1
|
Barbuti A, Baruscotti M, Bucchi A. The “Funny” Pacemaker Current. HEART RATE AND RHYTHM 2023:63-87. [DOI: 10.1007/978-3-031-33588-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Inazumi H, Kuwahara K. NRSF/REST-Mediated Epigenomic Regulation in the Heart: Transcriptional Control of Natriuretic Peptides and Beyond. BIOLOGY 2022; 11:1197. [PMID: 36009824 PMCID: PMC9405064 DOI: 10.3390/biology11081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Reactivation of fetal cardiac genes, including those encoding atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), is a key feature of pathological cardiac remodeling and heart failure. Intensive studies on the regulation of ANP and BNP have revealed the involvement of numerous transcriptional factors in the regulation of the fetal cardiac gene program. Among these, we identified that a transcriptional repressor, neuron-restrictive silencer factor (NRSF), also named repressor element-1-silencing transcription factor (REST), which was initially detected as a transcriptional repressor of neuron-specific genes in non-neuronal cells, plays a pivotal role in the transcriptional regulation of ANP, BNP and other fetal cardiac genes. Here we review the transcriptional regulation of ANP and BNP gene expression and the role of the NRSF repressor complex in the regulation of cardiac gene expression and the maintenance of cardiac homeostasis.
Collapse
Affiliation(s)
- Hideaki Inazumi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, School of Medicine, Shinshu University, 3-1-1 Asahi, Nagano 390-8621, Japan
| |
Collapse
|
3
|
Depuydt AS, Peigneur S, Tytgat J. Review: HCN Channels in the Heart. Curr Cardiol Rev 2022; 18:e040222200836. [PMID: 35125083 PMCID: PMC9893134 DOI: 10.2174/1573403x18666220204142436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Pacemaker cells are the basis of rhythm in the heart. Cardiovascular diseases, and in particular, arrhythmias are a leading cause of hospital admissions and have been implicated as a cause of sudden death. The prevalence of people with arrhythmias will increase in the next years due to an increase in the ageing population and risk factors. The current therapies are limited, have a lot of side effects, and thus, are not ideal. Pacemaker channels, also called hyperpolarizationactivated cyclic nucleotide-gated (HCN) channels, are the molecular correlate of the hyperpolarization- activated current, called Ih (from hyperpolarization) or If (from funny), that contribute crucially to the pacemaker activity in cardiac nodal cells and impulse generation and transmission in neurons. HCN channels have emerged as interesting targets for the development of drugs, in particular, to lower the heart rate. Nonetheless, their pharmacology is still rather poorly explored in comparison to many other voltage-gated ion channels or ligand-gated ion channels. Ivabradine is the first and currently the only clinically approved compound that specifically targets HCN channels. The therapeutic indication of ivabradine is the symptomatic treatment of chronic stable angina pectoris in patients with coronary artery disease with a normal sinus rhythm. Several other pharmacological agents have been shown to exert an effect on heart rate, although this effect is not always desired. This review is focused on the pacemaking process taking place in the heart and summarizes the current knowledge on HCN channels.
Collapse
Affiliation(s)
- Anne-Sophie Depuydt
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| |
Collapse
|
4
|
Husti Z, Varró A, Baczkó I. Arrhythmogenic Remodeling in the Failing Heart. Cells 2021; 10:cells10113203. [PMID: 34831426 PMCID: PMC8623396 DOI: 10.3390/cells10113203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure is a clinical syndrome with multiple etiologies, associated with significant morbidity and mortality. Cardiac arrhythmias, including ventricular tachyarrhythmias and atrial fibrillation, are common in heart failure. A number of cardiac diseases including heart failure alter the expression and regulation of ion channels and transporters leading to arrhythmogenic electrical remodeling. Myocardial hypertrophy, fibrosis and scar formation are key elements of arrhythmogenic structural remodeling in heart failure. In this article, the mechanisms responsible for increased arrhythmia susceptibility as well as the underlying changes in ion channel, transporter expression and function as well as alterations in calcium handling in heart failure are discussed. Understanding the mechanisms of arrhythmogenic remodeling is key to improving arrhythmia management and the prevention of sudden cardiac death in patients with heart failure.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
5
|
Benzoni P, Campostrini G, Landi S, Bertini V, Marchina E, Iascone M, Ahlberg G, Olesen MS, Crescini E, Mora C, Bisleri G, Muneretto C, Ronca R, Presta M, Poliani PL, Piovani G, Verardi R, Di Pasquale E, Consiglio A, Raya A, Torre E, Lodrini AM, Milanesi R, Rocchetti M, Baruscotti M, DiFrancesco D, Memo M, Barbuti A, Dell'Era P. Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovasc Res 2021; 116:1147-1160. [PMID: 31504264 PMCID: PMC7177512 DOI: 10.1093/cvr/cvz217] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood. Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes (CMs) differentiated from induced pluripotent stem cells (iPSCs). METHODS AND RESULTS Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells towards the cardiac lineage. Electrophysiological characterization of patient-derived CMs (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed after-depolarizations of bigger amplitude and more ectopic beats than CTRL cells. CONCLUSIONS Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF.
Collapse
Affiliation(s)
- Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Giulia Campostrini
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Sara Landi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Valeria Bertini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Maria Iascone
- USSD Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Piazza OMS, 1, 24127 Bergamo, Italy
| | - Gustav Ahlberg
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Morten Salling Olesen
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Elisabetta Crescini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Cristina Mora
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Gianluigi Bisleri
- Department of Surgery, Division of Cardiac Surgery, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Claudio Muneretto
- Clinical Department of Cardiovascular Surgery, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Pier Luigi Poliani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Piovani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Rosanna Verardi
- Department of Trasfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, viale Europa 11, 25123 Brescia, Italy
| | - Elisa Di Pasquale
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milan, Italy
| | - Antonella Consiglio
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy.,Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908 Hospitalet de Llobregat, C/Feixa Larga s/n, 08907 Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Carrer Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23 08010 Barcelona, Spain.,Networking Center of Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Eleonora Torre
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Raffaella Milanesi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Mirko Baruscotti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Patrizia Dell'Era
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
6
|
Chakraborty P, Rose RA, Nair K, Downar E, Nanthakumar K. The rationale for repurposing funny current inhibition for management of ventricular arrhythmia. Heart Rhythm 2020; 18:130-137. [PMID: 32738405 DOI: 10.1016/j.hrthm.2020.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 11/26/2022]
Abstract
Management of ventricular arrhythmia in structural heart disease is complicated by the toxicity of the limited antiarrhythmic options available. In others, proarrhythmia and deleterious hemodynamic and noncardiac effects prevent practical use. This necessitates new thinking in therapeutic agents for ventricular arrhythmia in structural heart disease. Ivabradine, a funny current (If) inhibitor, has proven safety in heart failure, angina, and inappropriate sinus tachycardia. Although it is commonly known that funny channels are primarily expressed in the sinoatrial node, atrioventricular node, and conducting system of the ventricle, ivabradine is known to exert effects on metabolism, ion homeostasis, and membrane electrophysiology of remodeled ventricular myocardium. This review considers novel concepts and evidence from clinical and experimental studies regarding this paradigm, with a potential role of ivabradine in ventricular arrhythmia.
Collapse
Affiliation(s)
- Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Robert A Rose
- Libin Cardiovascular Institute of Alberta, An entity of the University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Krishnakumar Nair
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Eugene Downar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Notch1-mediated histone demethylation of HCN4 contributes to aconitine-induced ventricular myocardial dysrhythmia. Toxicol Lett 2020; 327:19-31. [DOI: 10.1016/j.toxlet.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
|
8
|
Katsi V, Skalis G, Kallistratos MS, Tsioufis K, Makris T, Manolis AJ, Tousoulis D. Ivabradine and metoprolol in fixed dose combination: When, why and how to use it. Pharmacol Res 2019; 146:104279. [PMID: 31108185 DOI: 10.1016/j.phrs.2019.104279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 11/30/2022]
Abstract
Heart rate is an important factor in coronary artery disease and its manifestations, and as such has been considered as a possible target for therapy. Although in epidemiological, and in less degree, in clinical studies derived indications of a possible pathogenetic role of heart rate in major cardiac diseases, clinical trials did not provided any strong evidence. However, even as a simple risk marker, remains important in the treatment of coronary artery disease and heart failure. Beta-blockers are the drugs most frequently used for heart rate control. However, recent studies constantly find insufficient effectiveness of beta-blockers in heart rate control and go further to question their efficacy on outcomes, making clear the need for an additional therapy. Ivabradine, a pure heart rate inhibitor, added to classic beta-blocker treatment represent the new therapeutic option in stable coronary disease and heart failure.
Collapse
Affiliation(s)
- V Katsi
- Cardiology Department, Hippokration Hospital, Athens, Greece
| | - G Skalis
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - M S Kallistratos
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece.
| | - K Tsioufis
- Cardiology Department, Hippokration Hospital, Athens, Greece
| | - T Makris
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - A J Manolis
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | - D Tousoulis
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| |
Collapse
|
9
|
Ergul Y, Ozturk E. Ivabradine use as an antiarrhythmic therapy in congenital junctional ectopic tachycardias. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2018; 41:1576. [DOI: 10.1111/pace.13478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Yakup Ergul
- Department of Pediatric Cardiology/Electrophysiology, Saglik Bilimleri University; Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Center Hospital; Istanbul Turkey
| | - Erkut Ozturk
- Department of Pediatric Cardiology, Saglik Bilimleri University; Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Center Hospital; Istanbul Turkey
| |
Collapse
|
10
|
Mert KU, Şener E, Mert GÖ. Beneficial effects of ivabradine in atrial or ventricular arrhythmias. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2018; 41:1575. [DOI: 10.1111/pace.13480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Kadir Uğur Mert
- Department of Cardiology, Faculty of Medicine; Eskişehir Osmangazi University; Eskişehir Turkey
| | - Emre Şener
- Department of Cardiology, Faculty of Medicine; Eskişehir Osmangazi University; Eskişehir Turkey
| | - Gurbet Özge Mert
- Department of Cardiology; Yunus Emre State Hospital; Eskişehir Turkey
| |
Collapse
|
11
|
|
12
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
13
|
Zhao X, Gu T. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases. Braz J Cardiovasc Surg 2017; 31:203-6. [PMID: 27556324 PMCID: PMC5062718 DOI: 10.5935/1678-9741.20160030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are reverse
voltage-dependent, and their activation depends on the hyperpolarization of the
membrane and may be directly or indirectly regulated by the cyclic adenosine
monophosphate (cAMP) or other signal-transduction cascades. The distribution,
quantity and activation states of HCN channels differ in tissues throughout the
body. Evidence exhibits that HCN channels play critical roles in the generation
and conduction of the electrical impulse and the physiopathological process of
some cardiac diseases. They may constitute promising drug targets in the
treatment of these cardiac diseases. Pharmacological treatment targeting HCN
channels is of benefit to these cardiac conditions.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Cardiac Surgery ICU, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tianxiang Gu
- Department of Cardiac Surgery ICU, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Novella Romanelli M, Sartiani L, Masi A, Mannaioni G, Manetti D, Mugelli A, Cerbai E. HCN Channels Modulators: The Need for Selectivity. Curr Top Med Chem 2016; 16:1764-91. [PMID: 26975509 PMCID: PMC5374843 DOI: 10.2174/1568026616999160315130832] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Li N, Csepe TA, Hansen BJ, Dobrzynski H, Higgins RSD, Kilic A, Mohler PJ, Janssen PML, Rosen MR, Biesiadecki BJ, Fedorov VV. Molecular Mapping of Sinoatrial Node HCN Channel Expression in the Human Heart. Circ Arrhythm Electrophysiol 2015; 8:1219-27. [PMID: 26304511 DOI: 10.1161/circep.115.003070] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The hyperpolarization-activated current, If, plays an important role in sinoatrial node (SAN) pacemaking. Surprisingly, the distribution of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in human SAN has only been investigated at the mRNA level. Our aim was to define the expression pattern of HCN proteins in human SAN and different atrial regions. METHODS AND RESULTS Entire SAN complexes were isolated from failing (n=5) and nonfailing (n=9) human hearts cardioplegically arrested in the operating room. Three-dimensional intramural SAN structure was identified as the fibrotic compact region around the SAN artery with Connexin 43-negative pacemaker cardiomyocytes visualized in Masson's trichrome and immunostained cryosections. SAN protein was precisely isolated from the adjacent frozen SAN tissue blocks using a 16G biopsy needle. The purity of the SAN protein was confirmed by Connexin 43 immunoblot. All 3 HCN isoform proteins were detected in SAN. HCN1 was predominantly distributed in the human SAN with a 125.1±40.2 (n=12) expression ratio of SAN to right atrium. HCN2 and HCN4 expression levels were higher in SAN than in atria, with SAN to right atrium ratios of 6.1±0.9 and 4.6±0.6 (n=12), respectively. CONCLUSIONS This is the first study to conduct precise 3D molecular mapping of the human SAN by isolating pure pacemaker SAN tissue. All 3 cardiac HCN isoforms had higher expression in the SAN than in the atria. HCN1 was almost exclusively expressed in SAN, emphasizing its utility as a new specific molecular marker of the human SAN and as a potential target of specific treatments intended to modify sinus rhythm.
