1
|
Niu YJ, Ai X, Lin XT, Xu WM, Lao SY, Tian ZC, Zhu HY, Zhou W, Huang H, Shi XL. Baicalein inhibits hepatitis B virus through the coiled coil domain containing protein 88A (CCDC88A)-dependent autophagy pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156577. [PMID: 40023973 DOI: 10.1016/j.phymed.2025.156577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Chronic infection with the hepatitis B virus (HBV) represents a significant global health concern. Baicalein, a naturally occurring flavone derived from the roots of Scutellaria baicalensis Georgi, has exhibited both anti-inflammatory and antiviral activities. S. baicalensis is extensively utilized in traditional Chinese medicine for the treatment of various liver disorders, including hepatitis. However, the specific anti-HBV effects of baicalein have not been fully elucidated. PURPOSE This study aimed to investigate the inhibitory effects of baicalein on HBV and to elucidate its underlying mechanisms. MATERIALS AND METHODS The levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) were measured using enzyme-linked immunosorbent assay (ELISA) kits. Quantification of HBV DNA was performed using quantitative real-time polymerase chain reaction (qRT-PCR). Western blot analysis was conducted to evaluate proteins involved in autophagy, lysosomal acidification, and autophagy-related signaling pathways. Immunofluorescence microscopy was utilized to assess autophagic flux and lysosomal acidification. RESULTS Baicalein demonstrated significant inhibition of HBsAg, HBeAg, and HBV-DNA secretion in both in vivo and in vitro environments. Subsequent investigations revealed that baicalein disrupted the intracellular trafficking of the hepatitis B virus by inhibiting the CCDC88A-AKT-mTOR (Coiled coil domain containing protein 88A- protein kinase B-mammalian target of rapamycin) signaling pathway. Additionally, baicalein induced autophagy in HepG2 (Human hepatocellular carcinoma cell line 2) and HepG2.215 cell models. The anti-hepatitis B antigen effect of baicalein was partially attenuated when both early and late stages of autophagy were inhibited. A significant correlation was identified between the phosphorylation of AMPKα and the enhanced autophagy observed in baicalein-treated cells. CONCLUSIONS This study elucidates a novel mechanism by which baicalein inhibits the hepatitis B virus (HBV). Specifically, baicalein exerts its antiviral effects by activating autophagy and suppressing the CCDC88A-AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Yi-Jun Niu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, , PR China
| | - Xin Ai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, , PR China
| | - Xiao-Tong Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, , PR China
| | - Wei-Ming Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, , PR China
| | - Su-Ya Lao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, , PR China
| | - Zi-Chen Tian
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, , PR China
| | - Hai-Yan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, , PR China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, , PR China
| | - Xun-Long Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, , PR China.
| |
Collapse
|
2
|
You YP, Yan L, Ke HY, Li YP, Shi ZJ, Zhou ZY, Yang HY, Yuan T, Gan YQ, Lu N, Xu LH, Hu B, Ou-Yang DY, Zha QB, He XH. Baicalin inhibits PANoptosis by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly in macrophages. Acta Pharmacol Sin 2025; 46:430-447. [PMID: 39223367 PMCID: PMC11747177 DOI: 10.1038/s41401-024-01376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
PANoptosis is an emerging form of regulated cell death (RCD) characterized by simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling that not only participates in pathologies of inflammatory diseases but also has a critical role against pathogenic infections. Targeting PANoptosis represents a promising therapeutic strategy for related inflammatory diseases, but identification of inhibitors for PANoptosis remains an unmet demand. Baicalin () is an active flavonoid isolated from Scutellaria baicalensis Georgi (Huangqin), a traditional Chinese medicinal herb used for heat-clearing and detoxifying. Numerous studies suggest that baicalin possesses inhibitory activities on various forms of RCD including apoptosis/secondary necrosis, pyroptosis, and necroptosis, thereby mitigating inflammatory responses. In this study we investigated the effects of baicalin on PANoptosis in macrophage cellular models. Primary macrophages (BMDMs) or J774A.1 macrophage cells were treated with 5Z-7-oxozeaenol (OXO, an inhibitor for TAK1) in combination with TNF-α or LPS. We showed that OXO plus TNF-α or LPS induced robust lytic cell death, which was dose-dependently inhibited by baicalin (50-200 μM). We demonstrated that PANoptosis induction was accompanied by overt mitochondrial injury, mitochondrial DNA (mtDNA) release and Z-DNA formation. Z-DNA was formed from cytosolic oxidized mtDNA. Both oxidized mtDNA and mitochondrial Z-DNA puncta were co-localized with the PANoptosome (including ZBP1, RIPK3, ASC, and caspase-8), a platform for mediating PANoptosis. Intriguingly, baicalin not only prevented mitochondrial injury but also blocked mtDNA release, Z-DNA formation and PANoptosome assembly. Knockdown of ZBP1 markedly decreased PANoptotic cell death. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), administration of baicalin (200 mg/kg, i.g., for 4 times) significantly mitigated lung and liver injury and reduced levels of serum TNF-α and IFN-γ, concomitant with decreased levels of PANoptosis hallmarks in these organs. Baicalin also abrogated the hallmarks of PANoptosis in liver-resident macrophages (Kupffer cells) in HLH mice. Collectively, our results demonstrate that baicalin inhibits PANoptosis in macrophages by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly, thus conferring protection against inflammatory diseases. PANoptosis is a form of regulated cell death displaying simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling. This study shows that induction of PANoptosis is linked to mitochondrial dysfunction and mitochondrial Z-DNA formation. Baicalin inhibits PANoptosis in macrophages in vitro via blocking mitochondrial dysfunction and the mitochondrial Z-DNA formation and thereby impeding the assembly of ZBP1-associated PANoptosome. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), baicalin inhibits the activation of PANoptotic signaling in liver-resident macrophages (Kupffer cells) in vivo, thus mitigating systemic inflammation and multiple organ injury in mice.
Collapse
Affiliation(s)
- Yi-Ping You
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Liang Yan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Hua-Yu Ke
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Ya-Ping Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhi-Ya Zhou
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Yan Yang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Ying-Qing Gan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Na Lu
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Dong-Yun Ou-Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Bing Zha
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| | - Xian-Hui He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| |
Collapse
|
3
|
Song D, Wei W, Zhang J, Zhang L, Huo J, Wang W. The mechanism of baicalin in improving pulmonary inflammatory response and injury and regulating intestinal flora in Mycoplasma pneumoniae pneumonia mice. Cell Signal 2025; 126:111530. [PMID: 39603438 DOI: 10.1016/j.cellsig.2024.111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE Mycoplasma pneumoniae (MP) is a common pathogen that can cause respiratory infections. We explored the mechanisms of baicalin (BIA) affecting pulmonary inflammation and injury and regulated their intestinal flora through the TLR4/NF-κB pathway in MP pneumonia (MPP) mice with intestinal dysbiosis. METHODS The intestinal dysbiosis and the MPP mouse models with intestinal dysbiosis were established and treated with different doses of BIA, with lung wet-to-dry weight (W/D) ratio weighed. Kits were conducted to detect MP expression and serum C-reactive protein (CRP)/INF-γ/TNF-α/IL-1β/IL-8 levels, and RT-qPCR and Western blot to determine TLR4/MyD88/NF-κBp65 levels. Lung injury was assessed using HE staining, and intestinal flora structure using 16S rDNA sequencing. Gas chromatography-mass spectrometry determined fecal short-chain fatty acid (SFCA) content. RESULTS The broad-spectrum antibiotic mixture caused enlarged cecum, increased contents, darker color, weight loss, decreased intestinal flora abundance and diversity, and intestinal flora structure imbalance in mice. The MP-infected intestinal dysbiosis mice exhibited elevated MP expression, reduced body weight, increased W/D ratio, elevated serum CRP/INF-γ/TNFα/IL-1β/IL-8 levels, as well as interstitial pneumonitis in lungs. TLR4/MyD88/NF-κB p65 were elevated in lung tissues of MPP mice with intestinal dysbiosis. BIA partially reversed pulmonary inflammation and injury, and restored the flora diversity and SCFAs in MPP mice with intestinal dysbiosis. CONCLUSION BIA attenuated pulmonary inflammation and injury and modulated their intestinal flora imbalance by inhibiting the TLR4/NF-κB pathway in MPP mice with intestinal dysbiosis.
Collapse
Affiliation(s)
- Dan Song
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Wenfeng Wei
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Jie Zhang
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Lu Zhang
- Heilongjiang Nursing College, Harbin 150086, Heilongjiang, China
| | - Jinhai Huo
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China.
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| |
Collapse
|
4
|
Li S, Chen X, Shi H, Yi M, Xiong B, Li T. Tailoring traditional Chinese medicine in cancer therapy. Mol Cancer 2025; 24:27. [PMID: 39838407 PMCID: PMC11749133 DOI: 10.1186/s12943-024-02213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025] Open
Abstract
Cancer remains a formidable global health challenge, necessitating innovative therapeutic approaches to enhance treatment efficacy and reduce adverse effects. The traditional Chinese medicine (TCM), as an embodiment of ancient wisdom, has been validated to regulate the holistic human capacity against both internal and external "evils" in accordance with TCM principles. Therefore, it stands to reason to integrate TCM into current cancer therapy paradigms, such as chemotherapy, immunotherapy, and targeted therapy. This strategy conceptually intends to circumvent the inevitable side effects derived from present treatment, alleviate the discomfort, mollify the detrimental mood and synergize tumoricidal effects of distinct approaches. However, it is still vague whether TCM exert favorable function in cancer treatment. Therefore, it is imperative to retrieve and compile the existing literature on TCM in the realm of cancer, followed by a comprehensive recapitulation and synthesis of its core findings. Recently, with the advancement of contemporary biologic and medical theory and technology, it has become both feasible and imperative to elucidate the molecular signaling mechanisms and cellular biology underlying TCM. Specifically, leveraging TCM pharmaceutic components can not only directly impact tumor biology at the molecular level, but regulate the tumor immune environment through distinct pathways. Additionally, the administration of external TCM treatments such as acupuncture and moxibustion also demonstrates beneficial effects in cancer patients. Through comprehensive analysis, we demonstrated that TCM not only potentially increases the efficacy of conventional cancer treatments, but also significantly mitigates their toxic side effects, thereby prolonging patients' prognosis and improving their living quality. Furthermore, we have underscored the challenges and prospects associated with the integration of TCM into contemporary oncological practices, placing particular emphasis on the imperative for rigorous clinical trials and molecular investigations to substantiate the efficacy and safety of these combined therapeutic approaches. This synthesis aims to pave the way for a more integrated approach to cancer treatment rooted in both traditional wisdom and cutting-edge science.
