1
|
Raoufinia R, Rahimi HR, Saburi E, Moghbeli M. Advances and challenges of the cell-based therapies among diabetic patients. J Transl Med 2024; 22:435. [PMID: 38720379 PMCID: PMC11077715 DOI: 10.1186/s12967-024-05226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Diabetes mellitus is a significant global public health challenge, with a rising prevalence and associated morbidity and mortality. Cell therapy has evolved over time and holds great potential in diabetes treatment. In the present review, we discussed the recent progresses in cell-based therapies for diabetes that provides an overview of islet and stem cell transplantation technologies used in clinical settings, highlighting their strengths and limitations. We also discussed immunomodulatory strategies employed in cell therapies. Therefore, this review highlights key progresses that pave the way to design transformative treatments to improve the life quality among diabetic patients.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Liu Y, Zhang X, Zhang P, He T, Zhang W, Ma D, Li P, Chen J. A high-throughput Gaussia luciferase reporter assay for screening potential gasdermin E activators against pancreatic cancer. Acta Pharm Sin B 2023; 13:4253-4272. [PMID: 37799380 PMCID: PMC10548051 DOI: 10.1016/j.apsb.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/20/2023] [Accepted: 06/15/2023] [Indexed: 10/07/2023] Open
Abstract
It is discovered that activated caspase-3 tends to induce apoptosis in gasdermin E (GSDME)-deficient cells, but pyroptosis in GSDME-sufficient cells. The high GSDME expression and apoptosis resistance of pancreatic ductal adenocarcinoma (PDAC) cells shed light on another attractive strategy for PDAC treatment by promoting pyroptosis. Here we report a hGLuc-hGSDME-PCA system for high-throughput screening of potential GSDME activators against PDAC. This screening system neatly quantifies the oligomerization of GSDME-N to characterize whether pyroptosis occurs under the stimulation of chemotherapy drugs. Based on this system, ponatinib and perifosine are screened out from the FDA-approved anti-cancer drug library containing 106 compounds. Concretely, they exhibit the most potent luminescent activity and cause drastic pyroptosis in PDAC cells. Further, we demonstrate that perifosine suppresses pancreatic cancer by promoting pyroptosis via caspase-3/GSDME pathway both in vitro and in vivo. Collectively, this study reveals the great significance of hGLuc-hGSDME-PCA in identifying compounds triggering GSDME-dependent pyroptosis and developing promising therapeutic agents for PDAC.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tingting He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Li H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Two bicistronic DNA vaccines against Vibrio anguillarum and the immune effects on flounder Paralichthys olivaceus. JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2022; 40:786-804. [PMID: 35018224 PMCID: PMC8739378 DOI: 10.1007/s00343-021-1092-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 05/05/2023]
Abstract
Chemokines are cytokines that can promote the activation and migration of immune cells, and increase the recognition of antigen by antigen-presenting cells (APC). Previous studies showed that a DNA vaccine can induce humoral and cellular immune responses of flounder after immunization. To explore the improvement of chemokines on the efficiency of OmpK vaccine, two bicistronic DNA candidate vaccines were constructed and the immune responses they induced in the flounder were investigated by reverse transcription polymerase chain reaction (RT-PCR), indirect immunofluorescent assay (IFA), H&E staining, flow cytometry (FCM), and quantificational real-time polymerase chain reaction (qRT-PCR). pBudCE4.1 plasmid as an expression vector, bicistronic DNA vaccines encoding OmpK gene and CC-motif ligand 4 gene (p-OmpK-CCL4), or Ompk gene and CC-motif ligand 19 gene (p-OmpK-CCL19) were successfully constructed. The results showed that two bicistronic DNA vaccines expressed Ompk protein of Vibrio anguillarum and CCL4/CCL19 proteins of flounder both in vitro and in vivo. After immunization, a large number of leucocytes in muscle were recruited at the injection site in treatment groups. The constructed vaccines induced significant increases in CD4-1+ and CD4-2+ T lymphocytes, and sIgM+ B lymphocytes in peripheral blood, spleen, and head kidney. The percentage of T lymphocytes peaked on the 14th post-vaccination day whereas that of B lymphocytes peaked in the 6th post-vaccination week. Moreover, the expression profiles of 10 immune-related genes increased in muscles around the injection site, spleen, and head kidney. After the challenge, p-OmpK-CCL4 and p-OmpK-CCL19 conferred a relative percentage survival (RPS) of 74.1% and 63.3%, respectively, higher than p-OmpK alone (40.8%). In conclusion, both CCL4 and CCL19 can improve the protection of p-OmpK via evoking local immune response and then humoral and cellular immunity. CCL4 and CCL19 will be potential molecular adjuvants for use in DNA vaccines.
