1
|
Abdollahi M, Castaño JD, Salem JB, Beaudry F. Anandamide Modulates Thermal Avoidance in Caenorhabditis elegans Through Vanilloid and Cannabinoid Receptor Interplay. Neurochem Res 2024; 49:2423-2439. [PMID: 38847909 DOI: 10.1007/s11064-024-04186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/09/2024]
Abstract
Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.
Collapse
Affiliation(s)
- Marzieh Abdollahi
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus D Castaño
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
2
|
Boujenoui F, Nkambeu B, Salem JB, Castano Uruena JD, Beaudry F. Cannabidiol and Tetrahydrocannabinol Antinociceptive Activity is Mediated by Distinct Receptors in Caenorhabditis elegans. Neurochem Res 2024; 49:935-948. [PMID: 38141130 DOI: 10.1007/s11064-023-04069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Cannabis has gained popularity in recent years as a substitute treatment for pain following the risks of typical treatments uncovered by the opioid crisis. The active ingredients frequently associated with pain-relieving effects are the phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), but their effectiveness and mechanisms of action are still under research. In this study, we used Caenorhabditis elegans, an ideal model organism for the study of nociception that expresses mammal ortholog cannabinoid (NPR-19 and NPR-32) and vanilloid (OSM-9 and OCR-2) receptors. Here, we evaluated the antinociceptive activity of THC and CBD, identifying receptor targets and several metabolic pathways activated following exposure to these molecules. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that THC and CBD decreases the nocifensive response of C. elegans to noxious heat (32-35 °C). The effect was reversed 6 h post- CBD exposure but not for THC. Further investigations using specific mutants revealed CBD and THC are targeting different systems, namely the vanilloid and cannabinoid systems, respectively. Proteomic analysis revealed differences following Reactome pathways and gene ontology biological process database enrichment analyses between CBD or THC-treated nematodes and provided insights into potential targets for future drug development.
Collapse
Affiliation(s)
- Fatma Boujenoui
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Bruno Nkambeu
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus David Castano Uruena
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
[Cannabinoids reduce opioid use in older patients with pain : Retrospective three-year analysis of data from a general practice]. Schmerz 2023; 37:29-37. [PMID: 35384481 PMCID: PMC9889530 DOI: 10.1007/s00482-022-00642-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Relevant data for the prescription and therapeutic effects of medical cannabinoids (CAM) are still missing in everyday medicine especially for elderly and geriatric patients. AIM OF THE STUDY Documentation of prescription (duration, age) of CAM (dronabinol, nabiximols, cannabinoid extracts) and co-medicated opioids in a doctor's office specializing in pain. METHODS Analysis of the consumption of opioids (morphine equivalent) and CAM (THC equivalent) for age and gender. RESULTS In all, 178 patients with chronic pain were treated for a period of 366 days (median; range 31-2590 days). Median age was 72 years (26-96 years); 115 were women (64.8%). Of these, 34 were younger than 65 years, 42 were 65-80 years and 40 were more than 80 years old. Of the 63 men, 29 were younger than 65 years, 24 were 65-80 years and 10 were older than 80 years. Indications for CAM were chronic pain and the limitations for opioids because of side effects and worsening of quality of life. To total of 1001 CAM were prescribed, 557 (55.6%) dronabinol as liquid, 328 (32.7%) as full spectrum extracts and 66 (6.6%) as oro-mucosal nabiximols spray. 50 prescriptions (5%) contained more than one CAM simultaneously. The daily consumption of dronabinol liquor and extracts were 9.6 mg/day (median), and of spray 13.6 mg. The dosage over time did not change in patients older than 64; in younger patients, there was a non-significant increasing trend. Women requested lower THC dosages compared to men (8.1 mg vs. 14.8 mg). Furthermore, 10 patients (5.6%) stopped CAM because of failing effectivity, 7 (3.9%) because of failing cost coverage and only 5 because of adverse side effects. 115 patients (65%) with CAM also received opioids a median 65 mg/day morphine equivalents. This opioid dosage was significantly reduced in course of time by 24 mg/day morphine equivalents or 50%. This reduction was independent on CAM dosage, age and gender. DISCUSSION Patients with chronic pain profit from long-term CAM which safely and significantly lower the consumption of comedicated opioids, even at low dosages (< 7.5 mg/day). For women, low-dose THC may be sufficient. Older patients benefit from CAM, and adverse effects do not limit the (chronic) use and prescription of CAM in the elderly.