Collapse
Affiliation(s)
- Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Xi Chen
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, People's Republic of China
| | - Hui Shi
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Bing Xiong
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
5
|
Aslan C, Eraslan G. Effect of baicalin and baicalin-bovine serum albumin nanoparticle against bendiocarb exposure in rats. Toxicol Res (Camb) 2024; 13:tfae134. [PMID: 39233847 PMCID: PMC11369930 DOI: 10.1093/toxres/tfae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/17/2024] [Indexed: 09/06/2024] Open
Abstract
Background The aim of the study was to investigate the effect of baicalin and baicalin-bovine serum albumin nanoparticles against bendiocarb exposure in rats. Methods Eighty male Wistar Albino rats aged 4-6 weeks were used. Corn oil (vehicle) alone was administered to the control group. To other groups, BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 20 mg/kg.bw baicalin, baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 4 mg/kg.bw bendiocarb, combination of 4 mg/kg.bw bendiocarb and 20 mg/kg.bw baicalin, combination of 4 mg/kg.bw bendiocarb and BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw and combination of 4 mg/kg.bw bendiocarb and baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw was administered to animals by oral gavage with vehicle for 21 days, after which organs (liver, kidney, brain, testes, heart and lung) and blood samples were collected. Blood/tissue oxidative stress (MDA, NO, GSH, SOD, CAT, GSH-Px, GR, GST, G6PD), serum biochemical (glucose, triglyceride, cholesterol, BUN, creatinine, uric acid, total protein, albumin, LDH, AST, ALT, ALP and pseudocholinesterase) and liver and kidney apoptotic/anti-apoptotic (caspase 3, 9, p53, Bcl-2 and Bax) parameters were evaluated. Body weights/organ weights and plasma/liver bendiocarb analyses were obtained. Conclusion While bendiocarb administered alone caused oxidative stress/tissue damage, baicalin and baicalin-BSA nanoparticle showed a mitigating effect. However, this effect was more pronounced in the baicalin-BSA nanoparticle group. BSA-nanoparticle alone did not have a significant effect in reversing the adverse effect caused by bendiocarb.
Collapse
Affiliation(s)
- Coşkun Aslan
- Derinkuyu Emineana and Yaşar Ertaş Agriculture and Livestock Vocational School, Nevşehir Hacı Bektaş Veli University, Nevşehir, 50700, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
6
|
Li J, Liu Y, He J, Yao W. Baicalin ameliorates heat stress-induced hepatic injury and intestinal microecology dysbiosis in late gestational mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116832. [PMID: 39137469 DOI: 10.1016/j.ecoenv.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Heat stress (HS) disrupts intestinal microbiota, glycolipid metabolism, and hepatic mitochondrial function in late gestational mice. Baicalin (BAI), a Chinese herbal medicine known for its heat-clearing and anti-inflammatory properties, has shown promise in modulating intestinal microecology and mitigating inflammation in various organs. This study investigates whether baicalin attenuates HS-induced intestinal microbial dysbiosis and liver damage in pregnant mice during late gestation. Twenty-four pregnant mice were randomly assigned to four groups, including thermoneutral (TN) (24 ± 1 ℃), HS (35 ± 1 ℃), HS+BAI200 (oral gavaged with 200 mg/kg BW of BAI), and HS+BAI400 (oral gavaged with 400 mg/kg BW of BAI). 400 mg/kg BAI treatment markedly decreased the rectal temperature and increased fetal weight in HS pregnant mice. Furthermore, 400 mg/kg BAI administration effectively ameliorated HS-induced hepatic damage and lipid disorders, reducing HSP70, AST, and ALT levels while increasing TG concentration. Notably, it activated a network of genes involved in lipid synthesis, including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and oxidation, such as peroxisome proliferator-activated receptor alpha (PPARα), carnitine palmityl transferase 1 beta (CPT1β). Moreover, BAI intervention restored the intestinal morphology and barrier function, evidenced by increased intestinal villus height, the ratio of villus height to crypt depth, and colonic goblet cells numbers. 400 mg/kg of BAI treatment up-regulated the expression of tight junction proteins, such as claudin-1 and Zonula Occludens-1 (ZO-1), in the jejunum and ileum, counteracting HS-induced downregulation. High-throughput sequencing showed that BAI treatment altered cecal microbial composition, increasing the relative abundance of beneficial Bacteroidota and decreasing Deferribacterota, Turicibacter, and Akkermansia. Spearman's correlation analysis highlighted significant correlations between differential cecal microbiota and physiological indexes. In conclusion, BAI administration alleviated adverse impacts in heat-exposed mice during late gestation, improving maternal physiological parameters, and ameliorating hepatic damage with altered cecal microbial composition. The findings suggest that BAI may regulate the gut-liver axis by modulating intestinal morphology, microecology, and hepatic function.
Collapse
Affiliation(s)
- Jingzheng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunyang Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwen He
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| | - Wen Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Liu K, Zhou Y, Song X, Zeng J, Wang Z, Wang Z, Zhang H, Xu J, Li W, Gong Z, Wang M, Liu B, Xiao N, Liu K. Baicalin attenuates neuronal damage associated with SDH activation and PDK2-PDH axis dysfunction in early reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155570. [PMID: 38579645 DOI: 10.1016/j.phymed.2024.155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Energy deficiency and oxidative stress are interconnected during ischemia/reperfusion (I/R) and serve as potential targets for the treatment of cerebral ischemic stroke. Baicalin is a neuroprotective antioxidant, but the underlying mechanisms are not fully revealed. PURPOSE This study explored whether and how baicalin rescued neurons against ischemia/reperfusion (I/R) attack by focusing on the regulation of neuronal pyruvate dehydrogenase kinase 2 (PDK2)-pyruvate dehydrogenase (PDH) axis implicated with succinate dehydrogenase (SDH)-mediated oxidative stress. STUDY DESIGN The effect of the tested drug was explored in vitro and in vivo with the model of oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion/reperfusion (MCAO/R), respectively. METHODS Neuronal damage was evaluated according to cell viability, infarct area, and Nissl staining. Protein levels were measured by western blotting and immunofluorescence. Gene expression was investigated by RT-qPCR. Mitochondrial status was also estimated by fluorescence probe labeling. RESULTS SDH activation-induced excessive production of reactive oxygen species (ROS) changed the protein expression of Lon protease 1 (LonP1) and hypoxia-inducible factor-1ɑ (HIF-1ɑ) in the early stage of I/R, leading to an upregulation of PDK2 and a decrease in PDH activity in neurons and cerebral cortices. Treatment with baicalin prevented these alterations and ameliorated neuronal ATP production and survival. CONCLUSION Baicalin improves the function of the neuronal PDK2-PDH axis via suppression of SDH-mediated oxidative stress, revealing a new signaling pathway as a promising target under I/R conditions and the potential role of baicalin in the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Kaili Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Ying Zhou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Xianrui Song
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Jiahan Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Zhuqi Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Ziqing Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Honglei Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Jiaxing Xu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Wenting Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Zixuan Gong
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Min Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Baolin Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Na Xiao
- College of Agronomy, Shandong Agriculture University, Tai'an, Shandong 271018, PR China.
| | - Kang Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| |
Collapse
|
8
|
Li YY, Peng YQ, Yang YX, Shi TJ, Liu RX, Luan YY, Yin CH. Baicalein improves the symptoms of polycystic ovary syndrome by mitigating oxidative stress and ferroptosis in the ovary and gravid placenta. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155423. [PMID: 38518646 DOI: 10.1016/j.phymed.2024.155423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Polycystic ovary syndrome is a metabolic and hormonal disorder that is closely linked to oxidative stress. Within individuals diagnosed with PCOS, changes occur in the ovaries, resulting in an excessive buildup of iron and peroxidation of lipids, both of which may be associated with the occurrence of ferroptosis. Baicalein, a flavonoid found in the roots of Scutellaria baicalensis and widely known as Chinese skullcap, is known for its anti-inflammatory and anti-ferroptotic properties, which protect against various diseases. Nevertheless, there has been no investigation into the impact of baicalein on polycystic ovary syndrome. PURPOSE This study aimed to correlate ferroptosis with polycystic ovary syndrome and to assess the effects of baicalein on ovarian dysfunction and placental development in pregnant patients. STUDY DESIGN AND METHODS Polycystic ovary syndrome was induced in a rat model through the administration of dehydroepiandrosterone, and these rats were treated with baicalein. Oxidative stress and inflammation levels were assessed in serum and ovaries, and tissue samples were collected for histological and protein analyses. Furthermore, different groups of female rats were mated with male rats to observe pregnancy outcomes and tissue samples were obtained for histological, protein, and RNA sequencing. Then, RNA sequencing of the placenta was performed to determine the key genes involved in ferroptosis negative regulation (FNR) signatures. RESULTS Baicalein was shown to reduce ovarian oxidative stress and pathology. Baicalein also ameliorated polycystic ovary syndrome by decreasing lipid peroxidation and chronic inflammation and modulating mitochondrial functions and ferroptosis in the ovaries. Specifically, glutathione peroxidase and ferritin heavy chain 1 were considerably downregulated in polycystic ovary syndrome gravid rats compared to their expression in the control group, and most of these differences were reversed after baicalein intervention. CONCLUSIONS Our findings, initially, indicated that baicalein could potentially enhance the prognosis of individuals suffering from polycystic ovary syndrome by reducing oxidative stress and ferroptosis, thus potentially influencing the formulation of a therapeutic approach to address this condition.
Collapse
Affiliation(s)
- Ying-Ying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Yi-Qiu Peng
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Yu-Xi Yang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Ting-Juan Shi
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Rui-Xia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Ying-Yi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China.
| | - Cheng-Hong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China.
| |
Collapse
|
9
|
Zheng Y, Wang C, Liu W, Chen J, Sun Y, Chang D, Wang H, Xu W, Lu JJ, Zhou X, Huang M. Upregulation of Nrf2 signaling: A key molecular mechanism of Baicalin's neuroprotective action against diabetes-induced cognitive impairment. Biomed Pharmacother 2024; 174:116579. [PMID: 38631145 DOI: 10.1016/j.biopha.2024.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND AIM Diabetes-associated cognitive impairment (DCI) is a prevalent complication of diabetes. However, there is a lack of viable strategies for preventing and treating DCI. This study aims to explore the efficacy of baicalin (Bai) in attenuating DCI and elucidating the underlying mechanisms. EXPERIMENTAL PROCEDURE GK rats fed a high-fat and high-glucose diet were utilized to investigate the therapeutic potential of Bai. Cognitive function was assessed using the Morris water maze and novel object recognition tests. To gain insight into the molecular mechanisms underlying Bai's neuro-protective effects, co-cultured BV2/HT22 cells were established under high-glucose (HG) stimulation. The modes of action of Bai were subsequently confirmed in vivo using the DCI model in db/db mice. KEY RESULTS Bai restored cognitive and spatial memory and attenuated neuron loss, along with reducing expressions of Aβ and phosphorylated Tau protein in diabetic GK rats. At the cellular level, Bai exhibited potent antioxidant and anti-inflammatory effects against HG stimulation. These effects were associated with the upregulation of Nrf2 and supressed Keap1 levels. Consistent with these in vitro findings, similar mechanisms were observed in db/db mice. The significant neuroprotective effects of Bai were abolished when co-administered with ATRA, a Nrf2 blocker, in db/db mice, confirming that KEAP1-Nrf2 signaling pathway was responsible for the observed effect. CONCLUSIONS AND IMPLICATIONS Bai demonstrates a great therapeutic potential for attenuating DCI. The antioxidant defense and anti-inflammatory actions of Bai were mediated through the KEAP1-Nrf2 axis. These findings advance our understanding of potential treatment approaches for DCI, a common complication associated with diabetes.
Collapse
Affiliation(s)
- Yanfang Zheng
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Chenxiang Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Wenjing Liu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Jiaying Chen
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Yibin Sun
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Huan Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Wen Xu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China.