Collapse
Affiliation(s)
- Ning Li
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Thomas A Csepe
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Brian J Hansen
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Halina Dobrzynski
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Robert S D Higgins
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Ahmet Kilic
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Peter J Mohler
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Paul M L Janssen
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Michael R Rosen
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Brandon J Biesiadecki
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.)
| | - Vadim V Fedorov
- From the Department of Physiology & Cell Biology and Dorothy M. Davis Heart & Lung Research Institute (N.L., T.A.C., B.J.H., P.J.M., P.M.L.J., B.J.B., V.V.F.), Department of Surgery and Dorothy M. Davis Heart & Lung Research Institute (R.S.D.H., A.K.), The Ohio State University Wexner Medical Center, Columbus; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (H.D.); and Departments of Pharmacology and Pediatrics, Columbia University, New York, NY (M.R.R.).
| |
Collapse
|
16
|
Kim JJ, Yang L, Lin B, Zhu X, Sun B, Kaplan AD, Bett GCL, Rasmusson RL, London B, Salama G. Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells. J Mol Cell Cardiol 2015; 81:81-93. [PMID: 25644533 PMCID: PMC4409767 DOI: 10.1016/j.yjmcc.2015.01.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/26/2014] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND OBJECTIVES The creation of cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CMs) has spawned broad excitement borne out of the prospects to diagnose and treat cardiovascular diseases based on personalized medicine. A common feature of hiPS-CMs is their spontaneous contractions but the mechanism(s) remain uncertain. METHODS Intrinsic activity was investigated by the voltage-clamp technique, optical mapping of action potentials (APs) and intracellular Ca(2+) (Cai) transients (CaiT) at subcellular-resolution and pharmacological interventions. RESULTS The frequency of spontaneous CaiT (sCaiT) in monolayers of hiPS-CMs was not altered by ivabradine, an inhibitor of the pacemaker current, If despite high levels of HCN transcripts (1-4). HiPS-CMs had negligible If and IK1 (inwardly-rectifying K(+)-current) and a minimum diastolic potential of -59.1±3.3mV (n=18). APs upstrokes were preceded by a depolarizing-foot coincident with a rise of Cai. Subcellular Cai wavelets varied in amplitude, propagated and died-off; larger Cai-waves triggered cellular sCaTs and APs. SCaiTs increased in frequency with [Ca(2+)]out (0.05-to-1.8mM), isoproterenol (1μM) or caffeine (100μM) (n≥5, p<0.05). HiPS-CMs became quiescent with ryanodine receptor stabilizers (K201=2μM); tetracaine; Na-Ca exchange (NCX) inhibition (SEA0400=2μM); higher [K(+)]out (5→8mM), and thiol-reducing agents but could still be electrically stimulated to elicit CaiTs. Cell-cell coupling of hiPS-CM in monolayers was evident from connexin-43 expression and CaiT propagation. SCaiTs from an ensemble of dispersed hiPS-CMs were out-of-phase but became synchronous through the outgrowth of inter-connecting microtubules. CONCLUSIONS Automaticity in hiPS-CMs originates from a Ca(2+)-clock mechanism involving Ca(2+) cycling across the sarcoplasmic reticulum linked to NCX to trigger APs.
Collapse
Affiliation(s)
- Jong J Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lei Yang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bo Lin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaodong Zhu
- University of Iowa, Carver College of Medicine, Division of Cardiovascular Medicine, Iowa City, IA 52242, USA
| | - Bin Sun
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Aaron D Kaplan
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Glenna C L Bett
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Departments of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Departments of Gynecology-Obstetrics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Randall L Rasmusson
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Departments of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Barry London
- University of Iowa, Carver College of Medicine, Division of Cardiovascular Medicine, Iowa City, IA 52242, USA
| | - Guy Salama
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
17
|
Changes in Electrical Activity of Working Myocardium Under Condition of If Current Inhibition. Bull Exp Biol Med 2015; 158:600-3. [DOI: 10.1007/s10517-015-2815-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Indexed: 10/23/2022]
|
18
|
Age-related peculiarities of adrenergic regulation of cardiac chronotropic action after I f blockage. Bull Exp Biol Med 2013; 156:1-3. [PMID: 24319700 DOI: 10.1007/s10517-013-2262-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects of norepinephrine on the heart rate were studied in 1-, 3-, 6-, and 20-week-old rats before and after blockade of hyperpolarization-activated currents (I f , I h ). In animals with mature sympathetic regulation of cardiac activity (6- and 20-week-old animals), I f blockage decreased the severity of norepinephrine-induced tachycardia. In newborn rats lacking sympathetic innervation of the heart, norepinephrine only slightly affected heart rate before and after I f blockage. In 3-week-old animals, I f blockage after norepinephrine pretreatment increased tachycardia.
Collapse
|
19
|
Dobrzynski H, Anderson RH, Atkinson A, Borbas Z, D'Souza A, Fraser JF, Inada S, Logantha SJRJ, Monfredi O, Morris GM, Moorman AFM, Nikolaidou T, Schneider H, Szuts V, Temple IP, Yanni J, Boyett MR. Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther 2013; 139:260-88. [PMID: 23612425 DOI: 10.1016/j.pharmthera.2013.04.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/01/2023]
Abstract
It is now over 100years since the discovery of the cardiac conduction system, consisting of three main parts, the sinus node, the atrioventricular node and the His-Purkinje system. The system is vital for the initiation and coordination of the heartbeat. Over the last decade, immense strides have been made in our understanding of the cardiac conduction system and these recent developments are reviewed here. It has been shown that the system has a unique embryological origin, distinct from that of the working myocardium, and is more extensive than originally thought with additional structures: atrioventricular rings, a third node (so called retroaortic node) and pulmonary and aortic sleeves. It has been shown that the expression of ion channels, intracellular Ca(2+)-handling proteins and gap junction channels in the system is specialised (different from that in the ordinary working myocardium), but appropriate to explain the functioning of the system, although there is continued debate concerning the ionic basis of pacemaking. We are beginning to understand the mechanisms (fibrosis and remodelling of ion channels and related proteins) responsible for dysfunction of the system (bradycardia, heart block and bundle branch block) associated with atrial fibrillation and heart failure and even athletic training. Equally, we are beginning to appreciate how naturally occurring mutations in ion channels cause congenital cardiac conduction system dysfunction. Finally, current therapies, the status of a new therapeutic strategy (use of a specific heart rate lowering drug) and a potential new therapeutic strategy (biopacemaking) are reviewed.
Collapse
|
20
|
Escudero C, Khairy P, Sanatani S. Electrophysiologic Considerations in Congenital Heart Disease and Their Relationship to Heart Failure. Can J Cardiol 2013; 29:821-9. [DOI: 10.1016/j.cjca.2013.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 10/26/2022] Open
|
21
|
Kuwabara Y, Kuwahara K, Takano M, Kinoshita H, Arai Y, Yasuno S, Nakagawa Y, Igata S, Usami S, Minami T, Yamada Y, Nakao K, Yamada C, Shibata J, Nishikimi T, Ueshima K, Nakao K. Increased expression of HCN channels in the ventricular myocardium contributes to enhanced arrhythmicity in mouse failing hearts. J Am Heart Assoc 2013; 2:e000150. [PMID: 23709563 PMCID: PMC3698776 DOI: 10.1161/jaha.113.000150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/30/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The efficacy of pharmacological interventions to prevent sudden arrhythmic death in patients with chronic heart failure remains limited. Evidence now suggests increased ventricular expression of hyperpolarization-activated cation (HCN) channels in hypertrophied and failing hearts contributes to their arrythmicity. Still, the role of induced HCN channel expression in the enhanced arrhythmicity associated with heart failure and the capacity of HCN channel blockade to prevent lethal arrhythmias remains undetermined. METHODS AND RESULTS We examined the effects of ivabradine, a specific HCN channel blocker, on survival and arrhythmicity in transgenic mice (dnNRSF-Tg) expressing a cardiac-specific dominant-negative form of neuron-restrictive silencer factor, a useful mouse model of dilated cardiomyopathy leading to sudden death. Ivabradine (7 mg/kg per day orally) significantly reduced ventricular tachyarrhythmias and improved survival among dnNRSF-Tg mice while having no significant effect on heart rate or cardiac structure or function. Ivabradine most likely prevented the increase in automaticity otherwise seen in dnNRSF-Tg ventricular myocytes. Moreover, cardiac-specific overexpression of HCN2 in mice (HCN2-Tg) made hearts highly susceptible to arrhythmias induced by chronic β-adrenergic stimulation. Indeed, ventricular myocytes isolated from HCN2-Tg mice were highly susceptible to β-adrenergic stimulation-induced abnormal automaticity, which was inhibited by ivabradine. CONCLUSIONS HCN channel blockade by ivabradine reduces lethal arrhythmias associated with dilated cardiomyopathy in mice. Conversely, cardiac-specific overexpression of HCN2 channels increases arrhythmogenicity of β-adrenergic stimulation. Our findings demonstrate the contribution of HCN channels to the increased arrhythmicity seen in failing hearts and suggest HCN channel blockade is a potentially useful approach to preventing sudden death in patients with heart failure.
Collapse
Affiliation(s)
- Yoshihiro Kuwabara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, Japan (M.T., S.I.)
| | - Hideyuki Kinoshita
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Yuji Arai
- Department of Bioscience, National Cerebral and Cardiovascular Center Research Institute, Japan (Y.A.)
| | - Shinji Yasuno
- EBM Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.Y., K.U.)
| | - Yasuaki Nakagawa
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Sachiyo Igata
- Department of Physiology, Kurume University School of Medicine, Japan (M.T., S.I.)
| | - Satoru Usami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Takeya Minami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Yuko Yamada
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Kazuhiro Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Chinatsu Yamada
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Junko Shibata
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Toshio Nishikimi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Kenji Ueshima
- EBM Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.Y., K.U.)
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| |
Collapse
|
22
|
Abstract
Many diverse data support a role of the funny current (If) in pacemaking and heart rate control. Among them, clinically relevant applications have special impact, since they translate the concept of funny channel-based pacemaking into practical developments of potential therapeutic value. For example, the If role in pacemaking is the basis for a pharmacological approach to heart rate control. Ivabradine, a specific f-channel blocker acting as a 'pure heart rate reducing' agent, is used today as a therapeutic tool in chronic stable angina and heart failure. Also, the pacemaking capability of funny channels has been the main rationale behind the development of 'biological' pacemakers, whose aim is to eventually replace the electronic pacemakers implanted today. Finally, the role of If in pacemaking implies that dysfunctional funny channels can contribute to rhythm disorders. This consideration has led to the search for inheritable forms of cardiac arrhythmias potentially linked to functional changes of HCN4 channels, the molecular correlates of funny channels. This review addresses recent reports where investigation of families with arrhythmias has allowed the identification of specific HCN4 channel mutations associated with different types of rhythm disorders, specifically with sinus bradycardia. The perspective of future research in this field is also addressed.
Collapse
Affiliation(s)
- Dario DiFrancesco
- D. DiFrancesco: Department of Biosciences, The PaceLab, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
23
|
Bosman A, Sartiani L, Spinelli V, Del Lungo M, Stillitano F, Nosi D, Mugelli A, Cerbai E, Jaconi M. Molecular and functional evidence of HCN4 and caveolin-3 interaction during cardiomyocyte differentiation from human embryonic stem cells. Stem Cells Dev 2013; 22:1717-27. [PMID: 23311301 DOI: 10.1089/scd.2012.0247] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CM) is accompanied by changes in ion channel expression, with relevant electrophysiological consequences. In rodent CM, the properties of hyperpolarization-activated cyclic nucleotide-gated channel (HCN)4, a major f-channel isoform, depends on the association with caveolin-3 (Cav3). To date, no information exists on changes in Cav3 expression and its associative relationship with HCN4 upon hESC-CM maturation. We hypothesize that Cav3 expression and its compartmentalization with HCN4 channels during hESC-CM maturation accounts for the progression of f-current properties toward adult phenotypes. To address this, hESC were differentiated into spontaneously beating CM and examined at ∼30, ∼60, and ∼110 days of differentiation. Human adult and fetal CM served as references. HCN4 and Cav3 expression and localization were analyzed by real time PCR and immunocyto/histochemistry. F-current was measured in patch-clamped single cells. HCN4 and Cav3 colocalize in adult human atrial and ventricular CM, but not in fetal CM. Proteins and mRNA for Cav3 were not detected in undifferentiated hESC, but expression increased during hESC-CM maturation. At 110 days, HCN4 appeared to be colocalized with Cav3. Voltage-dependent activation of the f-current was significantly more positive in fetal CM and 60-day hESC-CM (midpoint activation, V1/2, ∼ -82 mV) than in 110-day hESC-CM or adult CM (V1/2∼-100 mV). In the latter cells, caveolae disruption reversed voltage dependence toward a more positive or an immature phenotype, with V1/2 at -75 mV, while in fetal CM voltage dependence was not affected. Our data show, for the first time, a developmental change in HCN4-Cav3 association in hESC-CM. Cav3 expression and its association with ionic channels likely represent a crucial step of cardiac maturation.
Collapse
Affiliation(s)
- Alexis Bosman
- Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Hyperpolarization-activated cyclic nucleotide gated (HCN) channels pass a cationic current (I(h)/I(f)) that crucially contributes to the slow diastolic depolarization (SDD) of sinoatrial pacemaker cells and, hence, is a key determinant of cardiac automaticity and the generation of the heartbeat. However, there is growing evidence that HCN channels are not restricted to the spontaneously active cells of the sinoatrial node and the conduction system but are also present in ventricular cardiomyocytes that produce an action potential lacking SDD. This observation raises the question of the principal function(s) of HCN channels in working myocardium. Our recent analysis of an HCN3-deficient (HCN3-/-) mouse line has shed new light on this central question. We propose that HCN channels contribute to the ventricular action potential waveform, specifically during late repolarization. In this review, we outline this new concept.
Collapse
Affiliation(s)
- Stefanie Fenske
- Center for Integrated Protein Science CIPS-M and Zentrum für Pharmaforschung-Department Pharmazie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine
| |
Collapse
|
26
|
Navaratnarajah M, Ibrahim M, Siedlecka U, van Doorn C, Shah A, Gandhi A, Dias P, Sarathchandra P, Yacoub MH, Terracciano CM. Influence of ivabradine on reverse remodelling during mechanical unloading. Cardiovasc Res 2012; 97:230-9. [DOI: 10.1093/cvr/cvs318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Herrmann S, Hofmann F, Stieber J, Ludwig A. HCN channels in the heart: lessons from mouse mutants. Br J Pharmacol 2012; 166:501-9. [PMID: 22141457 DOI: 10.1111/j.1476-5381.2011.01798.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Hyperpolarization-activated cation channels generate the I(f) current in the heart. In the sino-atrial node (SAN), I(f) is thought to play an essential role in setting the heart rate and mediating its autonomic control. This review focuses on the role of I(f) in pacemaking and non-pacemaking cardiomyocytes and the resulting therapeutic implications. HCN4 represents the principal isoform underlying sino-atrial I(f) , but other isoforms may also be of importance. To examine the functional role of cardiac channels, several mouse mutants, most of them targeting HCN4, have been generated by different groups. Unexpectedly, these lines display greatly different and as yet unexplained phenotypes. We provide an overview about these HCN mutants and suggest an interpretation of the functional significance of I(f) in the SAN in light of these studies. HCN channels are also present in ventricular myocytes, and an up-regulation of I(f) in the hypertrophic and failing heart may contribute to arrhythmogenesis. Inhibition of I(f) by HCN channel blockers is a novel approach in the treatment of cardiac disorders, and ivabradine is approved for treatment of stable angina pectoris. Remarkably, a recent clinical trial assessing this substance in heart failure showed a significantly improved outcome. The mechanism underlying this beneficial effect is not yet clear and might lie beyond heart rate slowing. Thus, the growing knowledge about cardiac HCN channels will undoubtedly promote the development of the promising class of HCN channel blockers.
Collapse
Affiliation(s)
- S Herrmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | |
Collapse
|
28
|
Kuwahara K, Nishikimi T, Nakao K. Transcriptional regulation of the fetal cardiac gene program. J Pharmacol Sci 2012; 119:198-203. [PMID: 22786561 DOI: 10.1254/jphs.12r04cp] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Reactivation of the fetal cardiac gene program in adults is a reliable marker of cardiac hypertrophy and heart failure. Normally, genes within this group are expressed in the fetal ventricles during development, but are silent after birth. However, their expression is re-induced in the ventricular myocardium in response to various cardiovascular diseases, and potentially plays an important role in the pathological process of cardiac remodeling. Thus, analysis of the molecular mechanisms that govern the expression of fetal cardiac genes could lead to the discovery of transcriptional regulators and signaling pathways involved in both cardiac differentiation and cardiac disease. In this review we will summarize what is currently known about the transcriptional regulation of the fetal cardiac gene program.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
29
|
Hofmann F, Fabritz L, Stieber J, Schmitt J, Kirchhof P, Ludwig A, Herrmann S. Ventricular HCN channels decrease the repolarization reserve in the hypertrophic heart. Cardiovasc Res 2012; 95:317-26. [PMID: 22652004 DOI: 10.1093/cvr/cvs184] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Cardiac hypertrophy is accompanied by reprogramming of gene expression, where the altered expression of ion channels decreases electrical stability and increases the risk of life-threatening arrhythmias. However, the underlying mechanisms are not fully understood. Here, we analysed the role of the depolarizing current I(f) which has been hypothesized to contribute to arrhythmogenesis in the hypertrophied ventricle. METHODS AND RESULTS We used transverse aortic constriction in mice to induce ventricular hypertrophy. This resulted in an increased number of I(f) positive ventricular myocytes as well as a strongly enhanced and accelerated I(f) when compared with controls. Of the four HCN (hyperpolarization-activated cyclic nucleotide-gated channels) isoforms mediating I(f), HCN2 and HCN4 were the predominantly expressed subunits in healthy as well as hypertrophied hearts. Unexpectedly, only the HCN1 transcript was significantly upregulated in response to hypertrophy. However, the combined deletion of HCN2 and HCN4 disrupted ventricular I(f) completely. The lack of I(f) in hypertrophic double-knockouts resulted in a strong attenuation of pro-arrhythmogenic parameters characteristically observed in hypertrophic hearts. In particular, prolongation of the action potential was significantly decreased and lengthening of the QT interval was reduced. CONCLUSIONS We suggest that the strongly increased HCN channel activity in hypertrophied myocytes prolongs the repolarization of the ventricular action potential and thereby may increase the arrhythmogenic potential. Our results provide for the first time a direct link between an upregulation of ventricular I(f) and a diminished repolarization reserve in cardiac hypertrophy.
Collapse
Affiliation(s)
- Florian Hofmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Novel insights into the distribution of cardiac HCN channels: An expression study in the mouse heart. J Mol Cell Cardiol 2011; 51:997-1006. [DOI: 10.1016/j.yjmcc.2011.09.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 11/22/2022]
|
31
|
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have a key role in the control of heart rate and neuronal excitability. Ivabradine is the first compound acting on HCN channels to be clinically approved for the treatment of angina pectoris. HCN channels may offer excellent opportunities for the development of novel anticonvulsant, anaesthetic and analgesic drugs. In support of this idea, some well-established drugs that act on the central nervous system - including lamotrigine, gabapentin and propofol - have been found to modulate HCN channel function. This Review gives an up-to-date summary of compounds acting on HCN channels, and discusses strategies to further explore the potential of these channels for therapeutic intervention.
Collapse
|
32
|
Fenske S, Mader R, Scharr A, Paparizos C, Cao-Ehlker X, Michalakis S, Shaltiel L, Weidinger M, Stieber J, Feil S, Feil R, Hofmann F, Wahl-Schott C, Biel M. HCN3 contributes to the ventricular action potential waveform in the murine heart. Circ Res 2011; 109:1015-23. [PMID: 21903939 DOI: 10.1161/circresaha.111.246173] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The hyperpolarization-activated current I(h) that is generated by hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) plays a key role in the control of pacemaker activity in sinoatrial node cells of the heart. By contrast, it is unclear whether I(h) is also relevant for normal function of cardiac ventricles. OBJECTIVE To study the role of the HCN3-mediated component of ventricular I(h) in normal ventricular function. METHODS AND RESULTS To test the hypothesis that HCN3 regulates the ventricular action potential waveform, we have generated and analyzed a HCN3-deficient mouse line. At basal heart rate, mice deficient for HCN3 displayed a profound increase in the T-wave amplitude in telemetric electrocardiographic measurements. Action potential recordings on isolated ventricular myocytes indicate that this effect was caused by an acceleration of the late repolarization phase in epicardial myocytes. Furthermore, the resting membrane potential was shifted to more hyperpolarized potentials in HCN3-deficient mice. Cardiomyocytes of HCN3-deficient mice displayed approximately 30% reduction of total I(h). At physiological ionic conditions, the HCN3-mediated current had a reversal potential of approximately -35 mV and displayed ultraslow deactivation kinetics. CONCLUSIONS We propose that HCN3 together with other members of the HCN channel family confer a depolarizing background current that regulates ventricular resting potential and counteracts the action of hyperpolarizing potassium currents in late repolarization. In conclusion, our data indicate that HCN3 plays an important role in shaping the cardiac action potential waveform.
Collapse
Affiliation(s)
- Stefanie Fenske
- Center for Integrated Protein Science CIPS-M, Department Pharmazie, Ludwig-Maximilians-Universität München, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Suffredini S, Cerbai E, Giunti G, El Mouelhi M, Pfannkuche HJ, Mugelli A. Electrophysiological characterization of isolated human atrial myocytes exposed to tegaserod. Basic Clin Pharmacol Toxicol 2010; 106:416-21. [PMID: 20050846 DOI: 10.1111/j.1742-7843.2009.00507.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tegaserod (Teg), a 5-hydroxytryptamine type-4 (5-HT(4)) receptor partial agonist, represents a novel treatment for irritable bowel syndrome with constipation and chronic constipation. Cardiovascular safety data from pooled clinical studies showed a signal suggestive of increased occurrence of ischaemic cardiovascular events in patients exposed to Teg versus placebo. Thereafter, marketing of Teg was suspended in the USA and other countries. The clinical data did not demonstrate a causative effect but raised questions of whether a non-recognized effect on the heart was present. Our aim was to evaluate for arrhythmogenic potential of Teg on human cardiomyocytes. Cells isolated from human atrial specimens during cardiac surgery were used to assess the effects of Teg (1, 10, 30 and 100 nM) on action potential and I(f) (funny current) by patch-clamp technique. Results showed that Teg (at all concentrations tested) did not significantly affect action potential characteristics of atrial myocytes when driven at different rates (0.2, 0.5 and 1 Hz). In contrast, 5HT significantly prolonged action potential duration (1 and 10 nM) and caused cell un-excitability (100 nM). Teg, at the highest concentration tested (100 nM, corresponding to 10 times C(max), produced by the recommended dose of 6 mg b.i.d.) increased the I(f) amplitude and caused a shift of its activation curve. This effect of a high concentration of Teg is not considered clinically relevant. When evaluated on single human atrial cells, Teg does not appear to exhibit arrhythmogenic properties, as it did not affect the action potential profile.
Collapse
Affiliation(s)
- Silvia Suffredini
- Center of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Suffredini S, Mugelli A, Cerbai E. I(f) channels as a therapeutic target in heart disease. Future Cardiol 2009; 3:657-66. [PMID: 19804286 DOI: 10.2217/14796678.3.6.657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the normal heart, impulses are generated from the sinoatrial node. It is generally accepted that the pacemaker current, I(f), plays a major role in the spontaneous rhythmic activity. Recently, several electrophysiological and molecular data demonstrate that I(f) channels are present in embryonic and post-natal ventricular myocytes and undergo a downregulation during maturation. Interestingly, the I(f) current is re-expressed in some pathological conditions such as cardiac hypertrophy and heart failure. In these conditions, the overexpression of f-channels is a consequence of electrophysiological remodeling and may represent an arrhythmogenic mechanism in heart failure, a condition associated with high risk for sudden cardiac death. For its physiological and pathophysiological role and the availability of selective f-channel blockers, I(f) may be a suitable therapeutic target in heart failure.
Collapse
Affiliation(s)
- Silvia Suffredini
- University of Florence, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA) & Department of Pharmacology, Italy.
| | | | | |
Collapse
|
35
|
Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 2009; 89:847-85. [PMID: 19584315 DOI: 10.1152/physrev.00029.2008] [Citation(s) in RCA: 747] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a small subfamily of proteins within the superfamily of pore-loop cation channels. In mammals, the HCN channel family comprises four members (HCN1-4) that are expressed in heart and nervous system. The current produced by HCN channels has been known as I(h) (or I(f) or I(q)). I(h) has also been designated as pacemaker current, because it plays a key role in controlling rhythmic activity of cardiac pacemaker cells and spontaneously firing neurons. Extensive studies over the last decade have provided convincing evidence that I(h) is also involved in a number of basic physiological processes that are not directly associated with rhythmicity. Examples for these non-pacemaking functions of I(h) are the determination of the resting membrane potential, dendritic integration, synaptic transmission, and learning. In this review we summarize recent insights into the structure, function, and cellular regulation of HCN channels. We also discuss in detail the different aspects of HCN channel physiology in the heart and nervous system. To this end, evidence on the role of individual HCN channel types arising from the analysis of HCN knockout mouse models is discussed. Finally, we provide an overview of the impact of HCN channels on the pathogenesis of several diseases and discuss recent attempts to establish HCN channels as drug targets.
Collapse
Affiliation(s)
- Martin Biel
- Center for Integrated Protein Science CIPS-M and Zentrum für Pharmaforschung, Department Pharmazie, Pharmakologie für Naturwissenschaften, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany.
| | | | | | | |
Collapse
|
36
|
Sartiani L, Stillitano F, Cerbai E, Mugelli A. Electrophysiologic changes in heart failure: focus on pacemaker channels. Can J Physiol Pharmacol 2009; 87:84-90. [PMID: 19234571 DOI: 10.1139/y08-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart failure is a common clinical syndrome occurring as a result of cardiac overload, injury, and a complex interplay among genetic, neurohormonal, inflammatory, and biochemical factors. Occurrence of arrhythmias in heart failure is largely a consequence of disease-induced electrical remodeling of cardiac myocytes, a phenomenon consisting of alterations of ion channels and the ion-transport function that predispose patients to develop lethal arrhythmias. In most cases, the mechanism is the rapid onset of a ventricular tachyarrhythmia progressing to ventricular fibrillation and hemodynamic compromise. This paper highlights some of the important changes in ion channel expression and function that underlie electrical remodeling of the failing heart. Particular attention will be focused on the presence, features, and pharmacologic modulation of f channels expressed in ventricular cardiac myocytes.
Collapse
Affiliation(s)
- Laura Sartiani
- Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (C.I.M.M.B.A.), Università degli Studi di Firenze, Viale Pieraccini 6, Firenze 50139, Italy
| | | | | | | |
Collapse
|
37
|
Barbuti A, Crespi A, Capilupo D, Mazzocchi N, Baruscotti M, DiFrancesco D. Molecular composition and functional properties of f-channels in murine embryonic stem cell-derived pacemaker cells. J Mol Cell Cardiol 2009; 46:343-51. [DOI: 10.1016/j.yjmcc.2008.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/14/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
|
38
|
Abstract
The heart automaticity is a fundamental physiological function in higher organisms. The spontaneous activity is initiated by specialized populations of cardiac cells generating periodical electrical oscillations. The exact cascade of steps initiating the pacemaker cycle in automatic cells has not yet been entirely elucidated. Nevertheless, ion channels and intracellular Ca(2+) signaling are necessary for the proper setting of the pacemaker mechanism. Here, we review the current knowledge on the cellular mechanisms underlying the generation and regulation of cardiac automaticity. We discuss evidence on the functional role of different families of ion channels in cardiac pacemaking and review recent results obtained on genetically engineered mouse strains displaying dysfunction in heart automaticity. Beside ion channels, intracellular Ca(2+) release has been indicated as an important mechanism for promoting automaticity at rest as well as for acceleration of the heart rate under sympathetic nerve input. The potential links between the activity of ion channels and Ca(2+) release will be discussed with the aim to propose an integrated framework of the mechanism of automaticity.
Collapse
Affiliation(s)
- Matteo E Mangoni
- Institute of Functional Genomics, Department of Physiology, Centre National de la Recherche Scientifique UMR5203, INSERM U661, University of Montpellier I and II, Montpellier, France.
| | | |
Collapse
|
39
|
Abstract
Abnormal excitability of myocardial cells may give rise to ectopic beats and initiate re-entry around an anatomical or functional obstacle. As K(+) currents control the repolarization process of the cardiac action potential (AP), the K(+) channel function determines membrane potential and refractoriness of the myocardium. Both gain and loss of the K(+) channel function can lead to arrhythmia. The former because abbreviation of the active potential duration (APD) shortens refractoriness and wave length, and thereby facilitates re-entry and the latter because excessive prolongation of APD may lead to torsades de pointes (TdP) arrhythmia and sudden cardiac death. The pro-arrhythmic consequences of malfunctioning K(+) channels in ventricular and atrial tissue are discussed in the light of three pathophysiologically relevant aspects: genetic background, drug action, and disease-induced remodelling. In the ventricles, loss-of-function mutations in the genes encoding for K(+) channels and many drugs (mainly hERG channel blockers) are related to hereditary and acquired long-QT syndrome, respectively, that put individuals at high risk for developing TdP arrhythmias and life-threatening ventricular fibrillation. Similarly, down-regulation of K(+) channels in heart failure also increases the risk for sudden cardiac death. Mutations and polymorphisms in genes encoding for atrial K(+) channels can be associated with gain-of-function and shortened, or with loss-of-function and prolonged APs. The block of atrial K(+) channels becomes a particular therapeutic challenge when trying to ameliorate atrial fibrillation (AF). This arrhythmia has a strong tendency to cause electrical remodelling, which affects many K(+) channels. Atrial-selective drugs for the treatment of AF without affecting the ventricles could target structures such as I(Kur) or constitutively active I(K,ACh) channels.
Collapse
Affiliation(s)
- Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, Dresden, Germany.
| | | |
Collapse
|
40
|
Wolkowicz PE, Grenett HE, Huang J, Wu HC, Ku DD, Urthaler F. A pharmacological model for calcium overload-induced tachycardia in isolated rat left atria. Eur J Pharmacol 2007; 576:122-31. [PMID: 17803989 DOI: 10.1016/j.ejphar.2007.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 07/30/2007] [Accepted: 08/06/2007] [Indexed: 11/21/2022]
Abstract
Few experimental models produce spontaneous tachycardia in normal left atria to allow the study of the cellular mechanisms underlying this contributor to atrial fibrillation. We reported 2-aminoethoxydiphenyl borate (2-APB) that provokes sporadic spontaneous mechanical activity and calcium leak in isolated rat left atria. Since sarcoplasmic reticulum calcium leak in the presence of high calcium load may trigger tachyarrhythmias, we tested how conditions that increase calcium load affect 2-APB-induced ectopic activity. Exposing superfused rat left atria to (i) 30 nM isoproterenol, (ii) 3 microM forskolin, (iii) 300 nM (-)BayK 8644 ((4S)-1,4-Dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluormethyl)phenyl]-3-pyridinecarboxylic acid methyl ester), (iv) 300 nM FPL-64176 (2,5-Dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester) or (v) 120 microM ouabain increases their force of contraction, evidence of calcium loading, but does not produce ectopic activity. Spontaneous mechanical activity occurs in left atria superfused with 20 microM 2-APB at 47+/-6 contractions/min in the absence of pacing. Any of these five agents increase rates of 2-APB-induced spontaneous mechanical activity to >200 contractions/min in the absence of pacing. Washing tachycardic left atria with superfusate lacking 2-APB restores normal function, demonstrating the reversibility of these effects. Decreasing superfusate sodium reverses this tachycardia and two hyperpolarization-activated current (I(f)) inhibitors blunt this ectopic activity. Thus conditions that increase atrial calcium load increase the frequency of spontaneous mechanical activity. Decreasing extracellular sodium and I(f) inhibitors suppress this spontaneous tachycardia suggesting forward-mode sodium-calcium exchange and I(f)-like activities underlie this activity. This model may help define cell pathways that trigger atrial tachyarrhythmias.
Collapse
Affiliation(s)
- Paul E Wolkowicz
- The Department of Medicine, BBRB 806, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | |
Collapse
|
41
|
El Chemaly A, Magaud C, Patri S, Jayle C, Guinamard R, Bois P. The heart rate-lowering agent ivabradine inhibits the pacemaker current I(f) in human atrial myocytes. J Cardiovasc Electrophysiol 2007; 18:1190-6. [PMID: 17850290 DOI: 10.1111/j.1540-8167.2007.00955.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION It has been speculated that pacemaker current (I(f)) in human atria could play a role in causing ectopic atrial automaticity. Ivabradine is a novel selective and specific I(f) inhibitor in the sinus node that reduces heart rate without any negative inotropic effect. The aim of the study was to explore possible effects of ivabradine on I(f) in atrial myocytes. METHODS AND RESULTS Using patch-clamp technique, we studied effects of ivabradine on I(f) present in atrial myocytes isolated from human right appendages of patients undergoing cardiac surgery. The identification of HCN isoforms was obtained by means of multiplex single-cell RT-PCR. Ivabradine induced a marked concentration and use-dependent I(f) inhibition with an IC50 at steady state of 2.9 microM. Time constant of block development (Tau(on)) decreases with the increase in the ivabradine concentration. Use-dependent inhibition induced by ivabradine (3 microM) was not modified in the presence of cAMP (10 microM) in the pipette solution. Multiplex single-cell RT-PCR indicates that the major HCN gene subtype detected in atria was HCN2. HCN4 is detected weakly and HCN1 is not significantly detected. CONCLUSIONS Ivabradine inhibits I(f) current in the nonpacemaker cell with characteristics similar to those described previously in rabbit sinus node cells, but revealed a lesser sensitivity for I(f) recorded in human atrial cell than hHCN4 subunits considered as the major contributors to native f-channels in human sinoatrial node. A potential protection of atrial arrhythmias by ivabradine is discussed.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Institut de Physiologie et Biologie Cellulaires, CNRS UMR 6187, Université de Poitiers, Poitiers Cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Zefirov TL, Gibina AE, Sergejeva AM, Ziyatdinova NI, Zefirov AL. Age-related peculiarities of contractile activity of rat myocardium during blockade of hyperpolarization-activated currents. Bull Exp Biol Med 2007; 144:273-5. [DOI: 10.1007/s10517-007-0308-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Abstract
Activation of the pacemaker ("funny," I(f)) current during diastole is the main process underlying generation of the diastolic depolarization and spontaneous activity of cardiac pacemaker cells. I(f) modulation by autonomic transmitters is responsible for the chronotropic regulation of heart rate. Given its role in pacemaking, I(f) has been a major target of investigation aimed to exploit its rate-controlling function in a clinical perspective. In this short review, we describe some of the most recent clinically relevant applications of the concept of I(f)-based pacemaking.
Collapse
Affiliation(s)
- Andrea Barbuti
- Laboratory of Molecular Physiology and Neurobiology, Department of Biomolecular Sciences and Biotechnology, University of Milan, Milano, Italy
| | | | | |
Collapse
|
44
|
Liu XS, Jiang M, Zhang M, Tang D, Clemo HF, Higgins RSD, Tseng GN. Electrical remodeling in a canine model of ischemic cardiomyopathy. Am J Physiol Heart Circ Physiol 2007; 292:H560-71. [PMID: 16920806 DOI: 10.1152/ajpheart.00616.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nature of electrical remodeling in a canine model of ischemic cardiomyopathy (ICM; induced by repetitive intracoronary microembolizations) that exhibits spontaneous ventricular tachycardia is not entirely clear. We used the patch-clamp technique to record action potentials and ionic currents of left ventricular myocytes isolated from the region affected by microembolizations. We also used the immunoblot technique to examine channel subunit expression in adjacent affected tissue. Ventricular myocytes and tissue isolated from the corresponding region of normal hearts served as control. ICM myocytes had prolonged action potential duration (APD) and more pronounced APD dispersion. Slow delayed rectifier current ( IKs) was reduced at voltages positive to 0 mV, along with a negative shift in its voltage dependence of activation. Immunoblots showed that there was no change in KCNQ1.1 ( IKs pore-forming or α-subunit), but KCNE1 ( IKs auxiliary or β-subunit) was reduced, and KCNQ1.2 (a truncated KCNQ1 splice variant with a dominant-negative effect on IKs) was increased. Transient outward current ( Ito) was reduced, along with an acceleration of the slow phase of recovery from inactivation. Immunoblots showed that there was no change in Kv4.3 (α-subunit of fast-recovering Ito component), but KChIP2 (β-subunit of fast-recovering component) and Kv1.4 (α-subunit of slow-recovering component) were reduced. Inward rectifier current was reduced. L-type Ca current was unaltered. The immunoblot data provide mechanistic insights into the observed changes in current amplitude and gating kinetics of IKs and Ito. We suggest that these changes, along with the decrease in inward rectifier current, contribute to APD prolongation in ICM hearts.
Collapse
Affiliation(s)
- Xian-Sheng Liu
- Dept. of Physiology, Virginia Commonwealth Univ., Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|