary escalator, and inactivates hypoxic vasocontriction. Collectively, these insults potentiate airway obstruction with casts formed from epithelial debris, fibrin clots, and inspissated mucus, resulting in impaired ventilation. Prompt bronchoscopic diagnosis and multimodal treatment improve outcomes. Despite the lack of globally accepted standard treatments, data exist to support the use of bronchoscopy and suctioning to remove debris, nebulized heparin for fibrin casts, nebulized N-acetylcysteine for mucus casts, and bronchodilators.Systemic effects of inhalation injury occur both indirectly from hypoxia or hypercapnia resulting from loss of pulmonary function and systemic effects of proinflammatory cytokines, as well as directly from metabolic poisons such as carbon monoxide and cyanide. Both present with nonspecific clinical symptoms including cardiovascular collapse. Carbon monoxide intoxication should be treated with oxygen and cyanide with hydroxocobalamin.Inhalation injury remains a great challenge for clinicians and an area of opportunity for scientists. Management of this concomitant injury lags behind other aspects of burn care. More clinical research is required to improve the outcome of inhalation injury.The goal of this review is to comprehensively summarize the diagnoses, treatment options, and current research.
Collapse
Affiliation(s)
- Guillermo Foncerrada
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Derek M. Culnan
- JMS Burn and Reconstructive Center at Merit Health Central, Jackson, MS, USA
| | - Karel D. Capek
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Sagrario González-Trejo
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Janos Cambiaso-Daniel
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Lee C. Woodson
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
- Department of Anesthesiology, University of Texas Medical Branch Galveston, Texas, USA
| | - David N. Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Celeste C. Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Jong O. Lee
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| |
Collapse
|
9
|
Zaffini R, Gotte G, Menegazzi M. Asthma and poly(ADP-ribose) polymerase inhibition: a new therapeutic approach. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:281-293. [PMID: 29483769 PMCID: PMC5813949 DOI: 10.2147/dddt.s150846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Asthma is a chronic lung disease affecting people of all ages worldwide, and it frequently begins in childhood. Because of its chronic nature, it is characterized by pathological manifestations, including airway inflammation, remodeling, and goblet cell hyperplasia. Current therapies for asthma, including corticosteroids and beta-2 adrenergic agonists, are directed toward relieving the symptoms of the asthmatic response, with poor effectiveness against the underlying causes of the disease. Asthma initiation and progression depends on the T helper (Th) 2 type immune response carried out by a complex interplay of cytokines, such as interleukin (IL) 4, IL5, and IL13, and the signal transducer and activator of transcription 6. Much of the data resulting from different laboratories support the role of poly(ADP-ribose) polymerase (PARP) 1 and PARP14 activation in asthma. Indeed, PARP enzymes play key roles in the regulation and progression of the inflammatory asthma process because they affect the expression of genes and chemokines involved in the immune response. Consistently, PARP inhibition achievable either upon genetic ablation or by using pharmacological agents has shown a range of therapeutic effects against the disease. Indeed, in the last two decades, several preclinical studies highlighted the protective effects of PARP inhibition in various animal models of asthma. PARP inhibitors showed the ability to reduce the overall lung inflammation acting with a specific effect on immune cell recruitment and through the modulation of asthma-associated cytokines production. PARP inhibition has been shown to affect the Th1–Th2 balance and, at least in some aspects, the airway remodeling. In this review, we summarize and discuss the steps that led PARP inhibition to become a possible future therapeutic strategy against allergic asthma.
Collapse
Affiliation(s)
- Raffaela Zaffini
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Enkhbaatar P, Pruitt BA, Suman O, Mlcak R, Wolf SE, Sakurai H, Herndon DN. Pathophysiology, research challenges, and clinical management of smoke inhalation injury. Lancet 2016; 388:1437-1446. [PMID: 27707500 PMCID: PMC5241273 DOI: 10.1016/s0140-6736(16)31458-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023]
Abstract
Smoke inhalation injury is a serious medical problem that increases morbidity and mortality after severe burns. However, relatively little attention has been paid to this devastating condition, and the bulk of research is limited to preclinical basic science studies. Moreover, no worldwide consensus criteria exist for its diagnosis, severity grading, and prognosis. Therapeutic approaches are highly variable depending on the country and burn centre or hospital. In this Series paper, we discuss understanding of the pathophysiology of smoke inhalation injury, the best evidence-based treatments, and challenges and future directions in diagnostics and management.
Collapse
Affiliation(s)
- Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Basil A Pruitt
- Department of Surgery, Division of Trauma, University of Texas Health Science Center, San Antonio, TX, USA
| | - Oscar Suman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| | - Ronald Mlcak
- Shriners Hospitals for Children, Galveston, TX, USA; Department of Respiratory Care, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| |
Collapse
|
11
|
Luo J, Guo GH. Interpretation for practice guidelines for prevention, diagnosis, and treatment of ventilator-associated pneumonia in burn patients by american burn association. BURNS & TRAUMA 2015; 3:11. [PMID: 27574657 PMCID: PMC4964050 DOI: 10.1186/s41038-015-0009-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/31/2015] [Indexed: 01/04/2023]
Abstract
“American Burn Association Practice Guidelines for Prevention, Diagnosis, and Treatment of Ventilator-Associated Pneumonia in Burn Patients” was published to provide recommendation for the prevention, diagnosis, and treatment of ventilator-associated pneumonia in burn patients. This article makes interpretations and conclusions for prevention, diagnosis and treatment from this guideline in the combination of domestic burn patients.