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia.
| | - Mingqing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| |
Collapse
|
10
|
Avdatek F, Güngör Ş, Gülhan MF, İnanç ME, Olğaç KT, Denk B, Yeni D, Taşdemir U. Cryopreservation of ram semen: baicalein efficiency on oxidative stress, chromatin integrity, viability and motility post thaw. Front Vet Sci 2024; 11:1394273. [PMID: 38645646 PMCID: PMC11027560 DOI: 10.3389/fvets.2024.1394273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Baicalein (B) has potential antioxidant properties, but it has not been tested as a ram semen extender. This study aimed to assess the impact of B on various sperm parameters and determine its potential influence on semen quality after the freeze-thawing process. During the breeding season, ejaculates were obtained from four rams with the aid of an artificial vagina. The collected mixed semen samples were divided into four groups: control (C; 0), B0.5 (0.5 mM), B1 (1 mM), and B2 (2 mM). After semen extension, the samples were loaded into 0.25 mL straws and stored for 2 h at 4°C prior to freezing in liquid nitrogen vapor and thawed in a water bath at 37°C. Among the groups, B0.5 demonstrated the highest progressive motility results, while B1 and B2 exhibited reduced motility (p < 0.05). In terms of high mitochondrial membrane potential, plasma membrane and acrosome integrity, and viability, B0.5 showed significantly superior outcomes to the other B groups (p < 0.05), although it was not significantly better than C. B1 displayed the highest plasma membrane integrity levels (p < 0.05). Notably, B2 displayed the lowest total antioxidant status levels among the groups (p < 0.05). The findings of this study suggested that the in vitro spermatological characteristics of ram spermatozoa such as progressive motility and chromatin integrity can be protected from the freeze-thawing process by using the 0.5 mM dose of baicalein as a semen extender. The treatment of sperm freezing might benefit from further in-depth research on the role of B in the improvement of cryoinjury and its underlying processes.
Collapse
Affiliation(s)
- Fatih Avdatek
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Şükrü Güngör
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Mehmet Fuat Gülhan
- Technical Sciences Vocational School, Department of Aromatic Plants, Aksaray University, Aksaray, Türkiye
| | - Muhammed Enes İnanç
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Kemal Tuna Olğaç
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Ankara University, Ankara, Türkiye
| | - Barış Denk
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Deniz Yeni
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Umut Taşdemir
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Aksaray University, Aksaray, Türkiye
| |
Collapse
|
11
|
Guo L, Yang J, Yuan W, Li C, Li H, Yang Y, Xue R, Yan K. Baicalein ameliorated obesity-induced cardiac dysfunction by regulating the mitochondrial unfolded protein response through NRF2 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155441. [PMID: 38394729 DOI: 10.1016/j.phymed.2024.155441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The mitochondrial unfolded protein response (UPRmt) is the first line of defense against mitochondrial dysfunction in several diseases. Baicalein, which is an extract of Scutellaria baicalensis Georgi roots, exerts mitoprotective effects on metabolic disorders and cardiovascular diseases. However, it remains unclear whether baicalein alleviates obesity-induced cardiac damage through the UPRmt. PURPOSE The present research designed to clarify the role of baicalein in lipotoxicity-induced myocardial apoptosis and investigated the UPRmt-related mechanism. METHODS In the in vitro experiment, palmitic acid (PA)-treated AC16 cardiomyocytes were established to mimic obesity-induced myocardial injury. After pretreatment of AC16 cells with baicalein, the levels of cell vitality, apoptosis, mitochondrial membrane potential, mitochondrial oxidative stress, and UPRmt-related proteins were determined. Additionally, AC16 cells were treated with ML385 or siRNA to explore the regulation of the UPRmt by NRF2 signaling. In the in vivo experiment, male db/db mice administered with baicalein for 8 weeks were used to validate the effects of baicalein on cardiac damage induced by obesity, the UPRmt, and the NRF2-related pathway. RESULTS In AC16 cardiomyocytes, PA dose-dependently increased the expression of UPRmt markers (HSP60, LONP1, ATF4, and ATF5). This increase was accompanied by enhanced production of mitochondrial ROS, reduced mitochondrial membrane potential, and elevated the expression levels of cytochrome c, cleaved caspase-3, and Bax/Bcl2, eventually leading to cell apoptosis. Baicalein treatment reversed UPRmt activation and mitochondrial damage and impeded mitochondrial-mediated cell apoptosis. Moreover, NRF2 downregulation by its inhibitor ML385 or siRNA diminished baicalein-mediated NRF2 signaling activation and UPRmt inhibition and triggered mitochondrial dysfunction. Additionally, NRF2 deficiency more intensely activated the UPRmt, resulting in mitochondrial oxidative stress and apoptosis of PA-induced cardiomyocytes, thus indicating that NRF2 plays a vital role in mitochondrial homeostasis regulation. In the in vivo study in db/db mice, baicalein inhibited the UPRmt, enhanced the antioxidant capacity, and attenuated cardiac dysfunction through a NRF2-activated pathway. CONCLUSION To our best knowledge, these results provide the first insight that baicalein inhibits the UPRmt to induce a protective effect against lipotoxicity-induced mitochondrial damage and cardiomyocyte apoptosis via activating NRF2 signaling and suggest a new role of NRF2 in UPRmt regulation.
Collapse
Affiliation(s)
- Lulu Guo
- The College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - Junle Yang
- Department of Radiology, Xi' an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - Wenting Yuan
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chongyao Li
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - Hui Li
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - Yang Yang
- The College of Life Sciences, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Disease, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - Runqing Xue
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Disease, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710018, China.
| | - Kangkang Yan
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Disease, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710018, China.
| |
Collapse
|
12
|
Sharawi ZW, Ibrahim IM, Abd-Alhameed EK, Althagafy HS, Jaber FA, Harakeh S, Hassanein EHM. Baicalin and lung diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1405-1419. [PMID: 37725153 DOI: 10.1007/s00210-023-02704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Studies focusing on natural products have been conducted worldwide, and the results suggest that their natural ingredients effectively treat a wide range of illnesses. Baicalin (BIA) is a glycoside derived from the flavonoid baicalein present in Scutellaria baicalensis of the Lamiaceae family. Interestingly, BIA has been shown to protect the lungs in several animal models used in numerous studies. Therefore, we fully analyzed the data of the studies that focused on BIA's lung protective function against various injuries and included them in this review. Interestingly, BIA exhibits promising effects against acute lung injury, lung fibrosis, pulmonary embolism, and lung remodelling associated with COPD, LPS, and paraquat insecticide. BAI exhibits anticancer activity against lung cancer. Additionally, BIA potently attenuates lung damage associated with infections. BIA primarily exerts its therapeutic effects by suppressing inflammation, oxidative stress immune response, and apoptosis pathways. Nrf2/HO-1, PI3K/Akt, NF-κB, STAT3, MAPKs, TLR4, and NLRP3 are important targets in the pulmonary therapeutic effects of BIA on different lung disease models. Consequently, we recommend using it in future potential clinical applications, its contribution to treatment guidelines, and translating its promising effects to clinical practice in lung diseases.
Collapse
Affiliation(s)
- Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
13
|
Bae SJ, Lee WY, Bak SB, Lee SJ, Hwang SJ, Kim GW, Koo BS, Park SD, Yoo HH, Kim CO, Kang HW, Oh TW, Kim YW. Antioxidant Efficacy of Hwangryunhaedok-tang through Nrf2 and AMPK Signaling Pathway against Neurological Disorders In Vivo and In Vitro. Int J Mol Sci 2024; 25:2313. [PMID: 38396988 PMCID: PMC10889506 DOI: 10.3390/ijms25042313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aβ), and Aβ-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aβ, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.
Collapse
Affiliation(s)
- Su-Jin Bae
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Won-Yung Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Seon Been Bak
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Seung Jin Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Su-Jin Hwang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
| | - Geun-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Byung-Soo Koo
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Sun-Dong Park
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Hye-Hyun Yoo
- College of Pharmacy, Hanyang University, Ansan 1558, Republic of Korea;
| | - Choon-Ok Kim
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul 03722, Republic of Korea;
| | - Hyung Won Kang
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Tae-Woo Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
- Department of Korean Convergence Medical Science, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| |
Collapse
|
14
|
Chen X, Li X, Cao B, Chen X, Zhang K, Han F, Kan C, Zhang J, Sun X, Guo Z. Mechanisms and efficacy of traditional Chinese herb monomers in diabetic kidney disease. Int Urol Nephrol 2024; 56:571-582. [PMID: 37552392 DOI: 10.1007/s11255-023-03703-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes and is the primary cause of end-stage renal disease. Current treatment strategies primarily focus on the inhibition of the renin-angiotensin-aldosterone system and the attainment of blood glucose control. Although current medical therapies for DKD have been shown to delay disease progression and improve long-term outcomes, their efficacy is limited and they may be restricted in certain cases, particularly when hyperkalemia is present. Traditional Chinese medicine (TCM) treatment has emerged as a significant complementary approach for DKD. TCM monomers, derived from various Chinese herbs, have been found to modulate multiple therapeutic targets and exhibit a broad range of therapeutic effects in patients with DKD. This review aims to summarize the mechanisms of action of TCM monomers in the treatment of DKD, based on findings from clinical trials, as well as cell and animal studies. The results of these investigations demonstrate the potential effective use of TCM monomers in treating or preventing DKD, offering a promising new direction for future research in the field. By providing a comprehensive overview of the mechanisms and efficacy of TCM monomers in DKD, this review highlights the potential of these natural compounds as alternative therapeutic options for improving outcomes in patients with DKD.
Collapse
Affiliation(s)
- Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Bo Cao
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xinping Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
15
|
Wang H, Chang Y, Liu X, Liu L, Hua M, Li A. Protective effects of baicalin on diethyl nitrosamine-induced liver cirrhosis by suppressing oxidative stress and inflammation. Chem Biol Drug Des 2024; 103:e14386. [PMID: 37923393 DOI: 10.1111/cbdd.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Baicalin (BA) is a natural product extract with anti-inflammatory, antioxidant, and hepatoprotective properties. Given that the exact underlying mechanisms responsible for the impact of BA on liver cirrhosis remain ambiguous, a detailed investigation is sorely needed. Accordingly, a rat liver cirrhosis model was established via the intraperitoneal injection of diethyl nitrosamine (DEN, 100 mg/kg). Following the modeling, these rats were given BA (100 mg/kg) or N-acetylcysteine (NAC, 150 mg/kg) alone or in combination. The pathological morphology of rat liver tissues in each group was observed by hematoxylin and eosin staining and Masson's trichrome staining. The expression of fibrosis-related proteins was evaluated by Western blot, and the levels of liver function-related biochemical indexes, oxidative stress-related indexes, and inflammatory factors in the serum by enzyme-linked immunosorbent assays (ELISA). The level of mitochondrial reactive oxygen species was measured by flow cytometry. The results depicted that in the rat model of DEN-induced liver cirrhosis, BA reduced the expression of fibrosis-related proteins (collagen type I alpha 1, α-smooth muscle actin, and transforming growth factor-β1), thereby alleviating the structural fibrosis of liver tissue. Furthermore, BA could diminish the level of mitochondrial reactive oxygen species, and the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1), while promoting albumin, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels. Notably, all these effects of BA above were strengthened following the combined treatment of BA and NAC. On the whole, BA suppresses liver fibrosis by inhibiting oxidative stress and inflammation, thereby exerting a hepatoprotective effect.
