1
|
Dong Y, Qian C, Yan P, Wan G. YTHDF1-regulated ALOX5 in retinal pigment epithelial cells under hypoxia enhances VEGF expression and promotes viability, migration, and angiogenesis of vascular endothelial cells. Sci Rep 2024; 14:23226. [PMID: 39369033 PMCID: PMC11455921 DOI: 10.1038/s41598-024-72388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024] Open
Abstract
Upregulation of vascular endothelial growth factor (VEGF) and enhanced angiogenesis have been implicated in the severe progression of age-related macular degeneration (AMD). Abnormal arachidonate 5-lipoxygenase (ALOX5) is associated with AMD pathogenesis. However, no reports have shown the causal role of ALOX5 in angiogenesis during AMD. In the present study, ARPE-19 cells were exposed to hypoxia, an inducer of VEGF expression. Potential proteins implicated in AMD progression were predicted using bioinformatics. RNA affinity antisense purification-mass spectrometry (RAP-MS) was applied to identify the binding proteins of ALOX5 3'UTR. Expression of ALOX5 and YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1) was detected by qRT-PCR and western blotting. VEGF expression and secretion were assessed by immunofluorescence and ELISA, respectively. The chicken embryo chorioallantoic membrane (CAM) was used to analyze the effect of ALOX5 on angiogenesis. RNA stability was assayed using the Actinomycin D assay. The results show that hypoxia promoted cell growth and increased VEGF expression in ARPE-19 cells. ALOX5 was associated with AMD progression, and hypoxia upregulated ALOX5 expression in ARPE-19 cells. ALOX5 silencing reduced VEGF expression induced by hypoxia in ARPE-19 cells. Moreover, the conditioned medium of ALOX5-silenced ARPE-19 cells could suppress the viability and migration of HUVECs and diminish angiogenesis in the CAM. Furthermore, YTHDF1 was validated to bind to ALOX5 3'UTR, and YTHDF1 promoted ALOX5 expression by elevating the stability of ALOX5 mRNA. In conclusion, our findings demonstrate that YTHDF1-regulated ALOX5 increases VEGF expression in hypoxia-exposed ARPE-19 cells and enhances the viability, migration, and angiogenesis of vascular endothelial cells.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Cheng Qian
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Panshi Yan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Wu Z, Zhuang X, Liang M, Sheng L, Huang L, Li Y, Ke Y. Identification of an inflammatory response-related gene prognostic signature and immune microenvironment for cervical cancer. Front Mol Biosci 2024; 11:1394902. [PMID: 38903179 PMCID: PMC11187284 DOI: 10.3389/fmolb.2024.1394902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Cervical cancer (CC) is the fourth most common cancer among women worldwide. As part of the brisk cross-talk between the host and the tumor, prognosis can be affected through inflammatory responses or the tumor microenvironment. However, further exploration of the inflammatory response-related genes that have prognostic value, microenvironment infiltration, and chemotherapeutic therapies in CC is needed. Methods: The clinical data and mRNA expression profiles of CC patients were downloaded from a public database for this study. In the TCGA cohort, a multigene prognostic signature was constructed by least absolute shrinkage and selection operator (LASSO) and Cox analyses. CC patients from the GEO cohort were used for validation. K‒M analysis was used to compare overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were applied to determine the independent predictors of OS. The immune cell infiltration and immune-related functional score were calculated by single-sample gene set enrichment analysis (GSEA). Immunohistochemistry was utilized to validate the protein expression of prognostic genes in CC tissues. Results: A genetic signature model associated with the inflammatory response was built by LASSO Cox regression analysis. Patients in the high-risk group had a significantly lower OS rate. The predictive ability of the prognostic genes was evaluated by means of receiver operating characteristic (ROC) curve analysis. The risk score was confirmed to be an independent predictor of OS by univariate and multivariate Cox analyses. The immune status differed between the high-risk and low-risk groups, and the cancer-related pathways were enriched in the high-risk group according to functional analysis. The risk score was significantly related to tumor stage and immune infiltration type. The expression levels of five prognostic genes (LCK, GCH1, TNFRSF9, ITGA5, and SLC7A1) were positively related to sensitivity to antitumor drugs. Additionally, the expression of prognostic genes was significantly different between CC tissues and myoma patient cervix (non-tumorous) tissues in the separate sample cohort. Conclusion: A model consisting of 5 inflammation-related genes can be used to predict prognosis and influence immune status in CC patients. Furthermore, the inhibition or enhancement of these genes may become a novel alternative therapy.
Collapse
Affiliation(s)
- Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xuanxuan Zhuang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Meili Liang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Liying Sheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Li Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanting Li
- Department of Gynecology and Obstetrics, Anhai Hospital of Jinjiang, Quanzhou, Fujian, China
| | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Febrero B, Ruiz-Manzanera JJ, Ros-Madrid I, Hernández AM, Orenes-Piñero E, Rodríguez JM. Tumor microenvironment in thyroid cancer: Immune cells, patterns, and novel treatments. Head Neck 2024; 46:1486-1499. [PMID: 38380767 DOI: 10.1002/hed.27695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
The tumor immune microenvironment of thyroid cancer is the heterogeneous histological space in which tumor cells coexist with host cells. Published data from this review were identified by search and selection database of Pubmed, Elsevier, and Science Direct. Searching was made in two steps using different keywords. In thyroid pathology, the inflammatory response is very important, and might have a key role finding new diagnostic and therapeutic methods, particularly in thyroid cancer. Different immune cells may be more or less present in different types of thyroid cancer and may even have different functions, hence the importance of knowing their presence in different thyroid tumor pathologies. Cancer-related inflammation could be a useful target for new diagnostic and therapeutic strategies by analyzing peritumoral and intratumoral immune cells in different types of thyroid tumors. Moreover, novel strategies for thyroid cancer treatments, such as monoclonal antibodies targeting checkpoint inhibitors, are emerging as promising alternatives.