Collapse
Affiliation(s)
- Jie Luo
- Department of Burns, the First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Guang-Hua Guo
- Department of Burns, the First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| |
Collapse
|
12
|
PARP is activated in human asthma and its inhibition by olaparib blocks house dust mite-induced disease in mice. Clin Sci (Lond) 2015. [PMID: 26205779 PMCID: PMC4613510 DOI: 10.1042/cs20150122] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study establishes poly(ADP-ribose)polymerase's (PARP's) role in chronic asthma, demonstrates that it is activated in human asthma, increases the clinical relevance of targeting PARP for blocking or preventing chronic asthma in humans and presents olaparib as a likely candidate drug. Our laboratory established a role for poly(ADP-ribose)polymerase (PARP) in asthma. To increase the clinical significance of our studies, it is imperative to demonstrate that PARP is actually activated in human asthma, to examine whether a PARP inhibitor approved for human testing such as olaparib blocks already-established chronic asthma traits in response to house dust mite (HDM), a true human allergen, in mice and to examine whether the drug modulates human cluster of differentiation type 4 (CD4+) T-cell function. To conduct the study, human lung specimens and peripheral blood mononuclear cells (PBMCs) and a HDM-based mouse asthma model were used. Our results show that PARP is activated in PBMCs and lung tissues of asthmatics. PARP inhibition by olaparib or gene knockout blocked established asthma-like traits in mice chronically exposed to HDM including airway eosinophilia and hyper-responsiveness. These effects were linked to a marked reduction in T helper 2 (Th2) cytokine production without a prominent effect on interferon (IFN)-γ or interleukin (IL)-10. PARP inhibition prevented HDM-induced increase in overall cellularity, weight and CD4+ T-cell population in spleens of treated mice whereas it increased the T-regulatory cell population. In CD3/CD28-stimulated human CD4 +T-cells, olaparib treatment reduced Th2 cytokine production potentially by modulating GATA binding protein-3 (gata-3)/IL-4 expression while moderately affecting T-cell proliferation. PARP inhibition inconsistently increased IL-17 in HDM-exposed mice and CD3/CD28-stimulated CD4+ T cells without a concomitant increase in factors that can be influenced by IL-17. In the present study, we provide evidence for the first time that PARP-1 is activated in human asthma and that its inhibition is effective in blocking established asthma in mice.
Collapse
|
13
|
Ghonim MA, Pyakurel K, Ibba SV, Al-Khami AA, Wang J, Rodriguez P, Rady HF, El-Bahrawy AH, Lammi MR, Mansy MS, Al-Ghareeb K, Ramsay A, Ochoa A, Naura AS, Boulares AH. PARP inhibition by olaparib or gene knockout blocks asthma-like manifestation in mice by modulating CD4(+) T cell function. J Transl Med 2015; 13:225. [PMID: 26169874 PMCID: PMC4501284 DOI: 10.1186/s12967-015-0583-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Background An important portion of asthmatics do not respond to current therapies. Thus, the need for new therapeutic drugs is urgent. We have demonstrated a critical role for PARP in experimental asthma. Olaparib, a PARP inhibitor, was recently introduced in clinical trials against cancer. The objective of the present study was to examine the efficacy of olaparib in blocking established allergic airway inflammation and hyperresponsiveness similar to those observed in human asthma in animal models of the disease. Methods We used ovalbumin (OVA)-based mouse models of asthma and primary CD4+ T cells. C57BL/6J WT or PARP-1−/− mice were subjected to OVA sensitization followed by a single or multiple challenges to aerosolized OVA or left unchallenged. WT mice were administered, i.p., 1 mg/kg, 5 or 10 mg/kg of olaparib or saline 30 min after each OVA challenge. Results Administration of olaparib in mice 30 min post-challenge promoted a robust reduction in airway eosinophilia, mucus production and hyperresponsiveness even after repeated challenges with ovalbumin. The protective effects of olaparib were linked to a suppression of Th2 cytokines eotaxin, IL-4, IL-5, IL-6, IL-13, and M-CSF, and ovalbumin-specific IgE with an increase in the Th1 cytokine IFN-γ. These traits were associated with a decrease in splenic CD4+ T cells and concomitant increase in T-regulatory cells. The aforementioned traits conferred by olaparib administration were consistent with those observed in OVA-challenged PARP-1−/− mice. Adoptive transfer of Th2-skewed OT-II-WT CD4+ T cells reversed the Th2 cytokines IL-4, IL-5, and IL-10, the chemokine GM-CSF, the Th1 cytokines IL-2 and IFN-γ, and ovalbumin-specific IgE production in ovalbumin-challenged PARP-1−/−mice suggesting a role for PARP-1 in CD4+ T but not B cells. In ex vivo studies, PARP inhibition by olaparib or PARP-1 gene knockout markedly reduced CD3/CD28-stimulated gata-3 and il4 expression in Th2-skewed CD4+ T cells while causing a moderate elevation in t-bet and ifn-γ expression in Th1-skewed CD4+ T cells. Conclusions Our findings show the potential of PARP inhibition as a viable therapeutic strategy and olaparib as a likely candidate to be tested in human asthma clinical trials.