Collapse
Affiliation(s)
- Hui Wang
- Emergency Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Yufei Chang
- Emergency Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Xiao Liu
- Emergency Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Linan Liu
- Emergency Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Mingxi Hua
- Capital Medical University Affiliated Beijing Shijitan Hospital Biomedical Innovation Center, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Ang Li
- Critical Care Medicine Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Mohanty SK, Suchiang K. Baicalein mitigates oxidative stress and enhances lifespan through modulation of Wnt ligands and GATA factor: ELT-3 in Caenorhabditis elegans. Life Sci 2023; 329:121946. [PMID: 37463652 DOI: 10.1016/j.lfs.2023.121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
AIMS Age predispose individual to major diseases, and the biological processes contributing to aging are currently under intense investigation. Hence, plant-based natural compounds could be a potential target to counteract aging and age-associated diseases. So, the present study aims to investigate the antiaging properties of a natural compound Baicalein (BAI) on C. elegans and to elucidate the pathways or signaling molecules involved. METHODS Herein, we investigated the inhibitory effects of BAI on different Wnt ligands of C. elegans and its underlying mechanisms. Moreover, we monitored BAI's antiaging effect on the worms' lifespan and its different aging parameters. We employed different mutant and transgenic C. elegans strains to identify the pathways and transcription factors involved. KEY FINDINGS We first showed that BAI could downregulate different Wnt ligands mRNA expressions in C. elegans, resulting in enhanced expression of GATA transcription factor ELT-3 and antiaging gene Klotho. On further evaluation, it was observed that BAI could enhance the worm's lifespan via ELT-3 and SKN-1 transcription factors, whereas, for the protection of worms against external oxidative stress, both ELT-3 and DAF-16 transcription factors were involved. Moreover, sensitive aging parameters of worms, including lipofuscin and ROS accumulation, and the declined physiological and mechanical functions observed in aged worms were ameliorated by BAI. SIGNIFICANCE This study highlighted BAI as a promising antiaging compound. This study also revealed the Wnt inhibitory potential of BAI with future implications for pharmacological target of age-associated diseases with aberrant activation of the Wnt pathway.
Collapse
Affiliation(s)
- Saswat Kumar Mohanty
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry 605 014, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry 605 014, India.
| |
Collapse
|
17
|
Zmrhal V, Svoradova A, Venusova E, Slama P. The Influence of Heat Stress on Chicken Immune System and Mitigation of Negative Impacts by Baicalin and Baicalein. Animals (Basel) 2023; 13:2564. [PMID: 37627355 PMCID: PMC10451628 DOI: 10.3390/ani13162564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Heat stress (HS) in poultry husbandry is an important stressor and with increasing global temperatures its importance will increase. The negative effects of stress on the quality and quantity of poultry production are described in a range of research studies. However, a lack of attention is devoted to the impacts of HS on individual chicken immune cells and whole lymphoid tissue in birds. Oxidative stress and increased inflammation are accompanying processes of HS, but with deleterious effects on the whole organism. They play a key role in the inflammation and oxidative stress of the chicken immune system. There are a range of strategies that can help mitigate the adverse effects of HS in poultry. Phytochemicals are well studied and some of them report promising results to mitigate oxidative stress and inflammation, a major consequence of HS. Current studies revealed that mitigating these two main impacts of HS will be a key factor in solving the problem of increasing temperatures in poultry production. Improved function of the chicken immune system is another benefit of using phytochemicals in poultry due to the importance of poultry health management in today's post pandemic world. Based on the current literature, baicalin and baicalein have proven to have strong anti-inflammatory and antioxidative effects in mammalian and avian models. Taken together, this review is dedicated to collecting the literature about the known effects of HS on chicken immune cells and lymphoid tissue. The second part of the review is dedicated to the potential use of baicalin and baicalein in poultry to mitigate the negative impacts of HS on poultry production.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| | - Andrea Svoradova
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
- NPPC, Research Institute for Animal Production in Nitra, 951 41 Luzianky, Slovakia
| | - Eva Venusova
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| |
Collapse
|
18
|
He J, He J. Baicalin mitigated IL-1β-Induced osteoarthritis chondrocytes damage through activating mitophagy. Chem Biol Drug Des 2023; 101:1322-1334. [PMID: 36752698 DOI: 10.1111/cbdd.14215] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Mitophagy is related to chondrocyte homeostasis and plays a key role in the progress of osteoarthritis (OA). Baicalin has a protective effect on OA chondrocytes, the aim of this study was to explore whether the effect of Baicalin on IL-1β-induced chondrocyte injury is related to the regulation of mitophagy. The expression of collagen II in chondrocytes was detected to identify chondrocytes. The effects of different concentrations of Baicalin (10, 20 and 40 μM), autophagy inhibitor (3-Methyladenine), autophagy activator (rapamycin) and Baicalin combined with PI3K agonist (740Y-P) on the viability (cell counting kit 8), apoptosis (flow cytometry), autophagy activation (Monodansylcadaverine staining) and mitochondrial membrane potential (JC-1 kit) of IL-1β-induced chondrocytes were evaluated. The co-localization of autophagosome and mitochondria was determined by immunofluorescence. Apoptosis-, autophagy-, PI3K/AKT/mTOR pathway- and mitophagy-related proteins were detected by western blot. Our result revealed that Baicalin and rapamycin facilitated cell viability, autophagy and mitophagy, elevated mitochondrial membrane potential and suppressed apoptosis of IL-1β-induced rat chondrocytes. In addition, Baicalin and rapamycin upregulated the levels of Bcl-2, Beclin 1, LC3-II/LC3-I, p-Drp1, PINK1 and Parkin as well as downregulated the levels of Bax, cleaved caspase-3, P62, p-PI3K/PI3K, p-mTOR/mTOR and Drp1 in IL-1β-induced rat chondrocytes. However, 3-Methyladenine did the opposite effects of Baicalin and 740Y-P reversed the effects of Baicalin on IL-1β-induced rat chondrocytes. In conclusion, Baicalin activated mitophagy in IL-1β-induced chondrocytes by inhibiting PI3K/AKT/mTOR pathway and activating PINK1/Parkin and PINK1/Drp-1 pathway, thereby reducing the chondrocyte injury.
Collapse
Affiliation(s)
- Jun He
- Second Department of Orthopedics, Zhejiang Hospital, Hangzhou, China
| | - Jian He
- Second Department of Orthopedics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
19
|
Wen Y, Wang Y, Zhao C, Zhao B, Wang J. The Pharmacological Efficacy of Baicalin in Inflammatory Diseases. Int J Mol Sci 2023; 24:ijms24119317. [PMID: 37298268 DOI: 10.3390/ijms24119317] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Baicalin is one of the most abundant flavonoids found in the dried roots of Scutellaria baicalensis Georgi (SBG) belonging to the genus Scutellaria. While baicalin is demonstrated to have anti-inflammatory, antiviral, antitumor, antibacterial, anticonvulsant, antioxidant, hepatoprotective, and neuroprotective effects, its low hydrophilicity and lipophilicity limit the bioavailability and pharmacological functions. Therefore, an in-depth study of baicalin's bioavailability and pharmacokinetics contributes to laying the theoretical foundation for applied research in disease treatment. In this view, the physicochemical properties and anti-inflammatory activity of baicalin are summarized in terms of bioavailability, drug interaction, and inflammatory conditions.
Collapse
Affiliation(s)
- Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
20
|
Li L, Cui H, Zhang Y, Xie W, Lin Y, Guo Y, Huang T, Xue B, Guo W, Huang Z, Man T, Yu H, Zhai Z, Cheng M, Wang M, Lei H, Wang C. Baicalin ameliorates multidrug-resistant Pseudomonas aeruginosa induced pulmonary inflammation in rat via arginine biosynthesis. Biomed Pharmacother 2023; 162:114660. [PMID: 37058819 DOI: 10.1016/j.biopha.2023.114660] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
Multidrug-resistance (MDR) Pseudomonas aeruginosa (P. aeruginosa) is a lethal gram-negative pathogen causing hospital-acquired and ventilator-associated pneumonia, which is difficult to treat. Our previous studies confirmed that baicalin, an essential bioactive component in Scutellaria baicalensis Georgi, exhibited anti-inflammatory effects in an acute pneumonia rat model induced by MDR P. aeruginosa. However, this effect of baicalin in constrast its low bioavailability, and its mechanism of action is still unknown. Thus, this study investigated whether the therapeutic effects of baicalin against MDR P. aeruginosa acute pneumonia are owing to the regulation of gut microbiota and their metabolites using pyrosequencing of the 16S rRNA genes in rat feces and metabolomics. As a result, baicalin attenuated the inflammation by acting directly on neutrophils and regulated the production of the inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-10. The mechanisms were through down-regulation of TLR4 and inhibition of NF-κB. Furthermore, pyrosequencing of the 16S rRNA genes in rat feces revealed that baicalin regulated the composition of gut microbial communities. At the genus level, baicalin efficiently increased the abundance of Ligilactobacillus, Lactobacillus and Bacteroides, but decreased the abundance of Muribaculaceae and Alistipes. Further, arginine biosynthesis was analyzed as the core pathway regulated by baicalin via combination with predicting gut microbiota function and targeted metabolomics. In conclusion, this study has demonstrated that baicalin relieved inflammatory injury in acute pneumonia rat induced by MDR P. aeruginosa via arginine biosynthesis associated with gut microbiota. Baicalin could be a promising and effective adjunctive therapy for lung inflammation caused by MDR P. aeruginosa infection.
Collapse
Affiliation(s)
- Lei Li
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Herong Cui
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yue Zhang
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Lin
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yufei Guo
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tingxuan Huang
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bei Xue
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenbo Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenfeng Huang
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tian Man
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huiyong Yu
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiguang Zhai
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Miao Cheng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mingzhe Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Chengxiang Wang
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
21
|
Bajek-Bil A, Chmiel M, Włoch A, Stompor-Gorący M. Baicalin-Current Trends in Detection Methods and Health-Promoting Properties. Pharmaceuticals (Basel) 2023; 16:ph16040570. [PMID: 37111327 PMCID: PMC10146343 DOI: 10.3390/ph16040570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Baicalin (7-D-glucuronic acid-5,6-dihydroxyflavone) belongs to natural flavonoids extracted from the roots of Scutellaria baicalensis, the plant used in traditional Chinese medicine. It has been proven that baicalin has various pharmacological activities, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and anti-apoptotic ones. However, it is essential not only to determine the medical usefulness of baicalin, but also to find and develop the most effective methods for its extraction and detection. Therefore, the aim of this review was to summarize the current methods of detection and identification of baicalin and to present the medical applications of baicalin and the underlying mechanisms of its action. Based on the review of the latest literature, it can be concluded that liquid chromatography alone or together with mass spectrometry is the most commonly used method for the determination of baicalin. Recently, also new electrochemical methods have been established, e.g., biosensors with fluorescence, which have better detection limits, sensitivity, and selectivity.