Collapse
|
4
|
Sintsova OV, Kalina RS, Gladkikh IN, Palikova YA, Palikov VA, Borozdina NA, Klimovich AA, Menshov AS, Dyachenko IA, Leychenko EV. Anxiolytic Effect of Peptides from Sea Anemone Heteractis crispa, Modulators of TRPV1 and ASIC Channels. DOKL BIOCHEM BIOPHYS 2022; 505:145-150. [DOI: 10.1134/s1607672922040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
|
5
|
Lipiński PFJ, Matalińska J. Fentanyl Structure as a Scaffold for Opioid/Non-Opioid Multitarget Analgesics. Int J Mol Sci 2022; 23:ijms23052766. [PMID: 35269909 PMCID: PMC8910985 DOI: 10.3390/ijms23052766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
One of the strategies in the search for safe and effective analgesic drugs is the design of multitarget analgesics. Such compounds are intended to have high affinity and activity at more than one molecular target involved in pain modulation. In the present contribution we summarize the attempts in which fentanyl or its substructures were used as a μ-opioid receptor pharmacophoric fragment and a scaffold to which fragments related to non-opioid receptors were attached. The non-opioid ‘second’ targets included proteins as diverse as imidazoline I2 binding sites, CB1 cannabinoid receptor, NK1 tachykinin receptor, D2 dopamine receptor, cyclooxygenases, fatty acid amide hydrolase and monoacylglycerol lipase and σ1 receptor. Reviewing the individual attempts, we outline the chemistry, the obtained pharmacological properties and structure-activity relationships. Finally, we discuss the possible directions for future work.
Collapse
|
6
|
Gross C, Ramirez DA, McGrath S, Gustafson DL. Cannabidiol Induces Apoptosis and Perturbs Mitochondrial Function in Human and Canine Glioma Cells. Front Pharmacol 2021; 12:725136. [PMID: 34456736 PMCID: PMC8385407 DOI: 10.3389/fphar.2021.725136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive compound found in cannabis, is frequently used both as a nutraceutical and therapeutic. Despite anecdotal evidence as an anticancer agent, little is known about the effect CBD has on cancer cells. Given the intractability and poor prognoses of brain cancers in human and veterinary medicine, we sought to characterize the in vitro cytotoxicity of CBD on human and canine gliomas. Glioma cells treated with CBD showed a range of cytotoxicity from 4.9 to 8.2 μg/ml; canine cells appeared to be more sensitive than human. Treatment with >5 μg/ml CBD invariably produced large cytosolic vesicles. The mode of cell death was then interrogated using pharmacologic inhibitors. Inhibition of apoptosis was sufficient to rescue CBD-mediated cytotoxicity. Inhibition of RIPK3, a classical necroptosis kinase, also rescued cells from death and prevented the formation of the large cytosolic vesicles. Next, cellular mitochondrial activity in the presence of CBD was assessed and within 2 hours of treatment CBD reduced oxygen consumption in a dose dependent manner with almost complete ablation of activity at 10 μg/ml CBD. Fluorescent imaging with a mitochondrial-specific dye revealed that the large cytosolic vesicles were, in fact, swollen mitochondria. Lastly, calcium channels were pharmacologically inhibited and the effect on cell death was determined. Inhibition of mitochondrial channel VDAC1, but not the TRPV1 channel, rescued cells from CBD-mediated cytotoxicity. These results demonstrate the cytotoxic nature of CBD in human and canine glioma cells and suggest a mechanism of action involving dysregulation of calcium homeostasis and mitochondrial activity.