Collapse
Affiliation(s)
- Beatriz Febrero
- Department of Endocrine Surgery, General Surgery Service, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Juan José Ruiz-Manzanera
- Department of Endocrine Surgery, General Surgery Service, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Ros-Madrid
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Antonio Miguel Hernández
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - José Manuel Rodríguez
- Department of Endocrine Surgery, General Surgery Service, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
4
|
Torres W, Pérez JL, Díaz MP, D’Marco L, Checa-Ros A, Carrasquero R, Angarita L, Gómez Y, Chacín M, Ramírez P, Villasmil N, Durán-Agüero S, Cano C, Bermúdez V. The Role of Specialized Pro-Resolving Lipid Mediators in Inflammation-Induced Carcinogenesis. Int J Mol Sci 2023; 24:12623. [PMID: 37628804 PMCID: PMC10454572 DOI: 10.3390/ijms241612623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a process involving cell mutation, increased proliferation, invasion, and metastasis. Over the years, this condition has represented one of the most concerning health problems worldwide due to its significant morbidity and mortality. At present, the incidence of cancer continues to grow exponentially. Thus, it is imperative to open new avenues in cancer research to understand the molecular changes driving DNA transformation, cell-to-cell interaction derangements, and immune system surveillance decay. In this regard, evidence supports the relationship between chronic inflammation and cancer. In light of this, a group of bioactive lipids derived from polyunsaturated fatty acids (PUFAs) may have a position as novel anti-inflammatory molecules known as the specialized pro-resolving mediators (SPMs), a group of pro-resolutive inflammation agents that could improve the anti-tumor immunity. These molecules have the potential role of chemopreventive and therapeutic agents for various cancer types, and their effects have been documented in the scientific literature. Thus, this review objective centers around understanding the effect of SPMs on carcinogenesis and their potential therapeutic effect.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Samuel Durán-Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| |
Collapse
|
5
|
Scimeca M, Rovella V, Palumbo V, Scioli MP, Bonfiglio R, Tor Centre, Melino G, Piacentini M, Frati L, Agostini M, Candi E, Mauriello A. Programmed Cell Death Pathways in Cholangiocarcinoma: Opportunities for Targeted Therapy. Cancers (Basel) 2023; 15:3638. [PMID: 37509299 PMCID: PMC10377326 DOI: 10.3390/cancers15143638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer arising from the bile ducts. The limited effectiveness of conventional therapies has prompted the search for new approaches to target this disease. Recent evidence suggests that distinct programmed cell death mechanisms, namely, apoptosis, ferroptosis, pyroptosis and necroptosis, play a critical role in the development and progression of cholangiocarcinoma. This review aims to summarize the current knowledge on the role of programmed cell death in cholangiocarcinoma and its potential implications for the development of novel therapies. Several studies have shown that the dysregulation of apoptotic signaling pathways contributes to cholangiocarcinoma tumorigenesis and resistance to treatment. Similarly, ferroptosis, pyroptosis and necroptosis, which are pro-inflammatory forms of cell death, have been implicated in promoting immune cell recruitment and activation, thus enhancing the antitumor immune response. Moreover, recent studies have suggested that targeting cell death pathways could sensitize cholangiocarcinoma cells to chemotherapy and immunotherapy. In conclusion, programmed cell death represents a relevant molecular mechanism of pathogenesis in cholangiocarcinoma, and further research is needed to fully elucidate the underlying details and possibly identify therapeutic strategies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Frati
- Institute Pasteur Italy-Cenci Bolognetti Foundation, Via Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed S.p.A., Via Atinense 18, 86077 Pozzilli, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
6
|
Hu Z, Pan Z, Dai Z, Zhao W, Li C, Yu H, Qin X. ω-6 polyunsaturated fatty acids derived lipid mediators promote colorectal cancer growth by providing an immunosuppressive microenvironment. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
8
|
Ardisson Korat AV, Chiu YH, Bertrand KA, Zhang S, Epstein MM, Rosner BA, Chiuve S, Campos H, Giovannucci EL, Chavarro JE, Birmann BM. A prospective analysis of red blood cell membrane polyunsaturated fatty acid levels and risk of non-Hodgkin lymphoma. Leuk Lymphoma 2022; 63:3351-3361. [PMID: 36255154 PMCID: PMC9877158 DOI: 10.1080/10428194.2022.2131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 01/25/2023]
Abstract
Published studies report inconsistent associations of polyunsaturated fatty acid (PUFA) intake with non-Hodgkin lymphoma (NHL) risk. We conducted a nested case-control study in Nurses' Health Study and Health Professionals Follow-Up Study participants to evaluate a hypothesis of inverse association of pre-diagnosis red blood cell (RBC) membrane PUFA levels with risk of NHL endpoints. We confirmed 583 NHL cases and matched 583 controls by cohort/sex, age, race and blood draw date/time. We estimated odds ratios (OR) and 95% confidence intervals (CI) for risk of NHL endpoints using logistic regression. RBC PUFA levels were not associated with all NHL risk; cis 20:2n-6 was associated with follicular lymphoma risk (OR [95% CI] per one standard deviation increase: 1.35 [1.03-1.77]), and the omega-6/omega-3 PUFA ratio was associated with diffuse large B-cell lymphoma risk (2.33 [1.23-4.43]). Overall, PUFA did not demonstrate a role in NHL etiology; the two unexpected positive associations lack clear biologic explanations.
