1
|
Bondonno NP, Pokharel P, Bondonno CP, Erichsen DW, Zhong L, Schullehner J, Frederiksen K, Kyrø C, Hendriksen PF, Hodgson JM, Dalgaard F, Blekkenhorst LC, Raaschou-Nielsen O, Sigsgaard T, Dahm CC, Tjønneland A, Olsen A. Source-specific nitrate intake and all-cause mortality in the Danish Diet, Cancer, and Health Study. Eur J Epidemiol 2024; 39:925-942. [PMID: 38802612 PMCID: PMC11410901 DOI: 10.1007/s10654-024-01133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Nitrate and nitrite are naturally occurring in both plant- and animal-sourced foods, are used as additives in the processing of meat, and are found in water. There is growing evidence that they exhibit a spectrum of health effects, depending on the dietary source. The aim of the study was to examine source-dependent associations between dietary intakes of nitrate/nitrite and both all-cause and cause-specific mortality. METHODS In 52,247 participants of the Danish Diet, Cancer and Health Study, associations between source-dependent nitrate and nitrite intakes--calculated using comprehensive food composition and national drinking water quality monitoring databases--and all-cause, cardiovascular disease (CVD)-related, and cancer-related mortality over 27 years were examined using restricted cubic splines within Cox proportional hazards models adjusting for demographic, lifestyle, and dietary confounders. Analyses were stratified by factors hypothesised to influence the formation of carcinogenic N-nitroso compounds (namely, smoking and dietary intakes of vitamin C, vitamin E, folate, and polyphenols). RESULTS Plant-sourced nitrate intake was inversely associated with all-cause mortality [HRQ5vsQ1: 0.83 (0.80, 0.87)] while higher risks of all-cause mortality were seen for higher intakes of naturally occurring animal-sourced nitrate [1.09 (1.04, 1.14)], additive permitted meat-sourced nitrate [1.19 (1.14, 1.25)], and tap water-sourced nitrate [1.19 (1.14, 1.25)]. Similar source-dependent associations were seen for nitrite and for CVD-related and cancer-related mortality except that naturally occurring animal-sourced nitrate and tap water-sourced nitrate were not associated with cancer-related mortality and additive permitted meat-sourced nitrate was not associated with CVD-related mortality. No clear patterns emerged in stratified analyses. CONCLUSION Nitrate/nitrite from plant sources are inversely associated while those from naturally occurring animal-sources, additive-permitted meat sources, and tap water-sources are positively associated with mortality.
Collapse
Affiliation(s)
- Nicola P Bondonno
- The Danish Cancer Institute, Copenhagen, Denmark.
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| | - Pratik Pokharel
- The Danish Cancer Institute, Copenhagen, Denmark
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Catherine P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | | | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Institute of Agriculture, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Jörg Schullehner
- Department of Groundwater and Quaternary Geology Mapping, Geological Survey of Denmark and Greenland, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Cecilie Kyrø
- The Danish Cancer Institute, Copenhagen, Denmark
| | | | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Frederik Dalgaard
- Department of Cardiology, Herlev & Gentofte University Hospital, Copenhagen, Denmark
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Ole Raaschou-Nielsen
- The Danish Cancer Institute, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | | | - Anne Tjønneland
- The Danish Cancer Institute, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Olsen
- The Danish Cancer Institute, Copenhagen, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Pinaffi-Langley ACDC, Dajani RM, Prater MC, Nguyen HVM, Vrancken K, Hays FA, Hord NG. Dietary Nitrate from Plant Foods: A Conditionally Essential Nutrient for Cardiovascular Health. Adv Nutr 2024; 15:100158. [PMID: 38008359 PMCID: PMC10776916 DOI: 10.1016/j.advnut.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Under specific conditions, such as catabolic stress or systemic inflammation, endogenous nutrient production becomes insufficient and exogenous supplementation (for example, through dietary intake) is required. Herein, we propose consideration of a dietary nitrate from plant foods as a conditionally essential nutrient for cardiovascular health based on its role in nitric oxide homeostasis. Nitrate derived from plant foods may function as a conditionally essential nutrient, whereas nitrate obtained from other dietary sources, such as drinking water and cured/processed meats, warrants separate consideration because of the associated health risks. We have surveyed the literature and summarized epidemiological evidence regarding the effect of dietary nitrate on cardiovascular disease and risk factors. Meta-analyses and population-based observational studies have consistently demonstrated an inverse association of dietary nitrate with blood pressure and cardiovascular disease outcomes. Considering the available evidence, we suggest 2 different approaches to providing dietary guidance on nitrate from plant-based dietary sources as a nutrient: the Dietary Reference Intakes developed by the National Academies of Sciences, Engineering, and Medicine, and the dietary guidelines evaluated by the Academy of Nutrition and Dietetics. Ultimately, this proposal underscores the need for food-based dietary guidelines to capture the complex and context-dependent relationships between nutrients, particularly dietary nitrate, and health.