Collapse
Affiliation(s)
- Chase Gross
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Dominique A Ramirez
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Stephanie McGrath
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Daniel L Gustafson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States.,University of Colorado Cancer Center, Aurora, CO, United States
| |
Collapse
|
7
|
Egaña-Huguet J, Bonilla-Del Río I, Gómez-Urquijo SM, Mimenza A, Saumell-Esnaola M, Borrega-Roman L, García Del Caño G, Sallés J, Puente N, Gerrikagoitia I, Elezgarai I, Grandes P. The Absence of the Transient Receptor Potential Vanilloid 1 Directly Impacts on the Expression and Localization of the Endocannabinoid System in the Mouse Hippocampus. Front Neuroanat 2021; 15:645940. [PMID: 33692673 PMCID: PMC7937815 DOI: 10.3389/fnana.2021.645940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a non-selective ligand-gated cation channel involved in synaptic transmission, plasticity, and brain pathology. In the hippocampal dentate gyrus, TRPV1 localizes to dendritic spines and dendrites postsynaptic to excitatory synapses in the molecular layer (ML). At these same synapses, the cannabinoid CB1 receptor (CB1R) activated by exogenous and endogenous cannabinoids localizes to the presynaptic terminals. Hence, as both receptors are activated by endogenous anandamide, co-localize, and mediate long-term depression of the excitatory synaptic transmission at the medial perforant path (MPP) excitatory synapses though by different mechanisms, it is plausible that they might be exerting a reciprocal influence from their opposite synaptic sites. In this anatomical scenario, we tested whether the absence of TRPV1 affects the endocannabinoid system. The results obtained using biochemical techniques and immunoelectron microscopy in a mouse with the genetic deletion of TRPV1 show that the expression and localization of components of the endocannabinoid system, included CB1R, change upon the constitutive absence of TRPV1. Thus, the expression of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) drastically increased in TRPV1-/- whole homogenates. Furthermore, CB1R and MAGL decreased and the cannabinoid receptor interacting protein 1a (CRIP1a) increased in TRPV1-/- synaptosomes. Also, CB1R positive excitatory terminals increased, the number of excitatory terminals decreased, and CB1R particles dropped significantly in inhibitory terminals in the dentate ML of TRPV1-/- mice. In the outer 2/3 ML of the TRPV1-/- mutants, the proportion of CB1R particles decreased in dendrites, and increased in excitatory terminals and astrocytes. In the inner 1/3 ML, the proportion of labeling increased in excitatory terminals, neuronal mitochondria, and dendrites. Altogether, these observations indicate the existence of compensatory changes in the endocannabinoid system upon TRPV1 removal, and endorse the importance of the potential functional adaptations derived from the lack of TRPV1 in the mouse brain.
Collapse
Affiliation(s)
- Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Sonia M Gómez-Urquijo
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Leire Borrega-Roman
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
8
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
9
|
Narouze S. Antinociception mechanisms of action of cannabinoid-based medicine: an overview for anesthesiologists and pain physicians. Reg Anesth Pain Med 2020; 46:240-250. [PMID: 33239391 DOI: 10.1136/rapm-2020-102114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Cannabinoid-based medications possess unique multimodal analgesic mechanisms of action, modulating diverse pain targets. Cannabinoids are classified based on their origin into three categories: endocannabinoids (present endogenously in human tissues), phytocannabinoids (plant derived) and synthetic cannabinoids (pharmaceutical). Cannabinoids exert an analgesic effect, peculiarly in hyperalgesia, neuropathic pain and inflammatory states. Endocannabinoids are released on demand from postsynaptic terminals and travels retrograde to stimulate cannabinoids receptors on presynaptic terminals, inhibiting the release of excitatory neurotransmitters. Cannabinoids (endogenous and phytocannabinoids) produce analgesia by interacting with cannabinoids receptors type 1 and 2 (CB1 and CB2), as well as putative non-CB1/CB2 receptors; G protein-coupled receptor 55, and transient receptor potential vanilloid type-1. Moreover, they modulate multiple peripheral, spinal and supraspinal nociception pathways. Cannabinoids-opioids cross-modulation and synergy contribute significantly to tolerance and antinociceptive effects of cannabinoids. This narrative review evaluates cannabinoids' diverse mechanisms of action as it pertains to nociception modulation relevant to the practice of anesthesiologists and pain medicine physicians.