Collapse
Affiliation(s)
- Andres V. Ardisson Korat
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu-Han Chiu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Shumin Zhang
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Johnson & Johnson, New Brunswick, NJ
| | - Mara M. Epstein
- Department of Medicine and The Meyers Primary Care Institute, University of Massachusetts Medical School, Worcester, MA
| | - Bernard A. Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Stephanie Chiuve
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- AbbVie Pharmaceuticals, North Chicago, IL
| | - Hannia Campos
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Centro de Investigación e Innovación en Nutrición Translacional y Salud, Universidad Hispanoamericana, San Jose, Costa Rica
| | - Edward L. Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jorge E. Chavarro
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Brenda M. Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Galli G, Corsetto PA, Proto C, Lo Russo G, Ganzinelli M, Rulli E, Legramandi L, Morelli D, Ferrara R, Prelaj A, Signorelli D, De Toma A, Brambilla M, Occhipinti M, Manglaviti S, Boeri M, Martinetti A, Vingiani A, Colombo MP, Rizzo AM, Torri V, de Braud F, Sangaletti S, Sica A, Garassino MC. Circulating Fatty Acid Profile as a Biomarker for Immunotherapy in Advanced Non-Small Cell Lung Cancer. Clin Lung Cancer 2022; 23:e489-e499. [PMID: 35948460 DOI: 10.1016/j.cllc.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Lipid metabolism impacts immune cell differentiation, activation, and functions, modulating inflammatory mediators, energy homeostasis, and cell membrane composition. Despite preclinical evidence, data in humans lack concerning tumors and immunotherapy (IO). We aimed at investigating the correlations between circulating lipids and the outcome of non-small cell lung cancer (NSCLC) patients treated with IO. MATERIALS AND METHODS We identified all patients with advanced NSCLC treated with IO at our Institution with available baseline plasma samples. Fatty acids (FAs) were analyzed through gas chromatography. Survival curves were estimated by the Kaplan-Meier method. Cox multivariate models were constructed through a stepwise procedure, with entry and exit P value set at .2. RESULTS We identified 112 patients, mostly with performance status 1 (65.2%) and PD-L1≥1% (75.3%). Median progression-free survival (PFS) and overall survival (OS) were 2.8 and 11.0 months, respectively. Multivariable model for survival identified a positive association of circulating free (FFA) C16:0 (P .005) and esterified (EFA) C16:1 (P .030) with PFS, and a positive association of EFA C16:1 (P .001) and EFA C18:0 (P .020) with OS. EFA C16:0 was negatively associated with PFS (P .008). CONCLUSION FFA C16:0 and FAs derived from its unsaturation (EFA C16:1) and elongation (EFA C18:0) are associated with a better outcome in NSCLC patients treated with IO. It is conceivable that the ratio among those FAs may modify membrane fluidity and receptor activity, influencing IO efficacy. These data pave the way for the investigation of lipid-modulating strategies in association with IO in NSCLC.
Collapse
Affiliation(s)
- Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Claudia Proto
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ganzinelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eliana Rulli
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lorenzo Legramandi
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Morelli
- Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberto Ferrara
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arsela Prelaj
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Milan, Italy
| | - Diego Signorelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro De Toma
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Brambilla
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Occhipinti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Manglaviti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mattia Boeri
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonia Martinetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Paolo Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Valter Torri
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
| | - Sabina Sangaletti
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences (DSF), University of Eastern Piedmont 'A. Avogadro', Novara, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
10
|
Gu J, Zhu N, Li HF, Zhang CJ, Gong YZ, Liao DF, Qin L. Ezetimibe and Cancer: Is There a Connection? Front Pharmacol 2022; 13:831657. [PMID: 35924044 PMCID: PMC9340271 DOI: 10.3389/fphar.2022.831657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
The high level of serum cholesterol caused by the excessive absorption of cholesterol can lead to hypercholesteremia, thus promoting the occurrence and development of cancer. Ezetimibe is a drug that reduces cholesterol absorption and has been widely used for the treatment of patients with high circulating cholesterol levels for many years. Mechanistically, ezetimibe works by binding to NPC1L1, which is a key mediator of cholesterol absorption. Accumulating data from preclinical models have shown that ezetimibe alone could inhibit the development and progression of cancer through a variety of mechanisms, including anti-angiogenesis, stem cell suppression, anti-inflammation, immune enhancement and anti-proliferation. In the past decade, there has been heated discussion on whether ezetimibe combined with statins will increase the risk of cancer. At present, more and more evidence shows that ezetimibe does not increase the risk of cancers, which supports the role of ezetimibe in anti-cancer. In this review, we discussed the latest progress in the anti-cancer properties of ezetimibe and elucidated its underlying molecular mechanisms. Finally, we highlighted the potential of ezetimibe as a therapeutic agent in future cancer treatment and prevention.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Yong-Zhen Gong
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Changsha, China
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Li Qin,
| |
Collapse
|
11
|
Liotti F, Marotta M, Sorriento D, Pagliuca C, Caturano V, Mantova G, Scaglione E, Salvatore P, Melillo RM, Prevete N. The probiotic Lactobacillus rhamnosus GG (LGG) restrains the angiogenic potential of colorectal carcinoma cells by activating a pro-resolving program via formyl peptide receptor 1. Mol Oncol 2022; 16:2959-2980. [PMID: 35808840 PMCID: PMC9394235 DOI: 10.1002/1878-0261.13280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Formyl peptide receptors (FPR1, FPR2 and FPR3) are innate immune sensors of pathogen and commensal bacteria and have a role in colonic mucosa homeostasis. We identified FPR1 as a tumour suppressor in gastric cancer cells due to its ability to sustain an inflammation resolution response with antiangiogenic potential. Here, we investigate whether FPR1 exerts similar functions in colorectal carcinoma (CRC) cells. Since it has been shown that the commensal bacterium Lactobacillus rhamnosus GG (LGG) can promote intestinal epithelial homeostasis through FPR1, we explored the possibility that it could induce proresolving and antiangiogenic effects in CRC cells. We demonstrated that pharmacologic inhibition or genetic deletion of FPR1 in CRC cells caused a reduction of proresolving mediators and a consequent upregulation of angiogenic factors. The activation of FPR1 mediates opposite effects. Proresolving, antiangiogenic and homeostatic functions were also observed upon treatment of CRC cells with supernatant of LGG culture, but not of other lactic acid or nonprobiotic bacteria (i.e. Bifidobacterium bifidum or Escherichia coli). These activities of LGG are dependent on FPR1 expression and on the subsequent MAPK signalling activation. Thus, the innate immune receptor FPR1 could be a regulator of the balance between microbiota, inflammation and cancer in CRC models.