Collapse
Affiliation(s)
- Ana Clara da C Pinaffi-Langley
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rosa M Dajani
- Nutrition and Food Services, San Francisco Health, University of California, San Francisco, CA, United States
| | - M Catherine Prater
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA, United States
| | - Hoang Van M Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Franklin A Hays
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Norman G Hord
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
3
|
Zhang Y, Zhang H, An W, Li D, Qin L. Regulatory effect of dietary nitrate on blood pressure: a meta-analysis of randomized controlled trials. Food Funct 2023; 14:1839-1850. [PMID: 36740972 DOI: 10.1039/d2fo03140j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hypertension is the leading risk factor for global disease burden. Many clinical studies have reported that dietary inorganic nitrate can affect blood pressure. In this study, the PubMed, Embase, and Cochrane Library databases were searched for relevant literature published before December 2021 to explore the preventive and therapeutic effects of inorganic nitrate on hypertension. Two reviewers evaluated the randomized controlled trials of inorganic nitrates. This study included a total of 19 articles. The analyzed outcomes of the study were systolic, diastolic and mean arterial blood pressures as well as 24-hour ambulatory blood pressure. RevMan 5.4 was used to conduct meta-analysis. In the healthy population, inorganic nitrate lowered systolic blood pressure (-2.42 mmHg, 95% confidence intervals (CI) [-4.28, -0.57]; P = 0.01) but not diastolic blood pressure (-0.58 mmHg, 95% CI [-1.84, 0.68]; P = 0.36) or mean arterial pressure (-1.01 mmHg, 95% CI [-3.55, 1.54]; P = 0.44). However, in the hypertensive population, inorganic nitrates did not lower systolic blood pressure (-0.82 mmHg, 95% CI [-2.53, 0.90]; P = 0.35), diastolic blood pressure (-0.03 mmHg, 95% CI [-1.35, 1.30]; P = 0.97), 24-hour ambulatory systolic blood pressure (-0.22 mmHg, 95% CI [-1.50, 1.94]; P = 0.8), or 24-hour ambulatory diastolic blood pressure (-0.33 mmHg, 95% CI [-2.03, 1.37]; P = 0.7). In conclusion, inorganic nitrate can mildly reduce systolic blood pressure in healthy people, but does not have a lowering effect on blood pressure in patients with hypertension. Further research is required to obtain more definitive data and prove the link between inorganic nitrate and blood pressure.
Collapse
Affiliation(s)
- Yingrui Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Haoyang Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Wei An
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital, Shuang Ta Temple Street No. 29, Taiyuan, Shanxi, 030000, China
| | - Dan Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China.
| |
Collapse
|
4
|
Hazell G, Khazova M, Cohen H, Felton S, Raj K. Post-exposure persistence of nitric oxide upregulation in skin cells irradiated by UV-A. Sci Rep 2022; 12:9465. [PMID: 35676302 PMCID: PMC9177615 DOI: 10.1038/s41598-022-13399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Evidence suggests that exposure to UV-A radiation can liberate nitric oxide from skin cells eliciting vasodilation in-vivo. However, the duration of nitric oxide release in skin cells after UV exposure is not well studied, with emphasis on UV-B mediated iNOS upregulation. The current study demonstrated persistence of nitric oxide release in a dark reaction after moderate UV-A exposure, peaking around 48 h post exposure; this effect was shown in keratinocytes, fibroblasts and endothelial cells from neonatal donors and keratinocytes from aged donors and confirmed the hypothesis that UV-A exposure appeared to upregulate cNOS alongside iNOS. Release of nitric oxide in the skin cells induced by a moderate exposure to UV-A in sunlight may be especially beneficial for some demographic groups such as the elderly, hypertensive patients or those with impaired nitric oxide function, not only during exposure but many hours and days after that.