Collapse
Affiliation(s)
- Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
10
|
Escelsior A, Sterlini B, Murri MB, Serafini G, Aguglia A, da Silva BP, Corradi A, Valente P, Amore M. Red-hot chili receptors: A systematic review of TRPV1 antagonism in animal models of psychiatric disorders and addiction. Behav Brain Res 2020; 393:112734. [DOI: 10.1016/j.bbr.2020.112734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
|
11
|
|
12
|
Transient receptor potential vanilloid 1 antagonism in neuroinflammation, neuroprotection and epigenetic regulation: potential therapeutic implications for severe psychiatric disorders treatment. Psychiatr Genet 2020; 30:39-48. [PMID: 32097233 DOI: 10.1097/ypg.0000000000000249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Low-dose curcumin reduced TNBS-associated mucin depleted foci in mice by scavenging superoxide anion and lipid peroxides, rebalancing matrix NO synthase and aconitase activities, and recoupling mitochondria. Inflammopharmacology 2020; 28:949-965. [DOI: 10.1007/s10787-019-00684-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022]
|
14
|
Wang J, Lu HX, Wang J. Cannabinoid receptors in osteoporosis and osteoporotic pain: a narrative update of review. ACTA ACUST UNITED AC 2019; 71:1469-1474. [PMID: 31294469 DOI: 10.1111/jphp.13135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Osteoporosis is a skeletal disease with decreased bone mass and alteration in microarchitecture of bone tissue, and these changes put patients in risk of bone fracture. As a common symptom of osteoporosis and complication of osteoporotic fracture, chronic pain is a headache for clinicians. Nonsteroidal anti-inflammatory drugs (NSAIDs), selective COX-2 inhibitors and opioid drugs can temporarily reduce osteoporotic pain but have relevant side effects, such as addiction, tolerability and safety. The review summarized the recent advancements in the study of CB receptors in osteoporosis and osteoporotic pain and related mechanisms. KEY FINDINGS Recent studies indicated the two nociceptive receptors, cannabinoid receptor (CB) and transient receptor potential vanilloid type 1 (TRPV1) channel, are co-expressed in bone cells and play important role in the metabolism of bone cells, suggesting that dualtargeting these 2 receptors/channel may provide a novel approach for osteoporotic pain. In addition, both CB receptor and TRPV1 channel are found to be expressed in the glial cells which play vital role in mediating inflammation, chronic pain and metabolism of bone cells, suggesting a role of glial cells inosteoporotic pain. SUMMARY Multiple-targeting against glial cells, CB receptors and TRPV1 channel may be one effective therapeutic strategy for osteoporotic pain in the future, following the elucidation of the complicated mechanism.
Collapse
Affiliation(s)
- Jing Wang
- Department of Osteoporosis, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Hong-Xia Lu
- Department of Ultrasound, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jing Wang
- Department of Nephrology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| |
Collapse
|
15
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
16
|
De Aquino JP, Ross DA. Cannabinoids and Pain: Weeding Out Undesired Effects With a Novel Approach to Analgesia. Biol Psychiatry 2018; 84:e67-e69. [PMID: 30360776 PMCID: PMC6697049 DOI: 10.1016/j.biopsych.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023]
|
17
|
Vučković S, Srebro D, Vujović KS, Vučetić Č, Prostran M. Cannabinoids and Pain: New Insights From Old Molecules. Front Pharmacol 2018; 9:1259. [PMID: 30542280 PMCID: PMC6277878 DOI: 10.3389/fphar.2018.01259] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
Cannabis has been used for medicinal purposes for thousands of years. The prohibition of cannabis in the middle of the 20th century has arrested cannabis research. In recent years there is a growing debate about the use of cannabis for medical purposes. The term ‘medical cannabis’ refers to physician-recommended use of the cannabis plant and its components, called cannabinoids, to treat disease or improve symptoms. Chronic pain is the most commonly cited reason for using medical cannabis. Cannabinoids act via cannabinoid receptors, but they also affect the activities of many other receptors, ion channels and enzymes. Preclinical studies in animals using both pharmacological and genetic approaches have increased our understanding of the mechanisms of cannabinoid-induced analgesia and provided therapeutical strategies for treating pain in humans. The mechanisms of the analgesic effect of cannabinoids include inhibition of the release of neurotransmitters and neuropeptides from presynaptic nerve endings, modulation of postsynaptic neuron excitability, activation of descending inhibitory pain pathways, and reduction of neural inflammation. Recent meta-analyses of clinical trials that have examined the use of medical cannabis in chronic pain present a moderate amount of evidence that cannabis/cannabinoids exhibit analgesic activity, especially in neuropathic pain. The main limitations of these studies are short treatment duration, small numbers of patients, heterogeneous patient populations, examination of different cannabinoids, different doses, the use of different efficacy endpoints, as well as modest observable effects. Adverse effects in the short-term medical use of cannabis are generally mild to moderate, well tolerated and transient. However, there are scant data regarding the long-term safety of medical cannabis use. Larger well-designed studies of longer duration are mandatory to determine the long-term efficacy and long-term safety of cannabis/cannabinoids and to provide definitive answers to physicians and patients regarding the risk and benefits of its use in the treatment of pain. In conclusion, the evidence from current research supports the use of medical cannabis in the treatment of chronic pain in adults. Careful follow-up and monitoring of patients using cannabis/cannabinoids are mandatory.
Collapse
Affiliation(s)
- Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Čedomir Vučetić
- Clinic of Orthopaedic Surgery and Traumatology, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Abstract
OBJECTIVE Studies have consistently shown that long-term meditation practice is associated with reduced pain, but the neural mechanisms by which long-term meditation practice reduces pain remain unclear. This study tested endogenous opioid involvement in meditation analgesia associated with long-term meditation practice. METHODS Electrical pain was induced with randomized, double-blind, cross-over administration of the opioid antagonist naloxone (0.15-mg/kg bolus dose, then 0.2-mg/kg per hour infusion dose) with 32 healthy, experienced meditation practitioners and a standardized open monitoring meditation. RESULTS Under saline, pain ratings were significantly lower during meditation (pain intensity: 6.41 ± 1.32; pain unpleasantness: 3.98 ± 2.17) than at baseline (pain intensity: 6.86 ±1.04, t(31) = 2.476, p = .019, Cohen's d = 0.46; pain unpleasantness: 4.96 ±1.75, t(31) = 3.746, p = .001, Cohen's d = 0.68), confirming the presence of meditation analgesia. Comparing saline and naloxone revealed significantly lower pain intensity (t(31) = 3.12, p = .004, d = 0.56), and pain unpleasantness (t(31) = 3.47, p = .002, d = 0.62), during meditation under naloxone (pain intensity: 5.53 ± 1.54; pain unpleasantness: 2.95 ± 1.88) than under saline (pain intensity: 6.41 ± 1.32; pain unpleasantness: 3.98 ± 2.17). Naloxone not only failed to eliminate meditation analgesia but also made meditation analgesia stronger. CONCLUSIONS Long-term meditation practice does not rely on endogenous opioids to reduce pain. Naloxone's blockade of opioid receptors enhanced meditation analgesia; pain ratings during meditation were significantly lower under naloxone than under saline. Possible biological mechanisms by which naloxone-induced opioid receptor blockade enhances meditation analgesia are discussed.
Collapse
|
19
|
Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine. Int J Mol Sci 2017; 18:ijms18081617. [PMID: 28758944 PMCID: PMC5578009 DOI: 10.3390/ijms18081617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system-which has a crucial role in the pathomechanisms of migraine-will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.
Collapse
|
20
|
Actions and Regulation of Ionotropic Cannabinoid Receptors. ADVANCES IN PHARMACOLOGY 2017; 80:249-289. [PMID: 28826537 DOI: 10.1016/bs.apha.2017.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Almost three decades have passed since the identification of the two specific metabotropic receptors mediating cannabinoid pharmacology. Thereafter, many cannabinoid effects, both at central and peripheral levels, have been well documented and characterized. However, numerous evidences demonstrated that these pharmacological actions could not be attributable solely to the activation of CB1 and CB2 receptors since several important cannabimimetic actions have been found in biological systems lacking CB1 or CB2 gene such as in specific cell lines or transgenic mice. It is now well accepted that, beyond their receptor-mediated effects, these molecules can act also via CB1/CB2-receptor-independent mechanism. Cannabinoids have been demonstrated to modulate several voltage-gated channels (including Ca2+, Na+, and various type of K+ channels), ligand-gated ion channels (i.e., GABA, glycine), and ion-transporting membranes proteins such as transient potential receptor class (TRP) channels. The first direct, cannabinoid receptor-independent interaction was reported on the function of serotonin 5-HT3 receptor-ion channel complex. Similar effects were reported also on the other above mentioned ion channels. In the early ninety, studies searching for endogenous modulators of L-type Ca2+ channels identified anandamide as ligand for L-type Ca2+ channel. Later investigations indicated that other types of Ca2+ currents are also affected by endocannabinoids, and, in the late ninety, it was discovered that endocannabinoids activate the vanilloid receptor subtype 1 (TRPV1), and nowadays, it is known that (endo)cannabinoids gate at least five distinct TRP channels. This chapter focuses on cannabinoid regulation of ion channels and lays special emphasis on their action at transient receptor channels.