Collapse
Affiliation(s)
- Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Maria Marotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Caturano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rosa Marina Melillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Nella Prevete
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Liotti F, Marotta M, Melillo RM, Prevete N. The Impact of Resolution of Inflammation on Tumor Microenvironment: Exploring New Ways to Control Cancer Progression. Cancers (Basel) 2022; 14:3333. [PMID: 35884394 PMCID: PMC9316558 DOI: 10.3390/cancers14143333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/23/2022] Open
Abstract
Non-resolving inflammation is an enabling feature of cancer. A novel super-family of lipid mediators termed Specialized Pro-resolving Mediators (SPMs) have a role as bioactive molecules mediating the resolution of inflammation in cancer biology. SPMs are derived from ω-3 and ω-6 polyunsaturated fatty acids through the activity of lipoxygenases. SPMs have been described to directly modulate cancer progression by interfering with the epithelial to mesenchymal transition and invasion of cancer cells. SPMs have also been demonstrated to act on several components of the tumor microenvironment (TME). Consistently with their natural immunomodulatory and anti-inflammatory properties, SPMs are able to reprogram macrophages to favor phagocytosis of cell debris, which are an important source of pro-inflammatory and pro-angiogenic signals; sustain a direct cytotoxic immune response against cancer cells; stimulate neutrophils anti-tumor activities; and inhibit the development of regulatory T and B cells, thus indirectly leading to enhanced anti-tumor immunity. Furthermore, the resolution pathways exert crucial anti-angiogenic functions in lung, liver, and gastrointestinal cancers, and inhibit cancer-associated fibroblast differentiation and functions in hepatocellular carcinoma and pancreatic cancer. The present review will be focused on the potential protective effects of resolution pathways against cancer, exerted by modulating different components of the TME.
Collapse
Affiliation(s)
- Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.L.); (M.M.)
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, 80131 Naples, Italy
| | - Maria Marotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.L.); (M.M.)
| | - Rosa Marina Melillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.L.); (M.M.)
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, 80131 Naples, Italy
| | - Nella Prevete
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, 80131 Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
13
|
Contribution of n-3 Long-Chain Polyunsaturated Fatty Acids to the Prevention of Breast Cancer Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137936. [PMID: 35805595 PMCID: PMC9265492 DOI: 10.3390/ijerph19137936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, diet and breast cancer are studied at different levels, particularly in tumor prevention and progression. Thus, the molecular mechanisms leading to better knowledge are deciphered with a higher precision. Among the molecules implicated in a preventive and anti-progressive way, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) are good candidates. These molecules, like docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, are generally found in marine material, such as fat fishes or microalgae. EPA and DHA act as anti-proliferative, anti-invasive, and anti-angiogenic molecules in breast cancer cell lines, as well as in in vivo studies. A better characterization of the cellular and molecular pathways involving the action of these fatty acids is essential to have a realistic image of the therapeutic avenues envisaged behind their use. This need is reinforced by the increase in the number of clinical trials involving more and more n-3 LC-PUFAs, and this, in various pathologies ranging from obesity to a multitude of cancers. The objective of this review is, therefore, to highlight the new elements showing the preventive and beneficial effects of n-3 LC-PUFAs against the development and progression of breast cancer.
Collapse
|
14
|
7S,15R-Dihydroxy-16S,17S-Epoxy-Docosapentaenoic Acid, a Novel DHA Epoxy Derivative, Inhibits Colorectal Cancer Stemness through Repolarization of Tumor-Associated Macrophage Functions and the ROS/STAT3 Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10091459. [PMID: 34573091 PMCID: PMC8470250 DOI: 10.3390/antiox10091459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is a highly malignant cancer that is inherently resistant to many chemotherapeutic drugs owing to the complicated tumor-supportive microenvironment (TME). Tumor-associated macrophages (TAM) are known to mediate colorectal cancer metastasis and relapse and are therefore a promising therapeutic target. In the current study, we first confirmed the anti-inflammatory effect of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), a novel DHA dihydroxy derivative synthesized in our previous work. We found that diHEP-DPA significantly reduced lipopolysaccharide (LPS)-induced inflammatory cytokines secretion of THP1 macrophages, IL-6, and TNF-α. As expected, diHEP-DPA also modulated TAM polarization, as evidenced by decreased gene and protein expression of the TAM markers, CD206, CD163, VEGF, and TGF-β1. During the polarization process, diHEP-DPA treatment decreased the concentration of TGF-β1, IL-1β, IL-6, and TNF-α in culture supernatants via inhibiting the NF-κB pathway. Moreover, diHEP-DPA blocked immunosuppression by reducing the expression of SIRPα in TAMs and CD47 in colorectal cancer cells. Knowing that an inflammatory TME largely serves to support epithelial-mesenchymal transition (EMT) and cancer stemness, we tested whether diHEP-DPA acted through polarization of TAMs to regulate these processes. The intraperitoneally injected diHEP-DPA inhibited tumor growth when administered alone or in combination with 5-fluorouracil (5-FU) chemotherapy in vivo. We further found that diHEP-DPA effectively reversed TAM-conditioned medium (TCCM)-induced EMT and enhanced colorectal cancer stemness, as evidenced by its inhibition of colorectal cancer cell migration, invasion and expression of EMT markers, as well as cancer cell tumorspheres formation, without damaging colorectal cancer cells. DiHEP-DPA reduced the population of aldehyde dehydrogenase (ALDH)-positive cells and expression of colorectal stemness marker proteins (CD133, CD44, and Sox2) by modulating TAM polarization. Additionally, diHEP-DPA directly inhibited cancer stemness by inducing the production of reactive oxygen species (ROS), which, in turn, reduced the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3). These data collectively suggest that diHEP-DPA has the potential for development as an anticancer agent against colorectal cancer.