Collapse
Affiliation(s)
- Agata Bajek-Bil
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland
| | - Marcelina Chmiel
- Institute of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | | |
Collapse
|
22
|
Zheng T, Liu H, Hong Y, Cao Y, Xia Q, Qin C, Li M, Reiter RJ, Bai Y, Fan L. Promotion of liquid-to-solid phase transition of cGAS by Baicalein suppresses lung tumorigenesis. Signal Transduct Target Ther 2023; 8:133. [PMID: 36944610 PMCID: PMC10030660 DOI: 10.1038/s41392-023-01326-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/18/2022] [Accepted: 01/14/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Tiansheng Zheng
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Integrated Traditional Chinese & Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haipeng Liu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yifan Hong
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Molecular Physiology, Institue of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yajuan Cao
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Qing Xia
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Integrated Traditional Chinese & Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chengge Qin
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Medical School of Nantong University, Nantong, Jiangsu, 22601, China
| | - Ming Li
- Department of Integrated Traditional Chinese & Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Department of Integrated Traditional Chinese & Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
23
|
Peng B, Hu Q, He R, Hou H, Lian D, Chen Y, Li H, Song L, Gao Y, Chen T, Zhang G, Li J. Baicalein alleviates fibrosis and inflammation in systemic sclerosis by regulating B-cell abnormalities. BMC Complement Med Ther 2023; 23:62. [PMID: 36810081 PMCID: PMC9942410 DOI: 10.1186/s12906-023-03885-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc; also known as "scleroderma") is an autoimmune disorder characterized by extensive fibrosis, vascular changes, and immunologic dysregulation. Baicalein (phenolic flavonoid derived from Scutellaria baicalensis Georgi) has been used to treat the pathological processes of various fibrotic and inflammatory diseases. In this study, we investigated the effect of baicalein on the major pathologic characteristics of SSc: fibrosis, B-cell abnormalities, and inflammation. METHODS The effect of baicalein on collagen accumulation and expression of fibrogenic markers in human dermal fibroblasts were analyzed. SSc mice were produced by injecting bleomycin and treated with baicalein (25, 50, or 100 mg/kg). The antifibrotic features of baicalein and its mechanisms were investigated by histologic examination, hydroxyproline assay, enzyme-linked immunosorbent assay, western blotting and flow cytometry. RESULTS Baicalein (5-120 μM) significantly inhibited the accumulation of the extracellular matrix and fibroblast activation in transforming growth factor (TGF)-β1- and platelet derived growth factor (PDGF)-induced human dermal fibroblasts, as evidenced by abrogated deposition of total collagen, decreased secretion of soluble collagen, reduced collagen contraction capability and downregulation of various fibrogenesis molecules. In a bleomycin-induced model of dermal fibrosis in mice, baicalein (25-100 mg/kg) restored dermal architecture, ameliorated inflammatory infiltrates, and attenuated dermal thickness and collagen accumulation in a dose-dependent manner. According to flow cytometry, baicalein reduced the proportion of B cells (B220+ lymphocytes) and increased the proportion of memory B cells (B220+CD27+ lymphocytes) in the spleens of bleomycin-induced mice. Baicalein treatment potently attenuated serum levels of cytokines (interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-17A, tumor necrosis factor-α), chemokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-1 beta) and autoantibodies (anti-scleroderma 70 (Scl-70), anti-polymyositis-scleroderma (PM-Scl), anti-centromeres, anti-double stranded DNA (dsDNA). In addition, baicalein treatment can significantly inhibit the activation of TGF-β1 signaling in dermal fibroblasts and bleomycin-induce mice of SSc, evidenced by reducing the expression of TGF-β1 and IL-11, as well as inhibiting both small mother against decapentaplegic homolog 3 (SMAD3) and extracellular signal-related kinase (ERK) activation. CONCLUSIONS These findings suggest that baicalein has therapeutic potential against SSc, exerting modulating B-cell abnormalities, anti-inflammatory effects, and antifibrosis.
Collapse
Affiliation(s)
- Bo Peng
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Qin Hu
- grid.28703.3e0000 0000 9040 3743College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024 People’s Republic of China
| | - Rong He
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Hongping Hou
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Dongyin Lian
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Ying Chen
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Han Li
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Ling Song
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Yunhang Gao
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Tengfei Chen
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Jianrong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
24
|
Baicalin Inhibits Airway Smooth Muscle Cells Proliferation through the RAS Signaling Pathway in Murine Asthmatic Airway Remodeling Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4144138. [PMID: 36814956 PMCID: PMC9940961 DOI: 10.1155/2023/4144138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Background Studies that looked at asthma airway remodeling pathogenesis and prevention have led to the discovery of the rat sarcoma viral oncogene (RAS) signaling pathway as a key mechanism that controls airway smooth muscle cell (ASMC) proliferation. Baicalin has great anti-inflammatory, proliferation-inhibited, and respiratory disease-relieving properties. However, the inhibitory effects and mechanisms of baicalin on ASMC-mediated airway remodeling in mice are still poorly understood. Methods After establishing the asthmatic mice model by ovalbumin (OVA) and interfering with baicalin, airway remodeling characteristics such as airway resistance, mRNA, and protein expression levels of remodeling-related cytokines were measured by histopathological assessment, quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and western blot. Further efforts on detailed mechanisms were used antibody arrays to compare the expression and activation of proteins involved in the RAS signaling pathway. In addition, validation experiments were performed in ASMC proliferation model and low-expression cells of the target gene by using shRNA. Results In OVA-induced asthmatic mice model, baicalin significantly reduced the infiltration of inflammatory cells in lung tissue, attenuated airway resistance, and decreased mRNA and protein expression levels of remodeling-related cytokines such as interleukin-13 (IL-13), vascular endothelial growth factor (VEGF), transforming growth factor-beta 1 (TGF-β1), matrix metallopeptidase 9 (MMP9), and tissue inhibitor of metalloproteinase 1 (TIMP1). The results of antibody arrays involved in RAS signaling pathway revealed that OVA and baicalin administration altered the activation of protein kinase C alpha type (PKC-α), A-rapidly accelerated fibrosarcoma (A-RAF), mitogen-activated protein kinase 2 (MEK2), extracellular regulated MAP kinase (ERK), MAPK interacting serine/threonine kinase 1 (MNK1), and ETS transcription factor 1 (ELK1). The above results were further verified in the ASMC proliferation model. A-RAF silencing (shA-RAF) could promote ASMC proliferation and downregulate p-MEK2, p-ERK, p-MNK1, and p-ELK1 expression. Conclusion The effects of baicalin against airway remodeling and ASMC proliferation might partially be achieved by suppressing the RAS signaling pathway. Baicalin may be a new therapeutic option for managing airway remodeling in asthma patients.
Collapse
|
25
|
Chen Q, Ruan D, Shi J, Du D, Bian C. The multifaceted roles of natural products in mitochondrial dysfunction. Front Pharmacol 2023; 14:1093038. [PMID: 36860298 PMCID: PMC9968749 DOI: 10.3389/fphar.2023.1093038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondria are the primary source of energy production in cells, supporting the metabolic demand of tissue. The dysfunctional mitochondria are implicated in various diseases ranging from neurodegeneration to cancer. Therefore, regulating dysfunctional mitochondria offers a new therapeutic opportunity for diseases with mitochondrial dysfunction. Natural products are pleiotropic and readily obtainable sources of therapeutic agents, which have broad prospects in new drug discovery. Recently, many mitochondria-targeting natural products have been extensively studied and have shown promising pharmacological activity in regulating mitochondrial dysfunction. Hence, we summarize recent advances in natural products in targeting mitochondria and regulating mitochondrial dysfunction in this review. We discuss natural products in terms of their mechanisms on mitochondrial dysfunction, including modulating mitochondrial quality control system and regulating mitochondrial functions. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products, emphasizing the potential value of natural products in mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Jiayan Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
26
|
Ibrahim A, Abdel Gaber SA, Fawzi Kabil M, Ahmed-Farid OA, Hirsch AK, El-Sherbiny IM, Nasr M. Baicalin lipid nanocapsules for treatment of glioma: Characterization, mechanistic cytotoxicity, and pharmacokinetic evaluation. Expert Opin Drug Deliv 2022; 19:1549-1560. [DOI: 10.1080/17425247.2022.2139370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alaa Ibrahim
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | - Sara A. Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | | | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Ibrahim M. El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Mirjalili M, Mirzaei E, Vazin A. Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur J Med Res 2022; 27:64. [PMID: 35525994 PMCID: PMC9077985 DOI: 10.1186/s40001-022-00689-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Colistin is a polymyxin antibiotic which has been used for treatment of Gram-negative infections, but it was withdrawn due to its nephrotoxicity. However, colistin has gained its popularity in recent years due to the reemergence of multidrug resistant Gram-negative infections and drug-induced toxicity is considered as the main obstacle for using this valuable antibiotic. RESULTS In total, 30 articles, including 29 animal studies and one clinical trial were included in this study. These compounds, including aged black garlic extract, albumin fragments, alpha lipoic acid, astaxanthin, baicalein, chrysin, cilastatin, colchicine, curcumin, cytochrome c, dexmedetomidine, gelofusine, grape seed proanthocyanidin extract, hesperidin, luteolin, lycopene, melatonin, methionine, N-acetylcysteine, silymarin, taurine, vitamin C, and vitamin E exhibited beneficial effects in most of the published works. CONCLUSIONS In this review, the authors have attempted to review the available literature on the use of several compounds for prevention or attenuation of colistin-induced nephrotoxicity. Most of the studied compounds were potent antioxidants, and it seems that using antioxidants concomitantly can have a protective effect during the colistin exposure.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Mirzaei
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Ganguly R, Kumar R, Pandey AK. Baicalin provides protection against fluoxetine-induced hepatotoxicity by modulation of oxidative stress and inflammation. World J Hepatol 2022; 14:729-743. [PMID: 35646277 PMCID: PMC9099103 DOI: 10.4254/wjh.v14.i4.729] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fluoxetine is one of the most widely prescribed anti-depressant drugs belonging to the category of selective serotonin reuptake inhibitors. Long-term fluoxetine treatment results in hepatotoxicity. Baicalin, a natural compound obtained from the Chinese herb Scutellaria baicalensis is known to have antioxidant, hepatoprotective and anti-inflammatory effects. However, the beneficial effects of baicalin against fluoxetine-induced hepatic damage have not previously been reported.
AIM To evaluate the protective action of baicalin in fluoxetine-induced liver toxicity and inflammation.
METHODS Male albino Wistar rats were divided into seven groups. Group 1 was the normal control. Oral fluoxetine was administered at 10 mg/kg body weight to groups 2, 3, 4 and 5. In addition, groups 3 and 4 were also co-administered oral baicalin (50 mg/kg and 100 mg/kg, respectively) while group 5 received silymarin (100 mg/kg), a standard hepatoprotective compound for comparison. Groups 6 and 7 were used as a positive control for baicalin (100 mg/kg) and silymarin (100 mg/kg), respectively. All treatments were carried out for 28 d. After sacrifice of the rats, biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione-S-transferase (GST), advanced oxidation protein products (AOPP), malondialdehyde (MDA)], and liver injury [alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total protein, albumin, bilirubin] were studied in serum and tissue using standard protocols and diagnostic kits. Inflammatory markers [tumor necrosis factor (TNF-α), interleukin (IL)-6, IL-10 and interferon (IFN)-γ] in serum were evaluated using ELISA-based kits. The effect of baicalin on liver was also analyzed by histopathological examination of tissue sections.
RESULTS Fluoxetine-treated rats showed elevated levels of the serum liver function markers (total bilirubin, ALT, AST, and ALP) and inflammatory markers (TNF-α, IL-6, IL-10 and IFN-γ), with a decline in total protein and albumin levels. Biochemical markers of oxidative stress such as SOD, CAT, GST, GSH, MDA and AOPP in the liver tissue homogenate were also altered indicating a surge in reactive oxygen species leading to oxidative damage. Histological examination of liver tissue also showed degeneration of hepatocytes. Concurrent administration of baicalin (50 and 100 mg/kg) restored the biomarkers of oxidative stress, inflammation and hepatic damage in serum as well as in liver tissues to near normal levels.