Collapse
|
21
|
Mollica A, Pelliccia S, Famiglini V, Stefanucci A, Macedonio G, Chiavaroli A, Orlando G, Brunetti L, Ferrante C, Pieretti S, Novellino E, Benyhe S, Zador F, Erdei A, Szucs E, Samavati R, Dvrorasko S, Tomboly C, Ragno R, Patsilinakos A, Silvestri R. Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors. J Enzyme Inhib Med Chem 2017; 32:444-451. [PMID: 28097916 PMCID: PMC6009935 DOI: 10.1080/14756366.2016.1260565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.
Collapse
Affiliation(s)
- Adriano Mollica
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Sveva Pelliccia
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Valeria Famiglini
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Azzurra Stefanucci
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giorgia Macedonio
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Annalisa Chiavaroli
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giustino Orlando
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Luigi Brunetti
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Claudio Ferrante
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Stefano Pieretti
- c Dipartimento del Farmaco , Istituto Superiore di Sanità , Rome , Italy
| | - Ettore Novellino
- d Dipartimento di Farmacia , Università di Napoli "Federico II" , Naples , Italy
| | - Sandor Benyhe
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Ferenc Zador
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Anna Erdei
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Edina Szucs
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Reza Samavati
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Szalbolch Dvrorasko
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Csaba Tomboly
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Rino Ragno
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Alexandros Patsilinakos
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Romano Silvestri
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| |
Collapse
|
22
|
Synergistic combinations of the dual enkephalinase inhibitor PL265 given orally with various analgesic compounds acting on different targets, in a murine model of cancer-induced bone pain. Scand J Pain 2016; 14:25-38. [PMID: 28850427 DOI: 10.1016/j.sjpain.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The first line pharmacological treatment of cancer pain is morphine and surrogates but a significant pain relief and a reduction of the side-effects of these compounds makes it necessary to combine them with other drugs acting on different targets. The aim of this study was to measure the antinociceptive effect on cancer-induced bone pain resulting from the association of the endogenous opioids enkephalin and non-opioid analgesic drugs. For this purpose, PL265 a new orally active single dual inhibitor of the two degrading enkephalins enzymes, neprilysin (NEP) and aminopeptidase N (APN) was used. It strictly increased the levels of enkephalin at their sites of releases. The selected non-opioid compounds are: gabapentin, A-317491 (P2X3 receptor antagonist), ACEA (CB1 receptor antagonist), AM1241 (CB2 receptor antagonist), JWH-133 (CB2 receptor antagonist), URB937 (FAAH inhibitor), and NAV26 (Nav1.7 channel blocker). METHODS Experiments. Experiments were performed in 5-6 weeks old (26-33g weight) C57BL/6 mice. Cell culture and cell inoculation. B16-F10 melanoma cells were cultured and when preconfluent, treated and detached. Finally related cells were resuspended to obtain a concentration of 2×106 cells/100μL. Then 105 cells were injected into the right tibial medullar cavity. Control mice were treated by killed cells by freezing. Behavioural studies. Thermal withdrawal latencies were measured on a unilatered hot plate (UHP) maintained at 49±0.2°C. Mechanical threshold values were obtained by performing the von Frey test using the "up and down" method. To evaluate the nature (additive or synergistic) of the interactions between PL265 and different drugs, an isobolographic analysis following the method described by Tallarida was performed. RESULTS The results demonstrate the ability of PL265, a DENKI that prevents the degradation of endogenous ENKs, to counteract cancer-induced bone thermal hyperalgesia in mice, by exclusively stimulating peripheral opioid receptors as demonstrated by used of an opioid antagonist unable to enter the brain. The development of such DENKIs, endowed with druggable pharmacokinetic characteristics, such as good absorption by oral route, can be considered as an important step in the development of much needed novel antihyperalgesic drugs. Furthermore, all the tested combinations resulted in synergistic antihyperalgesic effects. As shown here, the greatest synergistic antinociceptive effect (doses could be lowered by 70%) was produced by the combination of PL265 with the P2X3 receptor antagonist (A-317491), cannabinoid CB1 receptor agonist (exogenous, ACEA and endogenous URB937-protected-AEA) and Nav1.7 blocker (NAV26) whose mechanism of action involves the direct activation of the enkephalinergic system. CONCLUSIONS These multi-target-based antinociceptive strategies using combinations of non-opioid drugs with dual inhibitors of enkephalin degrading enzymes may bring therapeutic advantages in terms of efficacy and safety by allowing the reduction of doses of one of the compounds or of both, which is of the utmost interest in the chronic treatment of cancer pain. IMPLICATIONS This article presents synergistic antinociceptive effect produced by the combination of PL265 with non-opioid analgesic drugs acting via unrelated mechanisms. These multi-target-based antinociceptive strategies may bring therapeutic advantages by allowing the reduction of doses, which is of great interest in the chronic treatment of cancer pain.
Collapse
|
23
|
Yan D, Liu X, Guo SW. Nerve fibers and endometriotic lesions: partners in crime in inflicting pains in women with endometriosis. Eur J Obstet Gynecol Reprod Biol 2016; 209:14-24. [PMID: 27418559 DOI: 10.1016/j.ejogrb.2016.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
Abstract
One of major objectives in treating endometriosis is to alleviate pain since dysmenorrhea and other types of pain top the list of complaints from women with endometriosis who seek medical attention. Indeed, endometriosis-associated pain (EAP) is the most debilitating of the disease that negatively impacts on the quality of life in affected women, contributing significantly to the burden of disease and adding to the substantial personal and societal costs. Unfortunately, the mechanisms underlying the EAP are still poorly understood. In the last two decades, one active research field in endometriosis is the investigation on the distribution and genesis of nerve fibers in eutopic and ectopic endometrium, and the attempt to use endometrial nerve fiber density for diagnostic purpose. Since EAP presumably starts with the terminal sensory nerves, in or around endometriotic lesions, that transduce noxious mediators to the central nervous system (CNS) which ultimately perceives pain, this field of research holds the promise to elucidate the molecular mechanisms underlying the EAP, thus opening new avenues for novel diagnostics and therapeutics. In this review, we shall first briefly provide some basic facts on nerve fibers, and then provide an overview of some major findings in this filed while also note some conflicting results and expose areas in need of further research. We point out that since recently accumulated evidence suggests that endometriotic lesions are wounds undergoing repeated tissue injury and repair, the relationship between endometriotic lesions and nerve fibers is not simply unidirectional, i.e. lesions promote hyperinnervations. Rather, it is bidirectional, i.e. endometriotic lesions and nerve fibers engage active cross-talks, resulting in the development of endometriosis and pain. That is, nerve fibers and endometriotic lesions are actually partners in crime in inflicting pains in women with endometriosis, aided and abetted possibly by other culprits, some yet to be identified. We provide a list of possible perpetrators likely to be involved in this crime. Finally, we discuss possible implications when viewing the relationship from this vista.
Collapse
Affiliation(s)
- Dingmin Yan
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
De Winter BY, Deiteren A, De Man JG. Novel nervous system mechanisms in visceral pain. Neurogastroenterol Motil 2016; 28:309-15. [PMID: 26891060 DOI: 10.1111/nmo.12785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Visceral hypersensitivity is an important factor underlying abdominal pain in functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and can result from aberrant signaling from the gut to the brain or vice versa. Over the last two decades, research has identified several selective, intertwining pathways that underlie IBS-related visceral nociception, including specific receptors on afferent and efferent nerve fibers such as transient receptor potential channels (TRP) channels, opioid, and cannabinoid receptors. In this issue of Neurogastroenterology and Motility Gil et al. demonstrate that in an animal model with reduced descending inhibitory control, the sympathetic nervous system outflow is enhanced, contributing to visceral and somatic hypersensitivity. They also provide evidence that interfering with the activation of adrenergic receptors on sensory nerves can be an interesting new strategy to treat visceral pain in IBS. This mini-review places these findings in a broader perspective by providing an overview of promising novel mechanisms to alter the nervous control of visceral pain interfering with afferent or efferent neuronal signaling.
Collapse
Affiliation(s)
- B Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - A Deiteren
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - J G De Man
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|