Collapse
Affiliation(s)
- Gareth Hazell
- UK Health Security Agency, Chilton, Didcot, OX11 0RQ, UK.
| | - Marina Khazova
- UK Health Security Agency, Chilton, Didcot, OX11 0RQ, UK
| | - Howard Cohen
- Elizabeth House, 515 Limpsfield Road, Warlingham, CR6 9LF, Surrey, UK
| | - Sarah Felton
- Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LJ, UK
| | - Ken Raj
- UK Health Security Agency, Chilton, Didcot, OX11 0RQ, UK
| |
Collapse
|
5
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
6
|
Siervo M, Shannon O, Kandhari N, Prabhakar M, Fostier W, Köchl C, Rogathi J, Temu G, Stephan BCM, Gray WK, Haule I, Paddick SM, Mmbaga BT, Walker R. Nitrate-Rich Beetroot Juice Reduces Blood Pressure in Tanzanian Adults with Elevated Blood Pressure: A Double-Blind Randomized Controlled Feasibility Trial. J Nutr 2020; 150:2460-2468. [PMID: 32729923 PMCID: PMC7467850 DOI: 10.1093/jn/nxaa170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/11/2020] [Accepted: 05/21/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In Sub-Saharan Africa, current strategies are struggling to control the burgeoning hypertension epidemic. Dietary interventions such as inorganic nitrate or folic acid supplementation could represent promising strategies for reducing blood pressure (BP) in this setting. OBJECTIVES This feasibility study explores the effects of dietary inorganic nitrate supplementation, alone or in combination with folic acid, on BP in Tanzanian adults with elevated BP in Tanzania. METHODS A placebo-controlled, double-blind, randomized controlled feasibility trial was conducted. Forty-seven middle-aged and older participants (age: 50-70 y, BMI: 26.3-29.1 kg/m2) were randomly assigned to 3 conditions for a period of 60 d: 1) high-nitrate beetroot juice (∼400 mg nitrate) and folic acid (∼5 mg folic acid) (N + F), 2) high-nitrate beetroot juice and placebo (N + P), or 3) nitrate-depleted beetroot juice and placebo (P + P). Clinic and 24-h ambulatory BP and measurements of compliance in plasma (nitrate and folate concentrations) and saliva (nitrate and nitrite) were obtained at baseline, 30 d, and 60 d. RESULTS Baseline resting systolic and diastolic BP (mean ± SD) was 151.0 ± 19.4 mm Hg and 91.8 ± 11.7 mm Hg, respectively. Compliance to the interventions was high (>90%) in all groups which was confirmed by the significant increase in nitrate and folic acid concentrations in plasma and saliva samples in the treatment arms. After 60 d, 24-h systolic BP dropped by -10.8 ± 9.8 mm Hg (P < 0.001), -6.1 ± 13.2 mm Hg (P = 0.03), and -0.3 ± 9.7 mm Hg (P = 0.83) in the N + P, N + F, and P + P groups, respectively. There was a significant decrease in 24-h diastolic BP in the N + P group (-5.4 ± 5.0 mm Hg, P = 0.004), whereas changes were not significant in the N + F (-1.8 ± 8.1 mm Hg, P = 0.32) and P + P (1.6 ± 8.3 mm Hg, P = 0.43) groups. CONCLUSIONS Dietary inorganic nitrate represents a potential nutritional strategy to lessen the hypertension epidemic in Sub-Saharan Africa. These findings support the rationale for future long-term investigations exploring the efficacy of dietary nitrate for lowering BP and attenuating cardiovascular disease risk in this setting.This trial was registered at isrctn.com as ISRCTN67978523.
Collapse
Affiliation(s)
| | - Oliver Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Navneet Kandhari
- Faculty of Medical Sciences, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Meghna Prabhakar
- Faculty of Medical Sciences, Newcastle University, Newcastle on Tyne, United Kingdom
| | - William Fostier
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Christina Köchl
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Jane Rogathi
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Gloria Temu
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Blossom C M Stephan
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
| | - William K Gray
- Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom
| | - Irene Haule
- District Medical Officer, Hai District Hospital, Bomangombe, Tanzania
| | - Stella-Maria Paddick
- Clinical and Translational Medicine, Newcastle University, Newcastle on Tyne, United Kingdom
| | | | - Richard Walker
- Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom,Population of Health Sciences Institute, Newcastle University, Newcastle on Tyne, United Kingdom
| |
Collapse
|
7
|
Lin YJ, Cheng CJ, Chen JW, Lin Z. Incorporating Exogenous and Endogenous Exposures into Dietary Risk Assessment of Nitrates and Nitrites in Vegetables: A Probabilistic Integrated Toxicokinetic Modeling Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1079-1090. [PMID: 31885263 DOI: 10.1021/acs.jafc.9b06720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to estimate the dietary risk of nitrates and nitrites in vegetables based on internal dose in a probabilistic manner by integrating exogenous exposure based on measured concentrations in vegetables with endogenous exposure using a toxicokinetic (TK) model. We optimized and validated a previous TK model and incorporated Monte Carlo simulations to account for variability across different age populations for predicting internal dose. High levels of nitrates were detected in leafy vegetables (from 545 ± 274 to 1641 ± 873 mg/kg). Nitrite contents of vegetables were generally low (from 1.26 ± 1.40 to 8.20 ± 14.1 mg/kg). The dietary risk was found to be different based on internal versus external dose, suggesting that it is critical to include endogenous nitrite formation into risk assessment. Nitrate and nitrite exposure from vegetables is unlikely to result in appreciable risks for most populations but may be a potential risk for preschoolers.
Collapse
Affiliation(s)
- Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment , National Yang-Ming University , Taipei 11221 , Taiwan
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , 1800 Denison Avenue, P200 Mosier Hall , Manhattan , Kansas 66506 , United States
| | - Cheng-Jih Cheng
- Institute of Food Safety and Health Risk Assessment , National Yang-Ming University , Taipei 11221 , Taiwan
| | - Jein-Wen Chen
- Super Micro Mass Research & Technology Center , Cheng Shiu University , Kaohsiung 83347 , Taiwan
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , 1800 Denison Avenue, P200 Mosier Hall , Manhattan , Kansas 66506 , United States
| |
Collapse
|
8
|
Cumpstey AF, Hennis PJ, Gilbert-Kawai ET, Fernandez BO, Grant D, Jenner W, Poudevigne M, Moyses H, Levett DZ, Cobb A, Meale P, Mitchell K, Pöhnl H, Mythen MG, Grocott MP, Martin DS, Feelisch M. Effects of dietary nitrate supplementation on microvascular physiology at 4559 m altitude - A randomised controlled trial (Xtreme Alps). Nitric Oxide 2019; 94:27-35. [PMID: 31604146 PMCID: PMC6970220 DOI: 10.1016/j.niox.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/28/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
Native highlanders (e.g. Sherpa) demonstrate remarkable hypoxic tolerance, possibly secondary to higher levels of circulating nitric oxide (NO) and increased microcirculatory blood flow. As part of the Xtreme Alps study (a randomised placebo-controlled trial of dietary nitrate supplementation under field conditions of hypobaric hypoxia), we investigated whether dietary supplementation with nitrate could improve NO availability and microvascular blood flow in lowlanders. Plasma measurements of nitrate, nitrite and nitroso species were performed together with measurements of sublingual (sidestream dark-field camera) and forearm blood flow (venous occlusion plethysmography) in 28 healthy adult volunteers resident at 4559 m for 1 week; half receiving a beetroot-based high-nitrate supplement and half receiving an identically-tasting low nitrate ‘placebo’. Dietary supplementation increased plasma nitrate concentrations 4-fold compared to the placebo group, both at sea level (SL; 19.2 vs 76.9 μM) and at day 5 (D5) of high altitude (22.9 vs 84.3 μM, p < 0.001). Dietary nitrate supplementation also significantly increased both plasma nitrite (0.78 vs. 0.86 μM SL, 0.31 vs. 0.41 μM D5, p = 0.03) and total nitroso product (11.3 vs. 19.7 nM SL, 9.7 vs. 12.3 nM D5, p < 0.001) levels both at sea level and at 4559 m. However, plasma nitrite concentrations were more than 50% lower at 4559 m compared to sea level in both treatment groups. Despite these significant changes, dietary nitrate supplementation had no effect on any measured read-outs of sublingual or forearm blood flow, even when environmental hypoxia was experimentally reversed using supplemental oxygen. In conclusion, dietary nitrate supplementation does not improve microcirculatory function at 4559 m. Xtreme Alps is a randomised controlled field study of dietary nitrate at altitude. Dietary nitrate significantly increased plasma nitrate, nitrite & nitroso species. No changes in sublingual blood flow were seen in response to high dietary nitrate. Dietary nitrate did not alter forearm blood flow under any experimental condition. Dietary nitrate supplementation did not improve microcirculatory function at 4559 m
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Critical Care Research Area, Southampton, NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Philip J Hennis
- UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK
| | - Edward T Gilbert-Kawai
- UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK; Warwick Medical School, Division of Metabolic and Vascular Health, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Daniel Grant
- UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK
| | - William Jenner
- UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK
| | - Matthieu Poudevigne
- Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Helen Moyses
- Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Denny Zh Levett
- Critical Care Research Area, Southampton, NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Alexandra Cobb
- UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK
| | - Paula Meale
- UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK
| | - Kay Mitchell
- Critical Care Research Area, Southampton, NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Helmut Pöhnl
- AURAPA, Paul-Heidelbauer-Straße 26, 74321, Bietigheim-Bissingen, Germany
| | - Monty G Mythen
- UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK
| | - Michael Pw Grocott
- Critical Care Research Area, Southampton, NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Daniel S Martin
- UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London, W1T 7HA, UK.