CONCLUSION These findings suggested that long-term treatment with fluoxetine leads to oxidative stress via the formation of free radicals that consequently cause inflammation and liver damage. Concurrent treatment with baicalin alleviated fluoxetine-induced hepatotoxicity and liver injury by regulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
29
|
Sinyani A, Idowu K, Shunmugam L, Kumalo HM, Khan R. A molecular dynamics perspective into estrogen receptor inhibition by selective flavonoids as alternative therapeutic options. J Biomol Struct Dyn 2022; 41:4093-4105. [PMID: 35477414 DOI: 10.1080/07391102.2022.2062786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zearalenone is an estrogenic mycotoxin which is a common food contaminant and has been implicated in increasing the incidence of carcinogenesis and other reproductive health ailments through the estrogen receptor alpha (ERα) pathway. Competitive ERα blockers such as 4-Hydroxytamoxifen (OHT), are synthetic FDA approved drugs which, albeit being an effective anticancer agent, induces life altering side effects. For this reason, there is an increased interest in the use of naturally occurring medicinal plant products such as flavonoids. This study aimed to identity flavonoid ERα inhibitors and provide insights into the mechanism of inhibition using computational techniques. The Molecular Mechanics/Generalized Born Surface Area calculations revealed that quercetrin, hesperidin, epigallocatechin 3-gallate and kaempferol 7-O-glucoside out of 14 flavonoids had higher binding affinity for ERα than OHT. The structural analysis revealed that the binding of the compounds to the receptor lead to dynamic alterations, which induced conformational shift in the structure and orientation of the receptor resulting in stabilised, compact and low energy systems. The results of this study provide imperative information that supports the use of flavonoids in the inhibition of ERα to prevent or ameliorate the consequential adverse effects associated with zearalenone exposure.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Angela Sinyani
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kehinde Idowu
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP)/Genomics Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Letitia Shunmugam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel Mathambo Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
30
|
Baicalein: promising therapeutic applications with special reference to published patents. Pharm Pat Anal 2022; 11:23-32. [PMID: 35345898 DOI: 10.4155/ppa-2021-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Baicalein is a medicinally important flavonoid present in Scutellaria baicalensis, which has numerous biological benefits like anti-oxidant, anti-inflammatory, antihepatotoxicity, anticancer properties, etc. Recent studies have revealed that baicalein is an efficient antihepatoma agent and has the strongest antiproliferative effect toward cancerous bladder cell lines, and suppression of cell cycle progression in prostate cancer cells. This natural substance has a high commercial value because it strengthens the heart and cerebral vessels and protects the nervous system and also reduces diabetes and diabetic complications. In addition, baicalein is known to decrease inflammatory markers such as IL-1β, IL-6 and TNF-α. In this review, we have attempted to compile the list of recent therapeutic patents of baicalein used for treating different disorders.
Collapse
|
31
|
Baicalin attenuates amyloid β oligomers induced memory deficits and mitochondria fragmentation through regulation of PDE-PKA-Drp1 signalling. Psychopharmacology (Berl) 2022; 239:851-865. [PMID: 35103832 DOI: 10.1007/s00213-022-06076-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
RATIONALE Mitochondrial fragmentation contributes to the initiation of Alzheimer's disease (AD) pathology. Baicalin plays a significant role in rescuing mitochondrial dysfunction. However, the effect of baicalin treatment on the modulation of mitochondrial fragmentation has not yet been assessed. OBJECTIVES The present study was designed to evaluate the effect of baicalin on memory and understand its mechanism of action. RESULTS Baicalin treatment significantly reversed the altered learning and memory behaviours in AD mouse model. We found that baicalin treatment significantly improved the levels of microtubule association protein-2 and enhanced the expression of synaptophysin and postsynaptic density protein 95 (PSD95). Moreover, treatment with baicalin reversed amyloid-β oligomer (AβO)-induced abnormalities in the succinate dehydrogenase complex iron sulphur subunit B (SDHB) and cytochrome c oxidase components I (COXI) and mitochondrial fragmentation in the hippocampus. Further, we found that baicalin decreased the PDE4 levels and upregulated the levels of phosphorylated Ser157 site of vasodilator-stimulated phosphoprotein (pVASPs157) and phosphorylated Ser637 site of mitochondrial dynamin-related protein 1 (pDrp1S637). Moreover, in AβO-treated HT-22 cells, H89 inhibited the effect of baicalin on PSD95, mitochondrial fragmentation, SDHB and COXI, PDE4, pVASPs157, and pDrp1S637. CONCLUSION The effect of baicalin on memory improvement may be due to improved synaptic plasticity, mitochondrial fragmentation, and rescue of dysfunction via the inhibition of PDE4, which leads to activation of pDrp1S637 in the AβO-induced model.
Collapse
|
32
|
He Q, Sun X, Zhang M, Chu L, Zhao Y, Wu Y, Zhang J, Han X, Guan S, Ding C. Protective effect of baicalin against arsenic trioxide-induced acute hepatic injury in mice through JAK2/STAT3 signaling pathway. Int J Immunopathol Pharmacol 2022; 36:20587384211073397. [PMID: 35088608 PMCID: PMC8801635 DOI: 10.1177/20587384211073397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Baicalin (BA) is a kind of flavonoid that is isolated from Scutellaria baicalensis Georgi, which has been verified to have hepatoprotective effects in some diseases. However, the role of BA in acute hepatic injury induced by arsenic trioxide (ATO) remains unclear. The aim of this study was to investigate the protective action of BA on acute hepatic injury induced by ATO and to probe its possible mechanism. Mice were pretreated with BA (50, 100 mg/kg) by gavage. After 7 h, ATO (7.5 mg/kg) was injected intraperitoneally to induce liver injury. After 7 days of treatment, serum and hepatic specimens were collected and assayed to evaluate the hepatoprotective effect of BA. Pathological sections and the liver function index indicated that ATO caused significant liver injury. The fluorescence of reactive oxygen species and oxidative stress indicators showed that ATO also increased oxidative stress. The inflammatory markers in ATO-induced mice also increased significantly. Staining of the terminal deoxynucleotidyl transferase dUTP nick end labeling and apoptotic factor assay showed that apoptosis increased. However, with BA pretreatment, these changes were significantly weakened. In addition, BA treatment promoted the expression of proteins related to the JAK2/STAT3 signaling pathway. The results suggest that BA can ameliorate acute ATO-induced hepatic injury in mice, which is related to the inhibition of oxidative stress, thereby reducing inflammation and apoptosis. The mechanism of this protection is potentially related to the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Qianqian He
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoqi Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Muqing Zhang
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, China
| | - Yang Zhao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongchao Wu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianping Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Shengjiang Guan, Affiliated Hospital, Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Luquan Economic Development Zone, Luquan District, Shijiazhuang, Hebei 050011, China.
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital of PLA, Shijiazhuang, China
- Chao Ding, Department of Cardiology, Bethune International Peace Hospital of PLA, Shijiazhuang, Hebei 050011, China. Email
| |
Collapse
|
33
|
Miao L, Zhang H, Yang L, Chen L, Xie Y, Xiao J. Flavonoids. ANTIOXIDANTS EFFECTS IN HEALTH 2022:353-374. [DOI: 10.1016/b978-0-12-819096-8.00048-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Yu M, Han S, Wang M, Han L, Huang Y, Bo P, Fang P, Zhang Z. Baicalin protects against insulin resistance and metabolic dysfunction through activation of GALR2/GLUT4 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153869. [PMID: 34923235 DOI: 10.1016/j.phymed.2021.153869] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus is a complex metabolic disorder associated with obesity, glucose intolerance and insulin resistance. Activation of GALR2 has been proposed as a therapeutic target for the treatment of insulin resistance. The previous studies showed that baicalin could mitigate insulin resistance, but the detailed mechanism of baicalin on insulin resistance has not been fully explored yet. PURPOSE In the present study, we evaluated whether baicalin mitigated insulin resistance via activation of GALR2 signaling pathway. STUDY DESIGN/METHODS Baicalin (25 mg/kg/d and 50 mg/kg/d) and/or GALR2 antagonist M871 (10 mg/kg/d) were injected individually or in combinations into obese mice once a day for three weeks, and normal and GALR2 knockdown myotubes were treated with baicalin (100 μM and 400 μM) or metformin (4 mM) in the absence or presence of M871 (800 nM) for 12 h, respectively. The molecular mechanism was explored in skeletal muscle and L6 myotubes. RESULTS The present findings showed that baicalin mitigated hyperglycemia and insulin resistance and elevated the levels of PGC-1α, GLUT4, p-p38MAPK, p-AKT and p-AS160 in skeletal muscle of obese mice. Strikingly, the baicalin-induced beneficial effects were abolished by GALR2 antagonist M871 in obese mice. In vitro, baicalin dramatically augmented glucose consumption and the activity of PGC1α-GLUT4 axis in myotubes through activation of p38MAPK and AKT pathways. Moreover, baicalin-induced elevations in glucose consumption related genes were abolished by GALR2 antagonist M871 or silencing of GALR2 in myotubes. CONCLUSIONS The present study for the first time demonstrated that baicalin protected against insulin resistance and metabolic dysfunction mainly through activation of GALR2-GLUT4 signal pathway. Our findings identified that activation of GALR2-GLUT4 signal pathway by baicalin could be a new therapeutic approach to treat insulin resistance and T2DM in clinic.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Huang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
35
|
Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:14-26. [PMID: 35656442 PMCID: PMC9118284 DOI: 10.22038/ijbms.2022.60380.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
The flavonoids, baicalin, and its aglycone baicalein possess multi-fold therapeutic properties and are mainly found in the roots of Oroxylum indicum (L.) Kurz and Scutellaria baicalensis Georgi. These flavonoids have been reported to possess various pharmacological properties, including antibacterial, antiviral, anticancer, anticonvulsant, anti-oxidant, hepatoprotective, and neuroprotective effects. The pharmacological properties of baicalin and baicalein are due to their abilities to scavenge reactive oxygen species (ROS) and interaction with various signaling molecules associated with apoptosis, inflammation, autophagy, cell cycle, mitochondrial dynamics, and cytoprotection. In this review, we summarized the molecular mechanisms underlying the chemopreventive and chemotherapeutic applications of baicalin and baicalein in the treatment of cancer and inflammatory diseases. In addition, the preventive effects of baicalin and baicalein on mitochondrial dynamics and functions were highlighted with a particular emphasis on their anti-oxidative and cytoprotective properties. The current review highlights could be useful for future prospective studies to further improve the pharmacological applications of baicalein and baicalin. These studies should define the threshold for optimal drug exposure, dose optimization and focus on therapeutic drug monitoring, objective disease markers, and baicalin/baicalein drug levels.
Collapse
Affiliation(s)
- Zhihua Hu
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Yurong Guan
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Wanying Hu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Xu
- Hubei Zhiying Medical Imaging Center, Radiology Department of Huanggang Hospital of Traditional Chinese Medicine, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
36
|
Teng C, Li B, Lin C, Xing X, Huang F, Yang Y, Li Y, Azevedo HS, He W. Targeted delivery of baicalein-p53 complex to smooth muscle cells reverses pulmonary hypertension. J Control Release 2021; 341:591-604. [PMID: 34896449 DOI: 10.1016/j.jconrel.2021.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon and deadly cardiopulmonary disease. PAH stems essentially from pulmonary artery (PA) remodeling induced predominantly by over-proliferation of PA smooth muscle cells (PASMCs) and inflammation. However, effective treatments are still missing in the clinic because the available drugs consisting of vasodilators are aimed to attenuate PAH symptoms rather than inhibit the remodeling process. Here, we aimed to specifically co-deliver apoptotic executor gene p53 and anti-inflammatory baicalein to PASMCs to alleviate PAH. The targeted co-delivery system was prepared through a carrier-free approach, which was prepared by loading the conjugate, NLS (nuclear localization signal) peptide-p53 gene, onto the baicalein pure crystals, followed by coating with glucuronic acid (GA) for targeting the glucose transport-1 (GLUT-1). The co-delivery system developed has a 200-nm diameter with a rod shape and a drug-loading capacity of 62% (w/w). The prepared system was shown to target PASMCs in vitro and enabled effective gene transfection, efficient apoptosis, and inflammation suppression. In vivo, via targeting the axis lung-PAs-PASMCs, the co-delivery reversed monocrotaline-induced PAH by reducing pulmonary artery pressure, downregulating the proinflammatory cytokine TNF-α, and inhibiting remodeling of both PAs and right ventricular. The potent efficacy may closely correlate with the activation of the signaling axis Bax/Bcl-2/Cas-3. Overall, our results indicate that the co-delivery system holds a significant potential to target the axis of lung-PAs-PASMCs and treat PAH.
Collapse
Affiliation(s)
- Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bingbing Li
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chenshi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xuyang Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
37
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Jiang C, Zhang J, Xie H, Guan H, Li R, Chen C, Dong H, Zhou Y, Zhang W. Baicalein suppresses lipopolysaccharide-induced acute lung injury by regulating Drp1-dependent mitochondrial fission of macrophages. Biomed Pharmacother 2021; 145:112408. [PMID: 34801855 DOI: 10.1016/j.biopha.2021.112408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Acute lung injury (ALI) and its serious form, the acute respiratory distress syndrome (ARDS) are devastating diseases without effective chemotherapy. Exuberant or uncontrolled proinflammation responses in the lung, also known as "cytokine storms", is one of the main culprits in the pathogenesis of organ failure, and anti-inflammatory therapy is essential to alleviate ALI/ARDS-associated injuries. Emerging evidence suggests that baicalein has potent anti-inflammatory and antioxidant properties. However, the underlined mechanism of baicalein to mitigate inflammation in ALI remains unclear. Herein, we demonstrated a critical role for baicalein in suppressing the inflammatory response of LPS-activated macrophages. We found that mitochondria function was restored in the condition of baicalein. Interestingly, results showed that mitochondrial dysfunction positively correlates with inflammatory cytokine generation at each corresponding baicalein concentration. Further mRNA analysis revealed that baicalein mitigates mitochondrial defects via attenuation of dynamin-related protein 1 (Drp1) expression. These reprogrammed mitochondria prevent their function shift from the ATP synthesis to reactive oxygen species (ROS) production after the LPS challenge, thereby dampening NF-κB-dependent inflammatory cytokine transcription. Baicalein reduces the production of inflammatory mediators TNF-α, MIP-1, IL-6, and diminishes neutrophil influx and severity of endotoxin-mediated ALI. Taken together, our results show that baicalein may serve as a new clinical therapeutic strategy in ALI by modulating Drp1-induced mitochondrial impairment, restraining inflammatory responses, and reducing the severity of lung injury.
Collapse
Affiliation(s)
- Cheng Jiang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiechun Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiting Guan
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Li
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Caixia Chen
- Xiaokunshan Community Health Service Center of Songjiang District, Shanghai, China
| | - Hongzhen Dong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - You Zhou
- State Key Laboratory of Respiratory, Guangzhou Institute of Respiratory Health, Guangzhou, Guangdong, China.
| | - Wei Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
40
|
Zhou Y, Tan Z, Huang H, Zeng Y, Chen S, Wei J, Huang G, Qian C, Yuan G, He S. Baicalein pre-treatment alleviates hepatic ischemia/reperfusion injury in mice by regulating the Nrf2/ARE pathway. Exp Ther Med 2021; 22:1380. [PMID: 34650628 PMCID: PMC8506949 DOI: 10.3892/etm.2021.10816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is caused by blood flow recovery following ischemia. Baicalein (BAI), a natural antioxidant used in traditional Chinese medicine, eliminates excessive free radicals and protects the structure of the cell membrane. However, its protective mechanism against HIRI is still unclear. The present study investigated underlying mechanism using a mouse HIRI model. Liver injury was evaluated using serum levels of alanine aminotransferase and aspartate aminotransferase, and hematoxylin-eosin staining was performed to evaluate the pathological changes in liver tissue. Apoptosis of hepatocytes was detected by TUNEL staining. The expression levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) in the liver were detected to evaluate oxidative stress. Western blotting was performed to assess expression levels of nuclear factor E2-related factor 2 (Nrf2)/antioxidant response elements (ARE) pathway proteins in liver tissue. BAI pre-treatment significantly decreased elevation of serum aminotransferase levels induced by IR and alleviated histological damage to the liver. BAI decreased production of ROS and MDA in liver tissue induced by IR and increased the activity of SOD. At the same time, BAI inhibited apoptosis of liver cells induced by oxidative stress. Furthermore, BAI promoted the translocation of Nrf2 into the nucleus and increased the expression of total heme oxygenase-1 and NAD(P)H dehydrogenase quinone-1. The Nrf2 inhibitor ML385 reversed the protective effect of BAI on HIRI. These results indicated that BAI served a protective effect in HIRI by regulating the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Yi Zhou
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Zhi Tan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Hao Huang
- Division of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Yonglian Zeng
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Shilian Chen
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Jie Wei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Guozhen Huang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Chaosi Qian
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
41
|
Bao J, Wu Z, Ishfaq M, Wang J, Miao Y, Niu D, Li R, Li J, Chen C. Pharmacokinetic/pharmacodynamic profiles of baicalin against Mycoplasma gallisepticum in an in vivo infection model. Poult Sci 2021; 100:101437. [PMID: 34547622 PMCID: PMC8463782 DOI: 10.1016/j.psj.2021.101437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma gallisepticum (M. gallisepticum), a devastating avian pathogen that commonly causes chronic respiratory disease in chicken, is responsible for tremendous economic losses to the poultry industry. Baicalin is the main constituent of Scutellaria baicalensis that shows potential therapeutic effects against M. gallisepticum. However, the pharmacokinetic/pharmacodynamics (PK/PD) profiles of baicalin against M. gallisepticum are not well understood. The main objective of the present study was to determine the relationship between the PK/PD index and efficacy of baicalin in the M. gallisepticum infection model in chickens. The experiments were carried out on 10-day-old chickens that were challenged with M. gallisepticum in the bilateral air sacs. While, baicalin was orally administrated once in a day for 3 consecutive days, started from d 3 postinfection. Ultra-performance liquid chromatography (UPLC) was used to evaluate the PK parameters of baicalin at doses of 200, 400, and 600 mg/kg in M. gallisepticum-infected chickens. Real-time PCR (RT-PCR) was used for the quantitative detection of M. gallisepticum in lungs. The PK and PD data were fitted to WinNonlin software to evaluate the PK/PD profiles of baicalin against M. gallisepticum. The minimum inhibitory concentration (MIC) of baicalin against M. gallisepticum strain Rlow was 31.25 µg/mL. The in vivo data suggested that baicalin concentration in the lung tissues was higher than plasma (1.21–1.73 times higher). The ratios of AUC24h/MIC of baicalin against bacteriostatic, bactericidal, and eradication were 0.62, 1.33, and 1.49 h, respectively. In conclusion, these results provided potential reference for future clinical dose selection of baicalin and evaluation of susceptibility breakpoints.
Collapse
Affiliation(s)
- Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; College of Computer Science, Huanggang Normal University, Huanggang, 438000, P. R. China
| | - Jian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yusong Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, P. R. China..
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, P. R. China
| |
Collapse
|
42
|
Tian F, Lee SY, Woo SY, Choi HY, Park SB, Chun HS. Effect of plant-based compounds on the antifungal and antiaflatoxigenic efficiency of strobilurins against Aspergillus flavus. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125663. [PMID: 33756201 DOI: 10.1016/j.jhazmat.2021.125663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxins are a group of carcinogenic and mutagenic fungal secondary metabolites that have threatened human health and global food security. Aflatoxin contamination can be controlled by applying fungicides, such as strobilurins. Although these compounds have been effective, they may be risky to the environment due to their wide usage. In this study, plant-based compounds were tested to promote the performance of strobilurins (azoxystrobin, pyraclostrobin) against aflatoxigenic Aspergillus flavus; six natural compounds, namely baicalein, nobiletin, meso-dihydroguaiaretic acid, pinoresinol, syringaresinol, and celastrol, were found to exhibit synergistic antifungal effects with strobilurins with fractional inhibitory concentration index < 0.5. Among them, baicalein showed no inhibitory effects on A. flavus when applied alone, but strongly enhanced the in vitro and in situ antifungal and antiaflatoxigenic efficacy of strobilurins and transformed them from fungistatic to fungicidal agents. Therefore, baicalein may be used as an effective natural chemosensitizing agent to improve the performance of strobilurins against A. flavus. The findings of this study provide novel insights for the development of safer and more effective strategies for the control of aflatoxin contamination.
Collapse
Affiliation(s)
- Fei Tian
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Sang Yoo Lee
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - So Young Woo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Hwa Young Choi
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Su Been Park
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea.
| |
Collapse
|
43
|
Guo YX, Zhang Y, Gao YH, Deng SY, Wang LM, Li CQ, Li X. Role of Plant-Derived Natural Compounds in Experimental Autoimmune Encephalomyelitis: A Review of the Treatment Potential and Development Strategy. Front Pharmacol 2021; 12:639651. [PMID: 34262447 PMCID: PMC8273381 DOI: 10.3389/fphar.2021.639651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that is mainly mediated by pathological T-cells. Experimental autoimmune encephalomyelitis (EAE) is a well-known animal model of MS that is used to study the underlying mechanism and offers a theoretical basis for developing a novel therapy for MS. Good therapeutic effects have been observed after the administration of natural compounds and their derivatives as treatments for EAE. However, there has been a severe lag in the research and development of drug mechanisms related to MS. This review examines natural products that have the potential to effectively treat MS. The relevant data were consulted in order to elucidate the regulated mechanisms acting upon EAE by the flavonoids, glycosides, and triterpenoids derived from natural products. In addition, novel technologies such as network pharmacology, molecular docking, and high-throughput screening have been gradually applied in natural product development. The information provided herein can help improve targeting and timeliness for determining the specific mechanisms involved in natural medicine treatment and lay a foundation for further study.
Collapse
Affiliation(s)
- Yu-Xin Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Han Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Si-Ying Deng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li-Mei Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui-Qin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
44
|
Inhibition of Oxidative Stress and ALOX12 and NF-κB Pathways Contribute to the Protective Effect of Baicalein on Carbon Tetrachloride-Induced Acute Liver Injury. Antioxidants (Basel) 2021; 10:antiox10060976. [PMID: 34207230 PMCID: PMC8235740 DOI: 10.3390/antiox10060976] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study investigates the protective effect of baicalein on carbon tetrachloride (CCl4)-induced acute liver injury and the underlying molecular mechanisms. Mice were orally administrated baicalein at 25 and 100 mg/kg/day for 7 consecutive days or ferrostatin-1 (Fer-1) at 10 mg/kg was i.p. injected in mice at 2 and 24 h prior to CCl4 injection or the vehicle. Our results showed that baicalein or Fer-1 supplementation significantly attenuated CCl4 exposure-induced elevations of serum alanine aminotransferase and aspartate aminotransferase, and malondialdehyde levels in the liver tissues and unregulated glutathione levels. Baicalein treatment inhibited the nuclear factor kappa-B (NF-κB) pathway, activated the erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway in liver tissues, and markedly improved CCl4-induced apoptosis, inflammation and ferroptosis in liver tissues exposed with CCl4. In vitro, baicalein treatment improved CCl4 -induced decreases of cell viabilities and knockdown of Nrf2 and arachidonate 12-lipoxygenase (ALOX12) genes partly abolished the protective effect of baicalein on CCl4 -induced cytotoxicity in HepG2 cells. In conclusion, our results reveal that baicalein supplementation ameliorates CCl4-induced acute liver injury in mice by upregulating the antioxidant defense pathways and downregulating oxidative stress, apoptosis, inflammation and ferroptosis, which involved the activation of Nrf2 pathway and the inhibition of ALOX12 and NF-κB pathways.
Collapse
|
45
|
A potent protective effect of baicalein on liver injury by regulating mitochondria-related apoptosis. Apoptosis 2021; 25:412-425. [PMID: 32409930 DOI: 10.1007/s10495-020-01608-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Liver injury is the early stage of liver disease, which is caused by multiple factors. Baicalein has shown extensive bioactivity. But whether baicalein has a protective effect on liver injury has not been reported thus far. In this study, we aim to investigate the protective effects of baicalein on liver injury induced by oxidative stress. H2O2 and CCl4 were employed to establish liver injury models in vivo and in vitro, respectively. The protective effect of baicalein on oxidative stress-induced liver injury was evaluated by detecting the mitochondrial dynamics, the level of autophagy and apoptosis, the histopathology of liver, the indicators of liver function, and the level of oxidative stress in vitro and in vivo. March5 is the key regulator during liver injury induced by oxidative stress. March5 can ubiquitinate Drp1 and promote Drp1 degradation, then maintain the homeostasis of mitochondrial dynamics, keep the balance of autophagy, and reduce apoptosis. Baicalein is able to effectively reduce liver injury; it can contribute to the expression of March5 by regulating KLF4 during liver injury. These results indicate that baicalein plays a key role in salvaging liver from injury induced by oxidative stress via regulating the KLF4-March5-Drp1 signal pathway.
Collapse
|
46
|
Zhao F, Zhao Z, Han Y, Li S, Liu C, Jia K. Baicalin suppresses lung cancer growth phenotypes via miR-340-5p/NET1 axis. Bioengineered 2021; 12:1699-1707. [PMID: 33955315 PMCID: PMC8806212 DOI: 10.1080/21655979.2021.1922052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a malignant disease, lung cancer has a high morbidity and mortality rate. Baicalin is derived from Radix Scutellariae and has anti-tumor effects, however, its role in lung cancer remains unknown. Here, functional assays suggested baicalin suppressed in vitro lung cancer phenotypes. We used micro (mi)RNA array analysis to explore baicalin effects on miRNA expression. We observed baicalin increased miR-340-5p expression, whereas inhibition of this expression abolished anti-tumor effects of baicalin. Furthermore, neuroepithelial cell transforming 1 (NET1) functioned as a miR-340-5p target, and acted in a baicalin-dependent manner to regulate lung cancer progression. Thus, baicalin elicited antitumor activities by affecting the miR-340-5p/NET1 axis, suggesting a new approach to lung cancer clinical management.
Collapse
Affiliation(s)
- Fucheng Zhao
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Zhenxia Zhao
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Yanru Han
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Sujuan Li
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Caili Liu
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Kui Jia
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| |
Collapse
|
47
|
Wang D, Mehrabi Nasab E, Athari SS. Study effect of Baicalein encapsulated/loaded Chitosan-nanoparticle on allergic Asthma pathology in mouse model. Saudi J Biol Sci 2021; 28:4311-4317. [PMID: 34354413 PMCID: PMC8324934 DOI: 10.1016/j.sjbs.2021.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 12/01/2022] Open
Abstract
Asthma as chronic airway disease has high prevalence in children and imbalance of Th1/Th2 is a critical mechanism in pathogenesis of the asthma. Baicalein as a cell protective and anti-inflammatory flavonoid may have anti-asthma effect. Therefore, for better using lung, baicalein was used in chitosan-nanoparticle as anti-asthma treatment. Baicalein was loaded and encapsulated in chitosan nanoparticle. The morphology, physical characters (particle size, zeta potential and FT-IR) were analyzed. Drug encapsulation and loading capacity, accumulative release-time were studied. After asthma model producing, the mice were treated with L-B-NP and E-B-NP. At least, MCh challenge test, Cytokines measurement and Lung Histopathology were done. Nanoparticles had average size 285 ± 25 nm with negative charge −2.5 mV. The L-B-NP decreased penh value and E-B-NP decreased inflammation. Both nanoparticles increased IL-12 and decreased IL-5. Also, L-B-NP decreased mucus secretion in bronchi. L-B-NP and E-B-NP control immune-allergo-inflammatory response of asthma. L-B-NP controlled AHR and E-B-NP controlled inflammation that can be used as controlling anti-asthma drug.
Collapse
Key Words
- AB, alcian blue
- AHR, airway hyperresponsiveness
- AP-1, activator protein 1
- Airway
- BALf, bronchoalveolar lavage fluid
- BBB, blood–brain barrier
- COX, cyclooxygenase
- E-B-NP, encapsulated-Baicalein-nanoparticles
- ELISA, the enzyme-linked immunosorbent assay
- FT-IR, fourier-transform infrared spectroscopy
- Flavonoid
- H&E, hematoxylin and eosin
- IL, interleukin
- IP, intraperitoneal
- IT, intratracheal
- Inflammation
- L-B-NP, loaded-Baicalein-nanoparticles
- MAP, mitogen-activated protein
- MCh, methacholine
- MTT, The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
- NF-κB, the nuclear factor-κB
- Nano
- OVA, ovalbumin
- PAS, periodic acid–schiff
- PG, prostaglandin
- TNF, tumor necrosis factor
- Th, T lymphocyte helper
- iNOS, inducible nitric oxide synthase
- mV, millivolt
- nm, nanometer
Collapse
Affiliation(s)
- Dong Wang
- Department of Internal Medicine of Traditional Chinese Medicine, People's Hospital of Yanting County, Sichuan 621600, China
| | - Entezar Mehrabi Nasab
- Cardiologist, Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
48
|
Effects of Silymarin and Baicalein on Glycogen Storage in the Hepatocytes of Rat Models of Hepatic Injury. HEPATITIS MONTHLY 2021. [DOI: 10.5812/hepatmon.113114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: An association has been reported between hepatitis and glycogen storage problems. Glycogen storage disease (GSD) type I is induced by G6PD deficiency. Silymarin and baicalein, as herbal agents, have hepatoprotective and antioxidant potentials. Objectives: In this study, we assessed the effects of these herbs on liver glycogen storage problems and hepatitis. Methods: Twenty male rats kept under standard laboratory conditions were divided into four groups, including healthy (control) and hepatotoxicity treated with silymarin, baicalein, or none. The levels of ALT, AST, ALP, LDL, HDL, VLDL, TG, Cho, IL-1β, IL-6, and TNF-α were measured, and the expression levels of G6PD, CTGF, HMGB1, and P53 were determined. Also, liver histopathology was examined. Results: Treatment with silymarin and baicalein reduced the serum levels of ALT, AST, ALP, LDL, VLDL, TG, Cho, IL-1β, IL-6, and TNF-α. Silymarin increased G6PD gene expression, and both silymarin and baicalein reduced CTGF, P53, and HMGB1 gene expressions, but silymarin and baicalein had no effects on glycogen storage of hepatocytes. Conclusions: Baicalein and silymarin showed anti-inflammatory effects and could control inflammation and necrotic factors, but they did not affect hepatic glycogen storage.
Collapse
|
49
|
Qiao D, Jin J, Xing J, Zhang Y, Jia N, Ren X, Lin Z, Jin N, Chen L, Piao Y. Baicalein Inhibits Gastric Cancer Cell Proliferation and Migration through a FAK Interaction via AKT/mTOR Signaling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:525-541. [PMID: 33641654 DOI: 10.1142/s0192415x21500245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastric cancer is a common malignancy worldwide and is associated with high morbidity and mortality rates. However, very little is known about the underlying mechanism in human gastric cancer cells. Baicalein (BAI), a widely used Chinese herbal medicine, has shown anticancer effects on many types of human cancer cell lines. Here, we investigated the molecular mechanisms underlying BAI action on gastric cancer cell proliferation and migration. The results showed that BAI can expressively inhibit cell proliferation, colony-forming ability and migration ability in a dose-dependent manner, while in the meantime inducing cell apoptosis. Additionally, we found that BAI can suppress FAK and the phosphorylation of PI3K, AKT and mTOR in a dose-dependent manner. Furthermore, BAI significantly inhibited tumor growth in a xenograft model. Also, BAI can inhibit the proliferation and migration of gastric cancer cells and the expression of the pathway by downregulating the expression of FAK. In short, we demonstrated that BAI inhibited gastric cancer cell proliferation and migration through FAK interaction via downregulation in AKT/mTOR signaling, which signifies that BAI may be a latent therapeutic factor for the treatment of gastric cancer patients and that FAK might be a hopeful therapy target for the disease.
Collapse
Affiliation(s)
- Dan Qiao
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| | - Jingchun Jin
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P. R. China
| | - Jian Xing
- Department of Image, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| | - Yingying Zhang
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| | - Nailing Jia
- Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P. R. China
| | - Xiangshan Ren
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| | - Zhenhua Lin
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P. R. China
| | - Ningyi Jin
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, P. R. China
| | - Liyan Chen
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| | - Yingshi Piao
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| |
Collapse
|
50
|
Ishfaq M, Zhang W, Liu Y, Wang J, Wu Z, Shah SW, Li R, Miao Y, Chen C, Li J. Baicalin attenuated Mycoplasma gallisepticum-induced immune impairment in chicken bursa of fabricius through modulation of autophagy and inhibited inflammation and apoptosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:880-890. [PMID: 32729138 DOI: 10.1002/jsfa.10695] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mycoplasma gallisepticum (MG) is the primary etiologic agent of chronic respiratory disease in poultry. However, the mechanism underlying MG-induced immune dysregulation in chicken is still elusive. Baicalin shows excellent anti-bacterial, anti-inflammatory, anti-carcinogenic and anti-viral properties. In the present study, the preventive effects of baicalin against immune impairment in chicken bursa of fabricius (BF) were studied in an MG infection model. RESULTS Histopathological examination showed increased inflammatory cell infiltrations and fragmented nuclei in the model group. Ultrastructural analysis revealed the phenomenon of apoptosis in bursal cells, along with the deformation of mitochondrial membrane and swollen mitochondria in the model group. However, these abnormal morphological changes were partially alleviated by baicalin. Meanwhile, baicalin treatment attenuated the level of proinflammatory cytokines, and suppressed nuclear factor-kappa B expression at both protein and mRNA level. Terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling assay showed extensive apoptosis in BF in the model group. The mRNA and protein expression levels of apoptosis-related genes were upregulated in BF, while baicalin treatment significantly alleviated apoptosis in BF. In addition, alterations in mRNA and protein expression levels of autophagy-related genes and mitochondrial dynamics proteins were significantly alleviated by baicalin. Moreover, baicalin treatment significantly attenuated MG-induced decrease in CD8+ cells and reduced bacterial load in chicken BF compared to the model group. CONCLUSIONS These results suggested that baicalin could effectively inhibit MG-induced immune impairment and alleviate inflammatory responses and apoptosis in chicken BF. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Syed Wa Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yusong Miao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|