Collapse
Affiliation(s)
- Hanlin Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
4
|
Zou J, Reddivari L, Shi Z, Li S, Wang Y, Bretin A, Ngo VL, Flythe M, Pellizzon M, Chassaing B, Gewirtz AT. Inulin Fermentable Fiber Ameliorates Type I Diabetes via IL22 and Short-Chain Fatty Acids in Experimental Models. Cell Mol Gastroenterol Hepatol 2021; 12:983-1000. [PMID: 33940221 PMCID: PMC8346662 DOI: 10.1016/j.jcmgh.2021.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Nourishment of gut microbiota via consumption of fermentable fiber promotes gut health and guards against metabolic syndrome. In contrast, how dietary fiber impacts type 1 diabetes is less clear. METHODS To examine impact of dietary fibers on development of type 1 diabetes in the streptozotocin (STZ)-induced and spontaneous non-obese diabetes (NOD) models, mice were fed grain-based chow (GBC) or compositionally defined diets enriched with a fermentable fiber (inulin) or an insoluble fiber (cellulose). Spontaneous (NOD mice) or STZ-induced (wild-type mice) diabetes was monitored. RESULTS Relative to GBC, low-fiber diets exacerbated STZ-induced diabetes, whereas diets enriched with inulin, but not cellulose, strongly protected against or treated it. Inulin's restoration of glycemic control prevented loss of adipose depots, while reducing food and water consumption. Inulin normalized pancreatic function and markedly enhanced insulin sensitivity. Such amelioration of diabetes was associated with alterations in gut microbiota composition and was eliminated by antibiotic administration. Pharmacologic blockade of fermentation reduced inulin's beneficial impact on glycemic control, indicating a role for short-chain fatty acids (SCFA). Furthermore, inulin's microbiota-dependent anti-diabetic effect associated with SCFA-independent restoration of interleukin 22, which was necessary and sufficient to ameliorate STZ-induced diabetes. Inulin-enriched diets significantly delayed diabetes in NOD mice. CONCLUSIONS Fermentable fiber confers microbiota-dependent increases in SCFA and interleukin 22 that, together, may have potential to prevent and/or treat type 1 diabetes.
Collapse
Affiliation(s)
- Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Zhenda Shi
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Shiyu Li
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Yanling Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Alexis Bretin
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Vu L Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | | | | | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; Neuroscience Institute, Georgia State University, Atlanta, Georgia; INSERM, U1016, Team "Mucosal microbiota in chronic inflammatory diseases", Paris, France; Université de Paris, Paris, France
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
5
|
Cao Y, Tian Y, Liu Y, Su Z. Reg3β: A Potential Therapeutic Target for Tissue Injury and Inflammation-Associated Disorders. Int Rev Immunol 2021; 41:160-170. [PMID: 33426979 DOI: 10.1080/08830185.2020.1869731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since regenerating islet-derived 3β (Reg3β) was first reported, various studies have been conducted to explore the involvement of Reg3β in a gamut of maladies, such as diabetes, pancreatitis, pancreatic ductal adenocarcinoma, and extrapancreatic maladies such as inflammatory bowel disease, acute liver failure, and myocardial infarction. Surprisingly, there is currently no systematic review of Reg3β. Therefore, we summarize the structural characteristics, transcriptional regulation, putative receptors, and signaling pathways of Reg3β. The exact functional roles in various diseases, especially gastrointestinal and liver diseases, are also discussed. Reg3β plays multiple roles in promoting proliferation, inducing differentiation, preventing apoptosis, and resisting bacteria. The present review may provide new directions for the diagnosis and treatment of gastrointestinal, liver, and pancreatic diseases.
Collapse
Affiliation(s)
- Yuwen Cao
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Yueqin Liu
- Laboratory Center, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China.,Laboratory Center, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
7
|
Chellappan DK, Sivam NS, Teoh KX, Leong WP, Fui TZ, Chooi K, Khoo N, Yi FJ, Chellian J, Cheng LL, Dahiya R, Gupta G, Singhvi G, Nammi S, Hansbro PM, Dua K. Gene therapy and type 1 diabetes mellitus. Biomed Pharmacother 2018; 108:1188-1200. [PMID: 30372820 DOI: 10.1016/j.biopha.2018.09.138] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disorder characterized by T cell-mediated self-destruction of insulin-secreting islet β cells. Management of T1DM is challenging and complicated especially with conventional medications. Gene therapy has emerged as one of the potential therapeutic alternatives to treat T1DM. This review primarily focuses on the current status and the future perspectives of gene therapy in the management of T1DM. A vast number of the studies which are reported on gene therapy for the management of T1DM are done in animal models and in preclinical studies. In addition, the safety of such therapies is yet to be established in humans. Currently, there are several gene level interventions that are being investigated, notably, overexpression of genes and proteins needed against T1DM, transplantation of cells that express the genes against T1DM, stem-cells mediated gene therapy, genetic vaccination, immunological precursor cell-mediated gene therapy and vectors. METHODS We searched the current literature through searchable online databases, journals and other library sources using relevant keywords and search parameters. Only relevant publications in English, between the years 2000 and 2018, with evidences and proper citations, were considered. The publications were then analyzed and segregated into several subtopics based on common words and content. A total of 126 studies were found suitable for this review. FINDINGS Generally, the pros and cons of each of the gene-based therapies have been discussed based on the results collected from the literature. However, there are certain interventions that require further detailed studies to ensure their effectiveness. We have also highlighted the future direction and perspectives in gene therapy, which, researchers could benefit from.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Nandhini S Sivam
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kai Xiang Teoh
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Wai Pan Leong
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Tai Zhen Fui
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kien Chooi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Nico Khoo
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Fam Jia Yi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Lim Lay Cheng
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, NSW, 2751, Australia; NICM Health Research Institute, Western Sydney University, NSW, 2751, Australia
| | - Philip Michael Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|
8
|
Microarray-based gene expression profiling reveals genes and pathways involved in the oncogenic function of REG3A on pancreatic cancer cells. Gene 2016; 578:263-73. [DOI: 10.1016/j.gene.2015.12.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/18/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
|
9
|
Xia F, Cao H, Du J, Liu X, Liu Y, Xiang M. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model. J Leukoc Biol 2015; 99:1131-40. [PMID: 26667474 DOI: 10.1189/jlb.3a0815-371rrr] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022] Open
Abstract
The regenerating islet-derived gene was first isolated in regenerated pancreas tissues, greatly contributing to β cell regeneration. It is an anti-inflammatory in response to cellular stress. This encouraged us to investigate the exact role of a novel member of Reg family, regenerating islet-derived gene γ, in type 1 diabetes of nonobese-diabetic mice. For this, Reg3g gene was overexpressed in pancreatic islets, and conferred beneficial effects on β cell regeneration through activating the Janus kinase 2/signal transducer and activator of transcription 3/nuclear factor κB signaling pathway. Lentiviral vector-encoding regenerating islet-derived gene γ treatment also decreased lymphocyte infiltrates of the intra-islet and peri-islet by inducing both differentiation of regulatory T cell and immature dendritic cells of tolerogenic properties, which attenuated autoimmunity. This treatment further contributed to rebalanced levels of type 1/2 helper T cell cytokines and elevated α1-antitrypsin levels in the serum. These results were not observed in phosphate-buffered saline-treated mice or in lentivirus-control mice. We have shown, for the first time, to our knowledge, that regenerating islet-derived gene γ promotes β cell regeneration and preserves β cells from autoimmunity damage by increasing regulatory T cell differentiation and inducing tolerated dendritic cells. This regenerating islet-derived gene γ infusion could probably be developed into an optimal gene therapy for the prevention and reversal of type 1 diabetes.
Collapse
Affiliation(s)
- Fei Xia
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Hui Cao
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jiao Du
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Xiulan Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yang Liu
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
10
|
Piri H, Kazemi B, Khodadadi I, Javadi M, Bandehpour M, Karimi J, Ziaee A, Koochaki A, Torabi A, Goodarzi MT. Preparation of Preproinsulin Gene Construct Containing the Metallothionein2A (pBINDMTChIns) and Its Expression in NIH3T3 Cell Line and Muscle Tissue of Alloxan Diabetic Rabbits. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2014. [DOI: 10.17795/ajmb-21646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Shrestha N, Araújo F, Sarmento B, Hirvonen J, Santos HA. Gene-based therapy for Type 1 diabetes mellitus: viral and nonviral vectors. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/dmt.14.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Busani S, Girardis M. PSP/reg: a new stone in sepsis biomarkers? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:143. [PMID: 22856672 PMCID: PMC3580713 DOI: 10.1186/cc11433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rapid diagnosis, appropriate management, and time are the key factors for improving survival rate in many emergency clinical scenarios such as acute myocardial infarction, pulmonary embolism, cerebral stroke, and severe sepsis. Clinical signs and electrocardiographic, radiological, and echographic investigations associated with biomarkers usually allow a quick diagnosis in all of the above situations, except severe sepsis, in which the diagnosis in the early phases is often only presumptive. In sepsis, microbiological cultures are still considered the 'gold standard' for diagnosis, whereas the numerous biomarkers investigated are actually valuable only for patient stratification and evaluation of clinical course. In this issue of Critical Care, Que and colleagues describe the prognostic value of pancreatic stone protein/regenerating protein (PSP/reg) concentration in patients with severe infections. The data reported are interesting, but several questions about this biomarker arise, and further studies are needed to understand its role in sepsis and clinical practice.
Collapse
|
13
|
Jin CX, Hayakawa T, Ko SBH, Ishiguro H, Kitagawa M. Pancreatic stone protein/regenerating protein family in pancreatic and gastrointestinal diseases. Intern Med 2011; 50:1507-16. [PMID: 21804274 DOI: 10.2169/internalmedicine.50.5362] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pancreatic stone protein (PSP; reported in 1979), pancreatitis-associated protein (PAP; 1984) and regenerating protein (Reg I; 1988) were discovered independently in the fields of the exocrine (pancreatitis) and endocrine (diabetes) pancreas. Subsequent analysis revealed that PSP and Reg I are identical and PAP belongs to the same protein family. PSP/Reg I and PAP share a selective and specific trypsin cleavage site and result in insoluble fibrils (PTP, PATP). Search for a functional role of PSP had led to the idea that it might serve as an inhibitor in pancreatic stone formation and PSP was renamed lithostathine. Inhibitory effects of lithostathine in stone formation have been questioned. Evidence so far obtained can support a lithogenic role rather than a lithostatic role of PSP. PAP and its isoforms have been investigated mainly regarding responses to inflammation and stress. Reg I and its isoforms have been examined on regeneration, growth and mitogenesis in gastrointestinal neoplastic diseases as well as diabetes. Evidence obtained can be applied in the prediction of prognosis and therapy for inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Chun Xiang Jin
- The First Clinical College of Norman Bethune Medical Division, Jilin University, China
| | | | | | | | | |
Collapse
|