| | - Martin Feelisch
- Critical Care Research Area, Southampton, NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK; Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK; Warwick Medical School, Division of Metabolic and Vascular Health, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
9
|
Raubenheimer K, Bondonno C, Blekkenhorst L, Wagner KH, Peake JM, Neubauer O. Effects of dietary nitrate on inflammation and immune function, and implications for cardiovascular health. Nutr Rev 2019; 77:584-599. [PMID: 31150091 DOI: 10.1093/nutrit/nuz025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inorganic dietary nitrate, found abundantly in green leafy and some root vegetables, elicits several beneficial physiological effects, including a reduction in blood pressure and improvements in blood flow through nitrate-nitrite-nitric oxide signaling. Recent animal and human studies have shown that dietary nitrate and nitrite also modulate inflammatory processes and immune cell function and phenotypes. Chronic low-grade inflammation and immune dysfunction play a critical role in cardiovascular disease. This review outlines the current evidence on the efficacy of nitrate-rich plant foods and other sources of dietary nitrate and nitrite to counteract inflammation and promote homeostasis of the immune and vascular systems. The data from these studies suggest that immune cells and immune-vasculature interactions are important targets for dietary interventions aimed at improving, preserving, or restoring cardiovascular health.
Collapse
Affiliation(s)
- Kyle Raubenheimer
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Catherine Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Lauren Blekkenhorst
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Jonathan M Peake
- School of Biomedical Sciences, Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Oliver Neubauer
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- School of Biomedical Sciences, Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
10
|
Blekkenhorst LC, Lewis JR, Prince RL, Devine A, Bondonno NP, Bondonno CP, Wood LG, Puddey IB, Ward NC, Croft KD, Woodman RJ, Beilin LJ, Hodgson JM. Reply to OM Shannon et al. Am J Clin Nutr 2018; 108:1353-1354. [PMID: 30379994 DOI: 10.1093/ajcn/nqy246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/03/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Lauren C Blekkenhorst
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Richard L Prince
- Medical School and School of Biomedical Sciences (NPB and KDC), The University of Western Australia, Perth, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Lisa G Wood
- School of Biomedical Science and Pharmacy, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ian B Puddey
- Medical School and School of Biomedical Sciences (NPB and KDC), The University of Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Richard J Woodman
- Flinders Center for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Lawrence J Beilin
- Medical School and School of Biomedical Sciences (NPB and KDC), The University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
11
|
Blekkenhorst LC, Lewis JR, Prince RL, Devine A, Bondonno NP, Bondonno CP, Wood LG, Puddey IB, Ward NC, Croft KD, Woodman RJ, Beilin LJ, Hodgson JM. Nitrate-rich vegetables do not lower blood pressure in individuals with mildly elevated blood pressure: a 4-wk randomized controlled crossover trial. Am J Clin Nutr 2018; 107:894-908. [PMID: 29868911 DOI: 10.1093/ajcn/nqy061] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/12/2018] [Indexed: 11/12/2022] Open
Abstract
Background Emerging evidence suggests that increasing intakes of nitrate-rich vegetables may be an effective approach to reduce blood pressure. Objective Our primary aim was to determine whether daily consumption of nitrate-rich vegetables over 4 wk would result in lower blood pressure. Design Thirty participants with prehypertension or untreated grade 1 hypertension were recruited to a randomized controlled crossover trial with 4-wk treatment periods separated by 4-wk washout periods. Participants completed 3 treatments in random order: 1) increased intake (∼200 g/d) of nitrate-rich vegetables [high-nitrate (HN); ∼150 mg nitrate/d], 2) increased intake (∼200 g/d) of nitrate-poor vegetables [low-nitrate (LN); ∼22 mg nitrate/d], and 3) no increase in vegetables (control; ∼6 mg nitrate/d). Compliance was assessed with the use of food diaries and by measuring plasma nitrate and carotenoids. Nitrate metabolism was assessed with the use of plasma, salivary, and urinary nitrate and nitrite concentrations. The