Collapse
|
15
|
Luo SD, Chiu TJ, Chen WC, Wang CS. Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses. Int J Mol Sci 2021; 22:ijms22168768. [PMID: 34445474 PMCID: PMC8395901 DOI: 10.3390/ijms22168768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Otolaryngology (also known as ear, nose, and throat (ENT)) diseases can be significantly affected by the level of sex hormones, which indicates that sex differences affect the manifestation, pathophysiology, and outcomes of these diseases. Recently, increasing evidence has suggested that proinflammatory responses in ENT diseases are linked to the level of sex hormones. The sex hormone receptors are present on a wide variety of immune cells; therefore, it is evident that they play crucial roles in regulating the immune system and hence affect the disease progression of ENT diseases. In this review, we focus on how sex hormones, particularly estrogens, regulate ENT diseases, such as chronic rhinosinusitis, vocal fold polyps, thyroid cancer, Sjögren’s syndrome, and head and neck cancers, from the perspectives of inflammatory responses and specialized proresolving mediator-driven resolution. This paper aims to clarify why considering sex differences in the field of basic and medical research on otolaryngology is a key component to successful therapy for both males and females in the future.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Wei-Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-227-361-661 (ext. 5166)
| |
Collapse
|
16
|
Lavy M, Gauttier V, Poirier N, Barillé-Nion S, Blanquart C. Specialized Pro-Resolving Mediators Mitigate Cancer-Related Inflammation: Role of Tumor-Associated Macrophages and Therapeutic Opportunities. Front Immunol 2021; 12:702785. [PMID: 34276698 PMCID: PMC8278519 DOI: 10.3389/fimmu.2021.702785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a fundamental physiological response orchestrated by innate immune cells to restore tissue homeostasis. Specialized pro-resolving mediators (SPMs) are involved in active resolution of inflammation but when inflammation is incomplete, chronic inflammation creates a favorable environment that fuels carcinogenesis and cancer progression. Conventional cancer therapy also strengthens cancer-related inflammation by inducing massive tumor cell death that activate surrounding immune-infiltrating cells such as tumor-associated macrophages (TAMs). Macrophages are key actors of both inflammation and its active resolution due to their plastic phenotype. In line with this high plasticity, macrophages can be hijacked by cancer cells to support tumor progression and immune escape, or therapy resistance. Impaired resolution of cancer-associated inflammation supported by TAMs may thus reinforces tumor progression. From this perspective, recent evidence suggests that stimulating macrophage's pro-resolving functions using SPMs can promote inflammation resolution in cancer and improve anticancer treatments. Thus, TAMs' re-education toward an antitumor phenotype by using SPMs opens a new line of attack in cancer treatment. Here, we review SPMs' anticancer capacities with special attention regarding their effects on TAMs. We further discuss how this new therapeutic approach could be envisioned in cancer therapy.
Collapse
|
17
|
Mormile I, Rossi FW, Prevete N, Granata F, Pucino V, de Paulis A. The N-Formyl Peptide Receptors and Rheumatoid Arthritis: A Dangerous Liaison or Confusing Relationship? Front Immunol 2021; 12:685214. [PMID: 34220836 PMCID: PMC8253054 DOI: 10.3389/fimmu.2021.685214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by a progressive symmetric inflammation of the joints resulting in bone erosion and cartilage destruction with a progressive loss of function and joint deformity. An increased number of findings support the role of innate immunity in RA: many innate immune mechanisms are responsible for producing several cytokines and chemokines involved in RA pathogenesis, such as Tumor Necrosis Factor (TNF)-α, interleukin (IL)-6, and IL-1. Pattern recognition receptors (PRRs) play a crucial role in modulating the activity of the innate arm of the immune response. We focused our attention over the years on the expression and functions of a specific class of PRR, namely formyl peptide receptors (FPRs), which exert a key function in both sustaining and resolving the inflammatory response, depending on the context and/or the agonist. We performed a broad review of the data available in the literature on the role of FPRs and their ligands in RA. Furthermore, we queried a publicly available database collecting data from 90 RA patients with different clinic features to evaluate the possible association between FPRs and clinic-pathologic parameters of RA patients.
Collapse
Affiliation(s)
- Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Nella Prevete
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Pucino
- College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Wee Y, Yang C, Chen S, Yen Y, Wang C. Inositol hexaphosphate modulates the behavior of macrophages through alteration of gene expression involved in pathways of pro- and anti-inflammatory responses, and resolution of inflammation pathways. Food Sci Nutr 2021; 9:3240-3249. [PMID: 34136188 PMCID: PMC8194914 DOI: 10.1002/fsn3.2286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Inositol hexaphosphate (IP6) is a dietary compound commonly obtained from corn, rice, etc. Although we may consume significant amount of IP6 daily, it is unclear whether this diet will impact macrophages' fate and function. Therefore, we characterized the underlying relationship between IP6 and macrophage polarization in this study. We specifically examined the signature gene expression profiles associated with pro- and anti-inflammatory responses, and resolution of inflammation pathways in macrophages under the influence of IP6. Interestingly, our data suggested that IP6 polarizes bone marrow-derived macrophages (BMDM) into an M2a-like subtype. Our results also demonstrated that IP6 reduces lipopolysaccharide-induced apoptosis and pro-inflammatory responses in macrophages. In contrast, the expression levels of genes related to anti-inflammatory responses and resolution of inflammation pathways are upregulated. Our findings collectively demonstrated that IP6 has profound modulation effects on macrophages, which warrant further research on the therapeutic benefits of IP6 for inflammatory diseases.
Collapse
Affiliation(s)
- Yinshen Wee
- Department of PathologyUniversity of UtahSalt Lake CityUTUSA
| | | | - Shau‐Kwaun Chen
- Institute of NeuroscienceNational Chengchi UniversityTaipeiTaiwan
| | - Yu‐Chun Yen
- Biostatistics CenterOffice of Data ScienceTaipei Medical UniversityTaipeiTaiwan
| | - Ching‐Shuen Wang
- School of DentistryCollege of Oral MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
19
|
Tajbakhsh A, Gheibi Hayat SM, Movahedpour A, Savardashtaki A, Loveless R, Barreto GE, Teng Y, Sahebkar A. The complex roles of efferocytosis in cancer development, metastasis, and treatment. Biomed Pharmacother 2021; 140:111776. [PMID: 34062411 DOI: 10.1016/j.biopha.2021.111776] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
When tumor cells are killed by targeted therapy, radiotherapy, or chemotherapy, they trigger their primary tumor by releasing pro-inflammatory cytokines. Microenvironmental interactions can also promote tumor heterogeneity and development. In this line, several immune cells within the tumor microenvironment, including macrophages, dendritic cells, regulatory T-cells, and CD8+ and CD4+ T cells, are involved in the clearance of apoptotic tumor cells through a process called efferocytosis. Although the efficiency of apoptotic tumor cell efferocytosis is positive under physiological conditions, there are controversies regarding its usefulness in treatment-induced apoptotic tumor cells (ATCs). Efferocytosis can show the limitation of cytotoxic treatments, such as chemotherapy and radiotherapy. Since cytotoxic treatments lead to extensive cell mortality, efferocytosis, and macrophage polarization toward an M2 phenotype, the immune response may get involved in tumor recurrence and metastasis. Tumor cells can use the anti-inflammatory effect of apoptotic tumor cell efferocytosis to induce an immunosuppressive condition that is tumor-tolerant. Since M2 polarization and efferocytosis are tumor-promoting processes, the receptors on macrophages act as potential targets for cancer therapy. Moreover, researchers have shown that efferocytosis-related molecules/pathways are potential targets for cancer therapy. These include phosphatidylserine and calreticulin, Tyro3, Axl, and Mer tyrosine kinase (MerTK), receptors of tyrosine kinase, indoleamine-2,3-dioxygenase 1, annexin V, CD47, TGF-β, IL-10, and macrophage phenotype switch are combined with conventional therapy, which can be more effective in cancer treatment. Thus, we set out to investigate the advantages and disadvantages of efferocytosis in treatment-induced apoptotic tumor cells.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
13 R,20-Dihydroxydocosahexaenoic Acid, a Novel Dihydroxy- DHA Derivative, Inhibits Breast Cancer Stemness through Regulation of the Stat3/IL-6 Signaling Pathway by Inducing ROS Production. Antioxidants (Basel) 2021; 10:antiox10030457. [PMID: 33804152 PMCID: PMC7999786 DOI: 10.3390/antiox10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a major health problem worldwide. Cancer stem cells (CSCs) are known to mediate breast cancer metastasis and recurrence and are therefore a promising therapeutic target. In this study, we investigated the anti-inflammatory effect of 13R,20-dihydroxydocosahexaenoic acid (13R,20-diHDHA), a novel dihydroxy-DHA derivative, which was synthesized through an enzymatic reaction using cyanobacterial lipoxygenase. We found that 13R,20-diHDHA reduced the macrophage secretion of the inflammatory cytokines, IL-6 and TNF-α, and thus appeared to have anti-inflammatory effects. As the inflammatory tumor microenvironment is largely devoted to supporting the cancer stemness of breast cancer cells, we investigated the effect of 13R,20-diHDHA on breast cancer stemness. Indeed, 13R,20-diHDHA effectively inhibited breast cancer stemness, as evidenced by its ability to dose-dependently inhibit the mammospheres formation, colony formation, migration, and invasion of breast CSCs. 13R,20-diHDHA reduced the populations of CD44high/CD24low and aldehyde dehydrogenase (ALDH)-positive cells and the expression levels of the cancer stemness-related self-renewal genes, Nanog, Sox2, Oct4, c-Myc, and CD44. 13R,20-diHDHA increased reactive oxygen species (ROS) production, and the generated ROS reduced the phosphorylation of nuclear signal transducer and activator of transcription 3 (Stat3) and the secretion of IL-6 by mammospheres. These data collectively suggest that 13R,20-diHDHA inhibits breast cancer stemness through ROS production and downstream regulation of Stat3/IL-6 signaling, and thus might be developed as an anti-cancer agent acting against CSCs.
Collapse
|
21
|
Yu L, Lai Q, Feng Q, Li Y, Feng J, Xu B. Serum Metabolic Profiling Analysis of Chronic Gastritis and Gastric Cancer by Untargeted Metabolomics. Front Oncol 2021; 11:636917. [PMID: 33777793 PMCID: PMC7991914 DOI: 10.3389/fonc.2021.636917] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Gastric cancer is a common tumor of the digestive system. Identification of potential molecules associated with gastric cancer progression and validation of potential biomarkers for gastric cancer diagnosis are very important. Thus, the aim of our study was to determine the serum metabolic characteristics of the serum of patients with chronic gastritis (CG) or gastric cancer (GC) and validate candidate biomarkers for disease diagnosis. Experimental Design A total of 123 human serum samples from patients with CG or GC were collected for untargeted metabolomic analysis via UHPLC-Q-TOF/MS to determine characteristics of the serum. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and heat map were used for multivariate analysis. In addition, commercial databases were used to identify the pathways of metabolites. Differential metabolites were identified based on a heat map with a t-test threshold (p < 0.05), fold-change threshold (FC > 1.5 or FC < 2/3) and variable importance in the projection (VIP >1). Then, differential metabolites were analyzed by receiver operating characteristic (ROC) curve to determine candidate biomarkers. All samples were analyzed for fasting lipid profiles. Results Analysis of serum metabolomic profiles indicated that most of the altered metabolic pathways in the three groups were associated with lipid metabolism (p < 0.05) and lipids and lipid-like molecules were the predominating metabolites within the top 100 differential metabolites (p < 0.05, FC > 1.5 or FC < 2/3, and VIP >1). Moreover, differential metabolites, including hexadecasphinganine, linoleamide, and N-Hydroxy arachidonoyl amine had high diagnostic performance according to PLS-DA. In addition, fasting lipid profile analysis showed the serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (Apo-A1) were decreased concomitant to the progression of the progression of the disease compared with those in the control group (p < 0.05). Conclusions Thus, this study demonstrated that lipid metabolism may influence the development of CG to GC. Hexadecasphinganine, linoleamide, and N-Hydroxy arachidonoyl amine were selected as candidate diagnostic markers for CG and GC.
Collapse
Affiliation(s)
- Lin Yu
- Departmant of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qian Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanmeng Li
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Feng
- Departmant of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bei Xu
- Departmant of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
22
|
Toll-Like Receptor 7 Mediates Inflammation Resolution and Inhibition of Angiogenesis in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13040740. [PMID: 33578955 PMCID: PMC7916730 DOI: 10.3390/cancers13040740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The progression of cancer is strictly linked to the formation of new blood vessels responsible for nutrition supply of the tumor. We identified TLR7 as an inhibitor of lung cancer vascularization. TLR7 is part of a large family of immune receptors that function as “sensors” of pathogen- and damage-derived signals. We found that TLR7 exerts antitumor functions in non-small cell lung cancer by inducing the production of specific molecules with inhibitory properties against new blood vessel formation. These molecules are known as specialized pro-resolving mediators (SPMs) and are derived from ω-3 and ω-6 fatty acids. We believe that the results obtained suggest novel potential targets and strategies to treat lung cancer. Abstract Pattern recognition receptors (PRR) promote inflammation but also its resolution. We demonstrated that a specific PRR—formyl peptide receptor 1 (FPR1)—sustains an inflammation resolution response with anti-angiogenic and antitumor potential in gastric cancer. Since toll-like receptor 7 (TLR7) is crucial in the physiologic resolution of airway inflammation, we asked whether it could be responsible for pro-resolving and anti-angiogenic responses in non-small cell lung cancer (NSCLC). TLR7 correlated directly with pro-resolving and inversely with angiogenic mediators in NSCLC patients, as revealed by a publicly available RNAseq analysis. In NSCLC cells, depletion of TLR7 caused an upregulation of angiogenic mediators and a stronger vasculogenic response of endothelial cells compared to controls, assessed by qPCR, ELISA, protein array, and endothelial cell responses. TLR7 activation induced the opposite effects. TLR7 silencing reduced, while its activation increased, the pro-resolving potential of NSCLC cells, evaluated by qPCR, flow cytometry, and EIA. The increased angiogenic potential of TLR7-silenced NSCLC cells is due to the lack of pro-resolving mediators. MAPK and STAT3 signaling are responsible for these activities, as demonstrated through Western blotting and inhibitors. Our data indicate that TLR7 sustains a pro-resolving signaling in lung cancer that inhibits angiogenesis. This opens new possibilities to be exploited for cancer treatment.
Collapse
|
23
|
Sun T, Wang X, Cong P, Xu J, Xue C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2530-2558. [PMID: 33336980 DOI: 10.1111/1541-4337.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.
Collapse
Affiliation(s)
- Tong Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
24
|
Avanoǧlu Güler A, Rossi FW, Bellando-Randone S, Prevete N, Tufan A, Manetti M, de Paulis A, Matucci-Cerinic M. The Role of Endogenous Eicosapentaenoic Acid and Docosahexaenoic Acid-Derived Resolvins in Systemic Sclerosis. Front Immunol 2020; 11:1249. [PMID: 32636845 PMCID: PMC7318896 DOI: 10.3389/fimmu.2020.01249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Resolvins, the member of specialized pro-resolving mediators, are produced from omega-3 polyunsaturated fatty acids as a response to an acute inflammatory process in that termination and resolution of inflammation. In the acute inflammation, these lipid mediators limit polymorphonuclear cells infiltration, proinflammatory cytokine production; promote efferocytosis, and regulate several cell types being important roles in innate and adaptive immunity. Any dysregulation or defect of the resolution phase result in prolonged, persistent inflammation and eventually fibrosis. Resolvins are implicated in the development of various chronic autoimmune diseases. Systemic sclerosis (SSc) is a very complicated, chronic autoimmune disorder proceeding with vasculopathy, inflammation, and fibrosis. Dysregulation of innate and adaptive immunity is another important contributing factor in the pathogenesis of SSc. In this review, we will focus on the different roles of this new family of lipid mediators, characterized by the ability to prevent the spread of inflammation and its chronicity in various ways and how they can control the development of fibrotic diseases like SSc.
Collapse
Affiliation(s)
- Aslıhan Avanoǧlu Güler
- Department of Experimental and Clinical Medicine, University of Florence and Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
- Department of Internal Medicine, Division of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Francesca Wanda Rossi
- Department of Internal Medicine, Clinical Immunology and Rheumatology, University of Naples Federico II, Naples, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, University of Florence and Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
| | - Nella Prevete
- Department of Internal Medicine, Clinical Immunology and Rheumatology, University of Naples Federico II, Naples, Italy
| | - Abdurrahman Tufan
- Department of Internal Medicine, Division of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, University of Florence and Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
| | - Amato de Paulis
- Department of Internal Medicine, Clinical Immunology and Rheumatology, University of Naples Federico II, Naples, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence and Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
| |
Collapse
|
25
|
A Diet Rich in Fish Oil and Leucine Ameliorates Hypercalcemia in Tumour-Induced Cachectic Mice. Int J Mol Sci 2019; 20:ijms20204978. [PMID: 31600911 PMCID: PMC6829241 DOI: 10.3390/ijms20204978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Dietary supplementation with leucine and fish oil rich in omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) has previously been shown to reduce cachexia-related outcomes in C26 tumour-bearing mice. To further explore associated processes and mechanisms we investigated changes in plasma Ca2+ levels, the involvement of parathyroid hormone related protein (PTHrP), and its possible interactions with cyclooxygenase 2 (COX-2). Methods: CD2F1 mice were subcutaneously inoculated with C26 adenocarcinoma cells or sham treated and divided in: (1) controls, (2) tumour-bearing controls, and (3) tumour-bearing receiving experimental diets. After 20 days, body and organ masses and total plasma Ca2+ levels were determined. Furthermore, effects of DHA, EPA and leucine on production of PTHrP were studied in cultured C26 cells. Results: The combination of leucine and fish oil reduced tumour-associated hypercalcemia. Plasma Ca2+ levels negatively correlated with carcass mass and multiple organ masses. DHA was able to reduce PTHrP production by C26 cells in vitro. Results indicate that this effect occurred independently of COX-2 inhibition. Conclusion: Our results suggest that cancer-related hypercalcemia may be ameliorated by a nutritional intervention rich in leucine and fish oil. The effect of fish oil possibly relates to a DHA-induced reduction of PTHrP excretion by the tumour.
Collapse
|
26
|
Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G, Marone G, Antonelli A. Immune and Inflammatory Cells in Thyroid Cancer Microenvironment. Int J Mol Sci 2019; 20:E4413. [PMID: 31500315 PMCID: PMC6769504 DOI: 10.3390/ijms20184413] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
A hallmark of cancer is the ability of tumor cells to avoid immune destruction. Activated immune cells in tumor microenvironment (TME) secrete proinflammatory cytokines and chemokines which foster the proliferation of tumor cells. Specific antigens expressed by cancer cells are recognized by the main actors of immune response that are involved in their elimination (immunosurveillance). By the recruitment of immunosuppressive cells, decreasing the tumor immunogenicity, or through other immunosuppressive mechanisms, tumors can impair the host immune cells within the TME and escape their surveillance. Within the TME, cells of the innate (e.g., macrophages, mast cells, neutrophils) and the adaptive (e.g., lymphocytes) immune responses are interconnected with epithelial cancer cells, fibroblasts, and endothelial cells via cytokines, chemokines, and adipocytokines. The molecular pattern of cytokines and chemokines has a key role and could explain the involvement of the immune system in tumor initiation and progression. Thyroid cancer-related inflammation is an important target for diagnostic procedures and novel therapeutic strategies. Anticancer immunotherapy, especially immune checkpoint inhibitors, unleashes the immune system and activates cytotoxic lymphocytes to kill cancer cells. A better knowledge of the molecular and immunological characteristics of TME will allow novel and more effective immunotherapeutic strategies in advanced thyroid cancer.
Collapse
Affiliation(s)
- Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Poupak Fallahi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Valeria Mazzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| |
Collapse
|
27
|
Parohan M, Sadeghi A, Khatibi SR, Nasiri M, Milajerdi A, Khodadost M, Sadeghi O. Dietary total antioxidant capacity and risk of cancer: a systematic review and meta-analysis on observational studies. Crit Rev Oncol Hematol 2019; 138:70-86. [DOI: 10.1016/j.critrevonc.2019.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 11/30/2018] [Accepted: 04/01/2019] [Indexed: 01/04/2023] Open
|
28
|
Liotti F, Prevete N, Vecchio G, Melillo RM. Recent advances in understanding immune phenotypes of thyroid carcinomas: prognostication and emerging therapies. F1000Res 2019; 8:F1000 Faculty Rev-227. [PMID: 30854191 PMCID: PMC6396838 DOI: 10.12688/f1000research.16677.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/29/2022] Open
Abstract
Tumors modulate the host immune cells within their microenvironment to avoid recognition and elimination by our immune system, a phenotype called cancer immune escape. Different mechanisms responsible for cancer immune escape that result either in decreased tumor immunogenicity or in increased tumor immunosuppressive activity have been identified. Recently, various immunotherapeutic approaches have been developed with the aim to revert tumor immune escape. The aims of this review are to explore the immunological aspects of thyroid cancer and to assess whether these features can be exploited in the prognosis and treatment of advanced forms of this disease. Therefore, we will describe the immune landscape and phenotypes of thyroid cancer, summarize studies investigating the expression of immunomodulatory molecules, and finally describe the preclinical and clinical trials investigating the utility of immunotherapies in the management of thyroid cancer. The aim of this review is to explore the immunological aspects of thyroid cancer and to assess whether these features can be exploited in the prognosis and treatment of advanced forms of this disease. Therefore, we will describe the immune-landscape and phenotypes of thyroid cancer, we will summarize studies investigating the expression of immunomodulatory molecules, and we will finally describe the preclinical and clinical trials investigating the utility of immunotherapies in the management of thyroid cancer.
Collapse
Affiliation(s)
- Federica Liotti
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy, Italy
| | - Nella Prevete
- Dipartimento di Scienze Mediche Traslazionali, Università ¨Federico II¨ di Napoli, Naples, Italy, Italy
- Istituto di Endocrinologia e Oncologia Sperimentale “G. Salvatore”, CNR, Naples, Italy, Italy
| | - Giancarlo Vecchio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy, Italy
- Istituto Superiore di Oncologia, Naples, Italy
- Istituto Superiore di Oncologia, Genoa, Italy
| | - Rosa Marina Melillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy, Italy
- Istituto di Endocrinologia e Oncologia Sperimentale “G. Salvatore”, CNR, Naples, Italy, Italy
| |
Collapse
|
29
|
Gravina AG, Prevete N, Tuccillo C, De Musis C, Romano L, Federico A, de Paulis A, D’Argenio G, Romano M. Peptide Hp(2-20) accelerates healing of TNBS-induced colitis in the rat. United European Gastroenterol J 2018; 6:1428-1436. [PMID: 30386616 PMCID: PMC6206543 DOI: 10.1177/2050640618793564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Hp(2-20), a Helicobacter pylori-derived peptide interacting with N-formyl peptide receptors (FPRs), accelerates the healing of gastric injury in rats. Whether Hp(2-20) affects the recovery of inflamed colonic mucosa is unknown. We evaluated whether Hp(2-20) accelerated the healing of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis and explored the mechanism(s) underlying any such effect. METHODS Fifteen rats underwent rectal administration of Hp(2-20) 250-500 µg/kg/day, or of its control peptide Hp1 for 10 days, following induction of colitis with TNBS. Macroscopic and histological damage was quantified using predetermined injury scores. FPR1, COX-2, TNF-α, TGF-β, HB-EGF and tissue transglutaminase (t-TG) messenger RNA (mRNA) expression in colonic tissue was determined by quantitative polymerase chain reaction; FPR1, TNF-α and COX-2 protein levels by Western blotting. RESULTS (1) Hp(2-20) accelerated healing of TNBS-induced colitis compared to controls consistently with the expression of FPRs in colonic mucosa; (2) TNBS upregulated mRNA mucosal expression of COX-2, TNF-α, TGF-β, HB-EGF and t-TG and (3) this, with the exception of HB-EGF, was significantly counteracted by Hp(2-20). CONCLUSIONS Hp(2-20), an FPR agonist, accelerates the healing of TNBS-induced colitis in the rat. This effect is associated with a significant reduction in colonic tissue levels of COX-2, TGF-β, TNF-α and t-TG. We postulate that FPR-dependent pathways may be involved in the repair of inflamed colonic mucosa.
Collapse
Affiliation(s)
- AG Gravina
- Hepatogastroenterology Unit, Department
of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples,
Italy
| | - N Prevete
- Department of Translational Medical
Sciences (DiSMeT)-University of Naples Federico II and Institute of Endocrinology
and Experimental Oncology (IEOS) “G. Salvatore,” CNR, Naples, Italy
| | - C Tuccillo
- Hepatogastroenterology Unit, Department
of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples,
Italy
| | - C De Musis
- Hepatogastroenterology Unit, Department
of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples,
Italy
| | - L Romano
- Hepatogastroenterology Unit, Department
of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples,
Italy
| | - A Federico
- Hepatogastroenterology Unit, Department
of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples,
Italy
| | - A de Paulis
- Department of Translational Medical
Sciences (DiSMeT) and Center for Basic and Clinical Immunologic Research (CISI),
University of Naples Federico II, Naples, Italy
| | - G D’Argenio
- Gastroenterology Unit, