1
|
Bresinsky M, Shahraki A, Kolb P, Pockes S, Schihada H. Development of Fluorescent AF64394 Analogues Enables Real-Time Binding Studies for the Orphan Class A GPCR GPR3. J Med Chem 2023; 66:15025-15041. [PMID: 37907069 PMCID: PMC10641823 DOI: 10.1021/acs.jmedchem.3c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
The orphan G protein-coupled receptor (oGPCR) GPR3 represents a potential drug target for the treatment of Alzheimer's disease and metabolic disorders. However, the limited toolbox of pharmacological assays hampers the development of advanced ligands. Here, we developed a signaling pathway-independent readout of compound-GPR3 interaction. Starting from computational binding pose predictions of the most potent GPR3 ligand, we designed a series of fluorescent AF64394 analogues and assessed their suitability for BRET-based binding studies. The most potent ligand, 45 (UR-MB-355), bound to GPR3 and closely related receptors, GPR6 and GPR12, with similar submicromolar affinities. Furthermore, we found that 45 engages GPR3 in a distinct mode compared to AF64394, and coincubation studies with the GPR3 agonist diphenyleneiodonium chloride revealed allosteric modulation of 45 binding. These insights provide new cues for the pharmacological manipulation of GPR3 activity. This novel binding assay will foster the development of future drugs acting through these pharmacologically attractive oGPCRs.
Collapse
Affiliation(s)
- Merlin Bresinsky
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Aida Shahraki
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Peter Kolb
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Hannes Schihada
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| |
Collapse
|
2
|
Sadee W. Ligand-Free Signaling of G-Protein-Coupled Receptors: Physiology, Pharmacology, and Genetics. Molecules 2023; 28:6375. [PMID: 37687205 PMCID: PMC10489045 DOI: 10.3390/molecules28176375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are ubiquitous sensors and regulators of cellular functions. Each GPCR exists in complex aggregates with multiple resting and active conformations. Designed to detect weak stimuli, GPCRs can also activate spontaneously, resulting in basal ligand-free signaling. Agonists trigger a cascade of events leading to an activated agonist-receptor G-protein complex with high agonist affinity. However, the ensuing signaling process can further remodel the receptor complex to reduce agonist affinity, causing rapid ligand dissociation. The acutely activated ligand-free receptor can continue signaling, as proposed for rhodopsin and μ opioid receptors, resulting in robust receptor activation at low agonist occupancy with enhanced agonist potency. Continued receptor stimulation can further modify the receptor complex, regulating sustained ligand-free signaling-proposed to play a role in opioid dependence. Basal, acutely agonist-triggered, and sustained elevated ligand-free signaling could each have distinct functions, reflecting multi-state conformations of GPCRs. This review addresses basal and stimulus-activated ligand-free signaling, its regulation, genetic factors, and pharmacological implications, focusing on opioid and serotonin receptors, and the growth hormone secretagogue receptor (GHSR). The hypothesis is proposed that ligand-free signaling of 5-HT2A receptors mediate therapeutic effects of psychedelic drugs. Research avenues are suggested to close the gaps in our knowledge of ligand-free GPCR signaling.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- Aether Therapeutics Inc., Austin, TX 78756, USA
| |
Collapse
|
3
|
Template Entrance Channel as Possible Allosteric Inhibition and Resistance Site for Quinolines Tricyclic Derivatives in RNA Dependent RNA Polymerase of Bovine Viral Diarrhea Virus. Pharmaceuticals (Basel) 2023; 16:ph16030376. [PMID: 36986476 PMCID: PMC10058290 DOI: 10.3390/ph16030376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The development of potent non-nucleoside inhibitors (NNIs) could be an alternate strategy to combating infectious bovine viral diarrhea virus (BVDV), other than the traditional vaccination. RNA-dependent RNA polymerase (RdRp) is an essential enzyme for viral replication; therefore, it is one of the primary targets for countermeasures against infectious diseases. The reported NNIs, belonging to the classes of quinolines (2h: imidazo[4,5-g]quinolines and 5m: pyrido[2,3-g] quinoxalines), displayed activity in cell-based and enzyme-based assays. Nevertheless, the RdRp binding site and microscopic mechanistic action are still elusive, and can be explored at a molecular level. Here, we employed a varied computational arsenal, including conventional and accelerated methods, to identify quinoline compounds’ most likely binding sites. Our study revealed A392 and I261 as the mutations that can render RdRp resistant against quinoline compounds. In particular, for ligand 2h, mutation of A392E is the most probable mutation. The loop L1 and linker of the fingertip is recognized as a pivotal structural determinant for the stability and escape of quinoline compounds. Overall, this work demonstrates that the quinoline inhibitors bind at the template entrance channel, which is governed by conformational dynamics of interactions with loops and linker residues, and reveals structural and mechanistic insights into inhibition phenomena, for the discovery of improved antivirals.
Collapse
|
4
|
Veiksina S, Tahk MJ, Laasfeld T, Link R, Kopanchuk S, Rinken A. Fluorescence Anisotropy-Based Assay for Characterization of Ligand Binding Dynamics to GPCRs: The Case of Cy3B-Labeled Ligands Binding to MC 4 Receptors in Budded Baculoviruses. Methods Mol Biol 2021; 2268:119-136. [PMID: 34085265 DOI: 10.1007/978-1-0716-1221-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the past decade, fluorescence methods have become valuable tools for characterizing ligand binding to G protein-coupled receptors (GPCRs). However, only a few of the assays enable studying wild-type receptors and monitor the ligand binding in real time. One of the approaches that is inherently suitable for this purpose is the fluorescence anisotropy (FA) assay. In the FA assay, the change of ligand's rotational freedom connected with its binding to the receptor can be monitored with a conventional fluorescence plate reader equipped with suitable optical filters. To achieve the high receptor concentration required for the assay and the low autofluorescence levels essential for reliable results, budded baculoviruses that display GPCRs on their surfaces can be used. The monitoring process generates a substantial amount of kinetic data, which is usually stored as a proprietary file format limiting the flexibility of data analysis. To solve this problem, we propose the use of the data curation software Aparecium ( http://gpcr.ut.ee/aparecium.html ), which integrates experimental data with metadata in a Minimum Information for Data Analysis in Systems Biology (MIDAS) format. Aparecium enables data export to different software packages for fitting to suitable kinetic or equilibrium models. A combination of the FA assay with the novel data analysis strategy is suitable for screening new active compounds, but also for modeling complex systems of ligand binding to GPCRs. We present the proposed approach using different fluorescent probes and assay types to characterize ligand binding to melanocortin 4 (MC4) receptor.
Collapse
Affiliation(s)
- Santa Veiksina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Reet Link
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia.
| |
Collapse
|
5
|
She X, Pegoli A, Gruber CG, Wifling D, Carpenter J, Hübner H, Chen M, Wan J, Bernhardt G, Gmeiner P, Holliday ND, Keller M. Red-Emitting Dibenzodiazepinone Derivatives as Fluorescent Dualsteric Probes for the Muscarinic Acetylcholine M2 Receptor. J Med Chem 2020; 63:4133-4154. [PMID: 32233403 DOI: 10.1021/acs.jmedchem.9b02172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xueke She
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andrea Pegoli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Corinna G. Gruber
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Jessica Carpenter
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, U.K
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Mengya Chen
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Jianfei Wan
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Nicholas D. Holliday
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, U.K
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
6
|
Assays with Detection of Fluorescence Anisotropy: Challenges and Possibilities for Characterizing Ligand Binding to GPCRs. Trends Pharmacol Sci 2018; 39:187-199. [DOI: 10.1016/j.tips.2017.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/24/2023]
|
7
|
Bernetti M, Cavalli A, Mollica L. Protein-ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. MEDCHEMCOMM 2017; 8:534-550. [PMID: 30108770 PMCID: PMC6072069 DOI: 10.1039/c6md00581k] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Abstract
In the last three decades, protein and nucleic acid structure determination and comprehension of the mechanisms, leading to their physiological and pathological functions, have become a cornerstone of biomedical sciences. A deep understanding of the principles governing the fates of cells and tissue at the molecular level has been gained over the years, offering a solid basis for the rational design of drugs aimed at the pharmacological treatment of numerous diseases. Historically, affinity indicators (i.e. Kd and IC50/EC50) have been assumed to be valid indicators of the in vivo efficacy of a drug. However, recent studies pointed out that the kinetics of the drug-receptor binding process could be as important or even more important than affinity in determining the drug efficacy. This eventually led to a growing interest in the characterisation and prediction of the rate constants of protein-ligand association and dissociation. For instance, a drug with a longer residence time can kinetically select a given receptor over another, even if the affinity for both receptors is comparable, thus increasing its therapeutic index. Therefore, understanding the molecular features underlying binding and unbinding processes is of central interest towards the rational control of drug binding kinetics. In this review, we report the theoretical framework behind protein-ligand association and highlight the latest advances in the experimental and computational approaches exploited to investigate the binding kinetics.
Collapse
Affiliation(s)
- M Bernetti
- Department of Pharmacy and Biotechnology , University of Bologna , via Belmeloro 6 , 40126 Bologna , Italy
- CompuNet , Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genova , Italy .
| | - A Cavalli
- Department of Pharmacy and Biotechnology , University of Bologna , via Belmeloro 6 , 40126 Bologna , Italy
- CompuNet , Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genova , Italy .
| | - L Mollica
- CompuNet , Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genova , Italy .
| |
Collapse
|
8
|
Link R, Veiksina S, Rinken A, Kopanchuk S. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties. Eur J Pharmacol 2017; 799:58-66. [DOI: 10.1016/j.ejphar.2017.01.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/24/2022]
|