primary outcome was blood pressure assessed by using 24-h ambulatory, home, and clinic measurements. Secondary outcomes included measures of arterial stiffness. Results Plasma nitrate and nitrite concentrations increased with the HN treatment in comparison to the LN and control treatments (P < 0.001). Plasma carotenoids increased with the HN and LN treatments compared with the control (P < 0.01). HN treatment did not reduce systolic blood pressure [24-h ambulatory-HN: 127.4 ± 1.1 mm Hg; LN: 128.6 ± 1.1 mm Hg; control: 126.2 ± 1.1 mm Hg (P = 0.20); home-HN: 127.4 ± 0.7 mm Hg; LN: 128.7 ± 0.7 mm Hg; control: 128.3 ± 0.7 mm Hg (P = 0.36); clinic-HN: 128.4 ± 1.3 mm Hg; LN: 130.3 ± 1.3 mm Hg; control: 129.8 ± 1.3 mm Hg (P = 0.49)] or diastolic blood pressure compared with LN and control treatments (P > 0.05) after adjustment for pretreatment values, treatment period, and treatment order. Similarly, no differences were observed between treatments for arterial stiffness measures (P > 0.05). Conclusion Increased intake of nitrate-rich vegetables did not lower blood pressure in prehypertensive or untreated grade 1 hypertensive individuals when compared with increased intake of nitrate-poor vegetables and no increase in vegetables. This trial was registered at www.anzctr.org.au as ACTRN12615000194561.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Joshua R Lewis
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Center for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- School of Public Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Richard L Prince
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Lisa G Wood
- School of Biomedical Science and Pharmacy, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ian B Puddey
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Kevin D Croft
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
| | - Richard J Woodman
- Flinders Center for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
12
|
Blekkenhorst LC, Bondonno NP, Liu AH, Ward NC, Prince RL, Lewis JR, Devine A, Croft KD, Hodgson JM, Bondonno CP. Nitrate, the oral microbiome, and cardiovascular health: a systematic literature review of human and animal studies. Am J Clin Nutr 2018; 107:504-522. [PMID: 29635489 DOI: 10.1093/ajcn/nqx046] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background Dietary nitrate is an important source of nitric oxide (NO), a molecule critical for cardiovascular health. Nitrate is sequentially reduced to NO through an enterosalivary nitrate-nitrite-NO pathway that involves the oral microbiome. This pathway is considered an important adjunct pathway to the classical l-arginine-NO synthase pathway. Objective The objective of this study was to systematically assess the evidence for dietary nitrate intake and improved cardiovascular health from both human and animal studies. Design A systematic literature search was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines by using key search terms in Medline and EMBASE databases and defined inclusion and exclusion criteria. Results Thirty-seven articles on humans and 14 articles on animals were included from 12,541 screened references. Data on the effects of dietary nitrate on blood pressure, endothelial function, ischemic reperfusion injury, arterial stiffness, platelet function, and cerebral blood flow in both human and animal models were identified. Beneficial effects of nitrate on vascular health have predominantly been observed in healthy human populations, whereas effects in populations at risk of cardiovascular disease are less clear. Few studies have investigated the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. In animal studies, there is evidence that nitrate improves blood pressure and endothelial function, particularly in animal models with reduced NO bioavailability. Nitrate dose seems to be a critical factor because there is evidence of cross-talk between the 2 pathways of NO production. Conclusions Evidence for a beneficial effect in humans at risk of cardiovascular disease is limited. Furthermore, there is a need to investigate the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. Further animal studies are required to elucidate the mechanisms behind the observed effects.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Alex H Liu
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Richard L Prince
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua R Lewis
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kevin D Croft
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Catherine P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|