Collapse
Affiliation(s)
- Mohamed A Ghonim
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA. .,Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Kusma Pyakurel
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Salome V Ibba
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Amir A Al-Khami
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA. .,Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Jeffrey Wang
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Paulo Rodriguez
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Hamada F Rady
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Ali H El-Bahrawy
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Matthew R Lammi
- Pulmonary and Critical Care Section, School of Medicine, Louisiana State University, New Orleans, LA, USA.
| | - Moselhy S Mansy
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Kamel Al-Ghareeb
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Alistair Ramsay
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Augusto Ochoa
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Amarjit S Naura
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA. .,Department of Biochemistry, Panjab University, Chandigarh, India.
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
14
|
Liu Q, Turner KM, Alfred Yung WK, Chen K, Zhang W. Role of AKT signaling in DNA repair and clinical response to cancer therapy. Neuro Oncol 2014; 16:1313-23. [PMID: 24811392 DOI: 10.1093/neuonc/nou058] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective cancer treatment has been limited by the emergence of resistant cancer cells. The results of many studies indicate that AKT activation plays an important role in the acquisition of resistance to anticancer therapy. AKT is a critical effector serine/threonine kinase in the receptor tyrosine kinase/phosphatase and tensin homolog/phospho-inositide 3-kinase pathway and controls a myriad of cellular functions. Activation of AKT not only supports tumor growth and progression but also contributes to tumor-cell evasion of the cytotoxic effects of cancer therapy through many avenues including the promotion of anti-apoptosis, proliferation, and migration and regulation of the cell cycle. Accumulating evidence has implicated AKT as a direct participant in the DNA damage response and repair induced by commonly used genotoxic agents. In this review, we discuss the molecular mechanisms by which genotoxic agents activate AKT and therefore contribute to resistance to cancer therapeutics, with particular emphasis on DNA repair.
Collapse
Affiliation(s)
- Qun Liu
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| | - Kristen M Turner
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| | - W K Alfred Yung
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| | - Kexin Chen
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| | - Wei Zhang
- Department of Neuro-Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Q.L.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.M.T., W.Z.); Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (W.K.A.Y.); Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (K.C.)
| |
Collapse
|
15
|
Butturini E, Di Paola R, Suzuki H, Paterniti I, Ahmad A, Mariotto S, Cuzzocrea S. Costunolide and Dehydrocostuslactone, two natural sesquiterpene lactones, ameliorate the inflammatory process associated to experimental pleurisy in mice. Eur J Pharmacol 2014; 730:107-15. [PMID: 24625594 DOI: 10.1016/j.ejphar.2014.02.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the effect of costunolide (CS) and dehydrocostuslactone (DCE) a well-known sesquiterpene lactones contained in many plants, in a model of lung injury induced by carrageenan administration in the mice. Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by fluid accumulation in the pleural cavity which contained a large number of polymorphonuclear cells (PMNs) as well as an infiltration of PMNs in lung tissues and increased production of tumour necrosis factor α (TNF-α). All parameters of inflammation were attenuated by CS and DCE (15mg/kg 10% DMSO i.p.) administered 1h before carrageenan. Carrageenan induced an up regulation of the intracellular adhesion molecules-1 (ICAM-1) and P-selectin, as well as nitrotyrosine and poly (ADP-ribose) (PAR) as determined by immunohistochemical analysis of lung tissues. The degree of staining for the ICAM-1, P-selectin, nitrotyrosine and PAR was reduced by CS and DCE. Additionally we show that this inflammatory events were associated with NF-κB and STAT3 activation and these sesquiterpenes down-regulated it. Taken together, ours results clearly shown that CS and DCE may offer a novel therapeutic approach for the management of inflammatory diseases.
Collapse
Affiliation(s)
- Elena Butturini
- Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Rosanna Di Paola
- Department of Biological and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Hisanori Suzuki
- Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Akbar Ahmad
- Department of Biological and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sofia Mariotto
- Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, 98166 Messina, Italy; Manchester University, Manchester, United Kingdom.
| |
Collapse
|
16
|
Curtin N, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 2013; 34:1217-56. [PMID: 23370117 PMCID: PMC3657315 DOI: 10.1016/j.mam.2013.01.006] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well.
Collapse
Affiliation(s)
- Nicola Curtin
- Department of Experimental Cancer Therapy, Northern Institute for Cancer Research, Newcastle University, University of Newcastle Upon Tyne, UK
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
17
|
Oit-Wiscombe I, Virag L, Soomets U, Altraja A. Increased DNA damage in progression of COPD: a response by poly(ADP-ribose) polymerase-1. PLoS One 2013; 8:e70333. [PMID: 23894640 PMCID: PMC3722143 DOI: 10.1371/journal.pone.0070333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
Chronic oxidative stress (OS), a major mechanism of chronic obstructive pulmonary disease (COPD), may cause significant damage to DNA. Poly(ADP-ribose) polymerase (PARP)-1 is rapidly activated by OS-induced DNA lesions. However, the degree of DNA damage along with the evolution of COPD is unclear. In peripheral blood mononuclear cells of non-smoking individuals, non-obstructive smokers, patients with COPD of all stages and those with COPD exacerbation, we evaluated DNA damage, PARP activity and PARP-1 mRNA expression using Comet Assay IV, biotinylated-NAD incorporation assay and qRT-PCR, respectively and subjected results to ordinal logistic regression modelling. Adjusted for demographics, smoking-related parameters and lung function, novel comet parameters, tail length/cell length ratio and tail migration/cell length ratio, showed the greatest increase along the study groups corresponding to the evolution of COPD [odds ratio (OR) 7.88, 95% CI 4.26–14.57; p<0.001 and OR 3.91, 95% CI 2.69–5.66; p<0.001, respectively]. Analogously, PARP activity increased significantly over the groups (OR = 1.01; 95%; p<0.001). An antioxidant tetrapeptide UPF17 significantly reduced the PARP-1 mRNA expression in COPD, compared to that in non-obstructive individuals (p = 0.040). Tail length/cell length and tail migration/cell length ratios provide novel progression-sensitive tools for assessment of DNA damage. However, it remains to be elucidated whether inhibition of an elevated PARP-1 activity has a safe enough potential to break the vicious cycle of the development and progression of COPD.
Collapse
Affiliation(s)
- Ingrid Oit-Wiscombe
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
18
|
Hegedűs C, Lakatos P, Kiss-Szikszai A, Patonay T, Gergely S, Gregus A, Bai P, Haskó G, Szabó É, Virág L. Cytoprotective dibenzoylmethane derivatives protect cells from oxidative stress-induced necrotic cell death. Pharmacol Res 2013; 72:25-34. [PMID: 23523665 DOI: 10.1016/j.phrs.2013.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/20/2022]
Abstract
Screening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation. These compounds protected cells from necrotic cell death while caspase activation, a parameter of apoptotic cell death was not affected. Hydrogen peroxide activated extracellular signal regulated kinase (ERK1/2) and p38 MAP kinases but not c-Jun N-terminal kinase (JNK). The cytoprotective DBMs suppressed the activation of Erk1/2 but not that of p38. Cytoprotection was confirmed in another cell type (A549 lung epithelial cells), indicating that the cytoprotective effect is not cell type specific. In conclusion we identified DBM analogs as a novel class of cytoprotective compounds inhibiting ERK1/2 kinase and protecting from necrotic cell death by a mechanism independent of poly(ADP-ribose) polymerase inhibition.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pinton G, Manente AG, Murer B, De Marino E, Mutti L, Moro L. PARP1 inhibition affects pleural mesothelioma cell viability and uncouples AKT/mTOR axis via SIRT1. J Cell Mol Med 2013; 17:233-41. [PMID: 23301673 PMCID: PMC3822586 DOI: 10.1111/jcmm.12000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022] Open
Abstract
Malignant Pleural Mesothelioma (MMe) is a rare but increasingly prevalent, highly aggressive cancer with poor prognosis. The aetiology of MMe is essentially a function of previous exposure to asbestos fibres, which are considered to be an early-stage carcinogen. Asbestos is toxic to human mesothelial cells (HMCs), that activate the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP1) to repair DNA. The targeting of PARP1 is showing considerable potential for delivering selective tumour cell kill while sparing normal cells, and offers a scientifically rational clinical application. We investigated PARP1 expression in normal mesothelial and MMe tissues samples. Immunohistochemical analysis revealed low PARP1 staining in peritumoural mesothelium. As opposite, a progressive increase in epithelioid and in the most aggressive sarcomatoid MMe tissues was evident. In MMe cell lines, we correlated increased PARP1 expression to sensitivity to its inhibitor CO-338 and demonstrated that CO-338 significantly reduced cell viability as single agent and was synergistic with cis-platin. Interestingly, we described a new correlation between PARP1 and the AKT/mTOR axis regulated by SIRT1. SIRT1 has a role in the modulation of AKT activation and PARP1 has been described to be a gatekeeper for SIRT1 activity by limiting NAD+ availability. Here, we firstly demonstrate an inverse correlation between AKT acetylation and phosphorylation modulated by SIRT1 in MMe cells treated with CO-338. In conclusion, this study demonstrates that PARP1 overexpression defines increased responsiveness to its inhibition, then these results imply that a substantial fraction of patients could be candidates for therapy with PARP inhibitors.
Collapse
Affiliation(s)
- Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale A. Avogadro, Novara, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Rittinghausen S, Bellmann B, Creutzenberg O, Ernst H, Kolling A, Mangelsdorf I, Kellner R, Beneke S, Ziemann C. Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs. Toxicology 2012. [PMID: 23178243 DOI: 10.1016/j.tox.2012.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Data on local genotoxicity after particle exposure are crucial to resolve mechanistic aspects such as the impact of chronic inflammation, types of DNA damage, and their role in lung carcinogenesis. We established immunohistochemical methods to quantify the DNA damage markers poly(ADP-ribose) (PAR), phosphorylated H2AX (γ-H2AX), 8-hydroxyguanosine (8-OH-dG), and 8-oxoguanine DNA glycosylase (OGG1) in paraffin-embedded tissue from particle-exposed rats. The study was based on lungs from a subchronic study that was part of an already published carcinogenicity study where rats had been intratracheally instilled with saline, quartz DQ12, amorphous silica (Aerosil(®) 150), or carbon black (Printex(®) 90) at monthly intervals for 3 months. Lung sections were stained immunohistochemically and markers were quantified in alveolar lining cells. Local genotoxicity was then correlated with already defined endpoints, i.e. mean inflammation score, bronchoalveolar lavage parameters, and carcinogenicity. Genotoxicity was most pronounced in quartz DQ12-treated rats, where all genotoxicity markers gave statistically significant positive results, indicating considerable genotoxic stress such as occurrence of DNA double-strand breaks (DSB), and oxidative damage with subsequent repair activity. Genotoxicity was less pronounced for Printex(®) 90, but significant increases in γ-H2AX- and 8-OH-dG-positive nuclei and OGG1-positive cytoplasm were nevertheless detected. In contrast, Aerosil(®) 150 significantly enhanced only 8-OH-dG-positive nuclei and oxidative damage-related repair activity (OGG1) in cytoplasm. In the present study, γ-H2AX was the most sensitive genotoxicity marker, differentiating best between the three types of particles. The mean number of 8-OH-dG-positive nuclei, however, correlated best with the mean inflammation score at the same time point. This methodological approach enables integration of local genotoxicity testing in subchronic inhalation studies and makes immunohistochemical detection, in particular of γ-H2AX and 8-hydroxyguanine, a very promising approach for local genotoxicity testing in lungs, with prognostic value for the long-term outcome of particle exposure.
Collapse
Affiliation(s)
- Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Umapathy NS, Gonzales J, Fulzele S, Kim KM, Lucas R, Verin AD. β-Nicotinamide adenine dinucleotide attenuates lipopolysaccharide-induced inflammatory effects in a murine model of acute lung injury. Exp Lung Res 2012; 38:223-32. [PMID: 22563684 DOI: 10.3109/01902148.2012.673049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) occur in approximately 200,000 patients per year. Studies indicate that lung endothelium plays a significant role in ALI. The authors' recent in vitro studies demonstrate a novel mechanism of β-nicotinamide adenine dinucleotide (β-NAD)-induced protection against gram-positive (pneumolysin, PLY) and gram-negative (lipopolysaccharide, LPS) toxin-induced lung endothelial cell (EC) barrier dysfunction. The objective of the current study was to evaluate the protective effect of β-NAD against LPS-induced ALI in mice. C57BL/6J mice were randomly divided into 4 groups: vehicle, β-NAD, LPS, and LPS/β-NAD. After surgery, mice were allowed to recover for 24 hours. Evans blue dye-albumin (EBA) was given through the internal jugular vein 2 hours prior to the termination of the experiments. Upon sacrificing the animals, bronchoalveolar lavage fluid (BALF) was collected and the lungs were harvested. β-NAD treatment significantly attenuated the inflammatory response by means of reducing the accumulation of cells and protein in BALF, blunting the parenchymal neutrophil infiltration, and preventing capillary leak. In addition, the histological examination demonstrated decreased interstitial edema in the LPS/β-NAD specimens, as compared to the LPS-only specimens. The mRNA levels of the anti-inflammatory cytokines were up-regulated in the LPS group treated with β-NAD compared to the LPS-only-treated group. β-NAD treatment down-regulated the mRNA levels of the proinflammatory cytokines. These findings suggest that β-NAD could be investigated as a therapeutic option against bacterial toxin-induced lung inflammation and ALI in mice.
Collapse
Affiliation(s)
- Nagavedi Siddaramappa Umapathy
- Vascular Biology Center and Section of Pulmonary and Critical Care Medicine, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Anti-inflammatory effects of adrenomedullin on acute lung injury induced by Carrageenan in mice. Mediators Inflamm 2012; 2012:717851. [PMID: 22685374 PMCID: PMC3364017 DOI: 10.1155/2012/717851] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/08/2012] [Accepted: 03/19/2012] [Indexed: 12/17/2022] Open
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that has shown predominant anti-inflammatory activities. In the present study, we evaluated the possible therapeutic effect of this peptide in an experimental model of acute inflammation, the carrageenan- (CAR-) induced pleurisy. Pleurisy was induced by injection of CAR into the pleural cavity of mice. AM (200 ng/kg) was administered by intraperitoneal route 1 h after CAR, and the animals were sacrificed 4 h after that. AM treatment attenuated the recruitment of leucocytes in the lung tissue and the generation and/or the expression of the proinflammatory cytokines as well as the expression of the intercellular cell adhesion molecules. Moreover, AM inhibited the induction of inducible nitric oxide synthase (iNOS), thereby abating the generation of nitric oxide (NO) and prevented the oxidative and nitroxidative lung tissue injury, as shown by the reduction of nitrotyrosine, malondialdehyde (MDA), and poly (ADP-ribose) polymerase (PARP) levels. Finally, we demonstrated that these anti-inflammatory effects of AM were associated with the inhibition of nuclear factor-κB (NF-κB) activation. All these parameters were markedly increased by intrapleural CAR in the absence of any treatment. We report that treatment with AM significantly reduces the development of acute lung injury by downregulating a broad spectrum of inflammatory factors.
Collapse
|
23
|
Datta R, Naura AS, Zerfaoui M, Errami Y, Oumouna M, Kim H, Ju J, Ronchi VP, Haas AL, Boulares AH. PARP-1 deficiency blocks IL-5 expression through calpain-dependent degradation of STAT-6 in a murine asthma model. Allergy 2011; 66:853-61. [PMID: 21276008 DOI: 10.1111/j.1398-9995.2011.02549.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND We recently showed that poly(ADP-ribose)polymerase-1 (PARP-1) may play a role in allergen (ovalbumin)-induced airway eosinophilia, potentially through a specific effect on IL-5 production. We also reported that while IL-5 replenishment promotes reversal of eosinophilia in lungs of PARP-1(-/-) mice, IL-4 or Immunoglobulin E replenishment do not, suggesting a potentially significant regulatory relationship between PARP-1 and IL-5. OBJECTIVE To explore the mechanism by which PARP-1 regulates IL-5 production and to determine how PARP-1 inhibition blocks allergen-induced eosinophilia. METHODS This study was conducted using a murine model of allergic airway inflammation and primary splenocytes. RESULTS PARP-1 knockout-associated reduction in IL-5 upon allergen exposure occurs at the mRNA level. Such an effect appears to take place after IL-4 receptor activation as PARP-1 inhibition exerted no effect on JAK1/JAK3 activation. Signal transducer and activator of transcription-6 (STAT-6) protein was severely downregulated in spleens of PARP-1(-/-) mice without any effect on mRNA levels, suggesting an effect on protein integrity rather than gene transcription. Interestingly, the degradation of STAT-6 in PARP-1(-/-) mice required allergen stimulation. Additionally, PARP-1 enzymatic activity appears to be required for STAT-6 integrity. The downregulation of STAT-6 coincided with mRNA and protein reduction of GATA-binding protein-3 and occupancy of its binding site on the IL-5 gene promoter. IL-4 was sufficient to induce STAT-6 downregulation in both PARP-1(-/-) mice and isolated splenocytes. Such degradation may be mediated by calpain, but not by proteasomes. CONCLUSION These results demonstrate a novel function of PARP-1 in regulating IL-5 expression during allergen-induced inflammation and explain the underlying mechanism by which PARP-1 inhibition results in IL-5 reduction.
Collapse
Affiliation(s)
- R Datta
- Department of Pharmacology, The Stanley Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Di Paola R, Talero E, Galuppo M, Mazzon E, Bramanti P, Motilva V, Cuzzocrea S. Adrenomedullin in inflammatory process associated with experimental pulmonary fibrosis. Respir Res 2011; 12:41. [PMID: 21477302 PMCID: PMC3079622 DOI: 10.1186/1465-9921-12-41] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/08/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Adrenomedullin (AM), a 52-amino acid ringed-structure peptide with C-terminal amidation, was originally isolated from human pheochromocytoma. AM are widely distributed in various tissues and acts as a local vasoactive hormone in various conditions. METHODS In the present study, we investigated the efficacy of AM on the animal model of bleomycin (BLM)-induced lung injury. Mice were subjected to intratracheal administration of BLM and were assigned to receive AM daily by an intraperitoneal injection of 200 ngr/kg. RESULTS AND DISCUSSION Myeloperoxidase activity, lung histology, immunohistochemical analyses for cytokines and adhesion molecules expression, inducible nitric oxide synthase (iNOS), nitrotyrosine, and poly (ADP-ribose) polymerase (PARP) were performed one week after fibrosis induction. Lung histology and transforming growth factor beta (TGF-β) were performed 14 and 21 days after treatments. After bleomycin administration, AM-treated mice exhibited a reduced degree of lung damage and inflammation compared with BLM-treated mice, as shown by the reduction of (1) myeloperoxidase activity (MPO), (2) cytokines and adhesion molecules expression, (3) nitric oxide synthase expression, (4) the nitration of tyrosine residues, (5) poly (ADP-ribose) (PAR) formation, a product of the nuclear enzyme poly (ADP-ribose) polymerase (PARP) (6) transforming growth factor beta (TGF-β) (7)and the degree of lung injury. CONCLUSIONS Our results indicate that AM administration is able to prevent bleomycin induced lung injury through the down regulation of proinflammatory factors.
Collapse
Affiliation(s)
- Rosanna Di Paola
- IRCCS Centro Neurolesi Bonino-Pulejo, S,S, 113 Via Palermo, CTR Casazza, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Giansanti V, Donà F, Tillhon M, Scovassi AI. PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol 2010; 80:1869-77. [PMID: 20417190 DOI: 10.1016/j.bcp.2010.04.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Poly(ADP-ribosylation) consists in the conversion of β-NAD(+) into ADP-ribose, which is then bound to acceptor proteins and further used to form polymers of variable length and structure. The correct turnover of poly(ADP-ribose) is ensured by the concerted action of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) enzymes, which are responsible for polymer synthesis and degradation, respectively. Despite the positive role of poly(ADP-ribosylation) in sensing and repairing DNA damage, generated also by ROS, PARP over-activation could allow NAD depletion and consequent necrosis, thus leading to an inflammatory condition in many diseases. In this respect, inhibition of PARP enzymes could exert a protective role towards a number of pathological conditions; i.e. the combined treatment of tumors with PARP inhibitors/anticancer agents proved to have a beneficial effect in cancer therapy. Thus, pharmacological inactivation of poly(ADP-ribosylation) could represent a novel therapeutic strategy to limit cellular injury and to attenuate the inflammatory processes that characterize many disorders.
Collapse
Affiliation(s)
- Vincenzo Giansanti
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
26
|
Di Paola R, Crisafulli C, Mazzon E, Genovese T, Paterniti I, Bramanti P, Cuzzocrea S. Effect of PD98059, a selective MAPK3/MAPK1 inhibitor, on acute lung injury in mice. Int J Immunopathol Pharmacol 2010; 22:937-50. [PMID: 20074457 DOI: 10.1177/039463200902200409] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study is to evaluate the contribution of mitogen-activated protein kinase 1-3 MAPK3/MAPK1) in a model of acute lung inflammation in mice. Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by: accumulation of fluid containing a large number of neutrophils (PMNs) in the pleural cavity, infiltration of PMNs in lung tissues and subsequent adhesion molecule expression (I-CAM and P-selectin), lipid peroxidation, and increased production of tumour necrosis factor-alpha, (TNF-alpha) and interleukin-1beta (IL-1beta). Furthermore, carrageenan induced lung apoptosis (Bax and Bcl-2 expression) as well as nitrotyrosine formation, NF-kB activation, and pJNK expression, as determined by immunohistochemical analysis of lung tissues and the degree of lung inflammation and tissue injury (histological score). Administration of PD98059, an inhibitor of MAPK3/MAPK1 (10 mg/kg) 1 h after carrageenan caused a reduction in all the parameters of inflammation measured. Thus, based on these findings we propose that inhibitors of the MAPK3/MAPK1 signaling pathways, such as PD98059, may be useful in the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- R Di Paola
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Aparicio G, Calvo MB, Medina V, Fernández O, Jiménez P, Lema M, Figueroa A, Antón Aparicio LM. Comprehensive lung injury pathology induced by mTOR inhibitors. Clin Transl Oncol 2009; 11:499-510. [DOI: 10.1007/s12094-009-0394-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Tezcan G, Gurel CB, Tutluoglu B, Onaran I, Kanigur-Sultuybek G. The Ala allele at Val762Ala polymorphism in poly(ADP-ribose) polymerase-1 (PARP-1) gene is associated with a decreased risk of asthma in a Turkish population. J Asthma 2009; 46:371-4. [PMID: 19484672 DOI: 10.1080/02770900902777791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVE It has been suggested that inhibition of poly (ADP-ribose) polymerase-1 (PARP-1), either pharmacologically or by a gene knockout provides significant protection against systemic or tissue inflammation in animal models. The aim of this study was to analyze the association of the PARP-1 Val762Ala polymorphism, which has beenreported to be associated with decreased enzymatic activity, in Turkish patients with adult asthma. METHODS A total of 112 subjects with stable asthma and 180 normal controls from the same geographic region were studied and polymerase chain reaction-based restriction analysis was used to identify Val762Ala polymorphism of the PARP-1. RESULTS In univariate analysis, PARP-1 762 AA genotype conferred a 3.4 fold reduction in risk (OR = 0.297, 95% CI = 0.105-0.813; P = 0.014), while heterozygous VA genotype conferred an even greater level of protection (OR = 0.06; 95%CI, 0.026-0.14; P < 10(-6)). In addition, wild type PARP-1 762 V allele had 5 times the risk of developing asthma than those without the allele (OR 0.199, CI 0.118-0.334, P = 10(-6)). CONCLUSIONS These findings suggest that PARP-1 V762A variants may be one of the factors participating in protection or susceptibility to asthma in our population.
Collapse
Affiliation(s)
- Gulçin Tezcan
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
29
|
Beneke S. Poly(ADP-ribose) polymerase activity in different pathologies--the link to inflammation and infarction. Exp Gerontol 2008; 43:605-614. [PMID: 18511226 DOI: 10.1016/j.exger.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 12/27/2022]
Abstract
DNA repair and aging are two phenomena closely connected to each other. The poly(ADP-ribosyl)ation reaction has been implicated in both of them. Poly(ADP-ribose) was originally discovered as an enzymatic reaction product after DNA damage. Soon it became evident that it is necessary for regulation of different repair pathways. Also, evidence accumulated that poly(ADP-ribose) formation capacity is at least correlated with the life span of mammalian species. As a NAD(+)-consuming process, poly(ADP-ribosyl)ation can lead to cell death by energy depletion. This finding opened the area for investigation of poly(ADP-ribose) polymerase activity and polymer formation in pathologies. This review provides an introduction into the wide and complex field of poly(ADP-ribosyl)ation in different pathologies with regards of cell death regulation, inflammation and resulting tissue damage.
Collapse
Affiliation(s)
- Sascha Beneke
- University of Konstanz, Molecular Toxicology Group, Universiteatsstr. 10, Box X911, 78457 Konstanz, Germany
| |
Collapse
|
30
|
Feldman I, Feldman GM, Mobarak C, Dunkelberg JC, Leslie KK. Identification of proteins within the nuclear factor-kappa B transcriptional complex including estrogen receptor-alpha. Am J Obstet Gynecol 2007; 196:394.e1-11; discussion 394.e11-3. [PMID: 17403432 PMCID: PMC2175481 DOI: 10.1016/j.ajog.2006.12.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/20/2006] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The objective of the study was to determine whether cross-talk occurs between estrogen receptors (ERs) and nuclear factor-kappa-B (NF-kappaB), to assess the functional consequences of such an ER/NF-kappaB interaction, and to identify other unknown regulatory proteins that may participate in the NF-kappaB transcriptional complex. STUDY DESIGN Electromobility gel shifts, reporter gene assays, and mass spectrometry were used to identify proteins interacting with the NF-kappaB deoxyribonucleic acid (DNA) response element. RESULTS ER and the p65 subunit of NF-kappaB colocalized on DNA. This interaction was inhibitory for ER transcriptional activity. Sequencing of proteins bound to the NF-kappaB/DNA complex identified DNA-modifying enzymes, scaffolding proteins, chaperones, and elements of the nuclear matrix. CONCLUSION These studies have identified an inhibitory interaction between estrogen receptors and the p65 subunit of NF-kappaB with implications for estrogen action in pregnancy and cancer. New accessory proteins have also been identified that bind to protein complexes on the NF-kappaB DNA response element.
Collapse
Affiliation(s)
- Irv Feldman
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center, Denver, CO
| | | | - Charlotte Mobarak
- Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Women’s Cancer Research Program, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jeffrey C. Dunkelberg
- Division of Gastroenterology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Kimberly K. Leslie
- Reproductive Molecular Biology Laboratory, Division of Maternal-Fetal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
- Departments of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Women’s Cancer Research Program, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
31
|
Cuzzocrea S, Genovese T, Failla M, Vecchio G, Fruciano M, Mazzon E, Di Paola R, Muià C, La Rosa C, Crimi N, Rizzarelli E, Vancheri C. Protective effect of orally administered carnosine on bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1095-104. [PMID: 17220373 DOI: 10.1152/ajplung.00283.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carnosine is an endogenously synthesized dipeptide composed of beta-alanine and L-histidine. It acts as a free radical scavenger and possesses antioxidant properties. Carnosine reduces proinflammatory and profibrotic cytokines such as transforming growth factor-beta (TGF-beta), IL-1, and TNF-alpha in different experimental settings. In the present study, we investigated the efficacy of carnosine on the animal model of bleomycin-induced lung injury. Mice were subjected to intratracheal administration of bleomycin and were assigned to receive carnosine daily by an oral bolus of 150 mg/kg. One week after fibrosis induction, bronchoalveolar lavage (BAL) cell counts and TGF-beta levels, lung histology, and immunohistochemical analyses for myeloperoxidase, TGF-beta, inducible nitric oxide synthase, nitrotyrosine, and poly(ADP-ribose) polymerase were performed. Finally, apoptosis was quantified by terminal deoxynucleotidyltransferase-mediated UTP end-labeling assay. After bleomycin administration, carnosine-treated mice exhibited a reduced degree of lung damage and inflammation compared with wild-type mice, as shown by the reduction of 1) body weight, 2) mortality rate, 3) lung infiltration by neutrophils (myeloperoxidase activity and BAL total and differential cell counts), 4) lung edema, 5) histological evidence of lung injury and collagen deposition, 6) lung myeloperoxidase, TGF-beta, inducible nitric oxide synthase, nitrotyrosine, and poly(ADP-ribose) polymerase immunostaining, 7) BAL TGF-beta levels, and 8) apoptosis. Our results indicate that orally administered carnosine is able to prevent bleomycin-induced lung injury likely through its direct antioxidant properties. Carnosine is already available for human use. It might prove useful as an add-on therapy for the treatment of fibrotic disorders of the lung where oxidative stress plays a role, such as for idiopathic pulmonary fibrosis, a disease that still represents a major challenge to medical treatment.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Department of Internal Medicine and Specialistic Medicine, Section of Respiratory Diseases, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Graziani G, Battaini F, Zhang J. PARP-1 inhibition to treat cancer, ischemia, inflammation. Pharmacol Res 2005; 52:1-4. [PMID: 15911328 DOI: 10.1016/j.phrs.2005.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 02/10/2005] [Indexed: 01/01/2023]
Affiliation(s)
- Grazia Graziani
- Department of Neuroscience, Pharmacology Section, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | |
Collapse
|
33
|
Erdèlyi K, Kiss A, Bakondi E, Bai P, Szabó C, Gergely P, Erdödi F, Virag L. Gallotannin inhibits the expression of chemokines and inflammatory cytokines in A549 cells. Mol Pharmacol 2005; 68:895-904. [PMID: 15976037 DOI: 10.1124/mol.105.012518] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tannins are plant-derived water-soluble polyphenols with wide-ranging biological activities. The mechanisms underlying the anti-inflammatory effect of tannins are not fully understood and may be the result of inhibition of poly(ADP-ribose) (PAR) glycohydrolase (PARG), the main catabolic enzyme of PAR metabolism. Therefore, we set out to investigate the mechanism of the anti-inflammatory effect of gallotannin (GT) in A549 cells with special regard to the role of poly(ADP-ribosyl)ation. Using an inflammation-focused low-density array and reverse transcription-polymerase chain reaction, we found that GT suppressed the expression of most cytokines and chemokines in cytokine-stimulated A549 cells, whereas the PARP inhibitor PJ-34 only inhibited few transcripts. Activation of the transcription factors, nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1), was blocked by GT, whereas PJ-34 only suppressed NF-kappaB activation but not AP-1 activation. GT also inhibited IkappaB phosphorylation and nuclear translocation of NF-kappaB, but PJ-34 had no effect on these upstream events. In the AP-1 pathway, GT treatment, even in the absence of cytokines, caused maximal phosphorylation of c-Jun N-terminal kinase and c-Jun. GT also caused a low-level phosphorylation of p38, extracellular signal-regulated kinases 1 and 2, activating transcription factor2, and cAMP-response element-binding protein but inhibited cytokine-induced phosphorylation of these kinases and transcription factors. GT inhibited protein phosphatases 1 and 2A, which may explain the increased phosphorylation of mitogen-activated protein kinase and their substrates. GT exerted potent antioxidant effect but failed to cause PAR accumulation. In summary, the potent inhibitory effects of GT on the transcription of cytokine and chemokine genes are probably not related to PARG inhibition. Inhibition of AP-1 activation and upstream signaling events may be responsible for the effects of GT.
Collapse
Affiliation(s)
- Katalin Erdèlyi
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Elettudományi Epület 3.311, Egyetem tér 1, H-4032 Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|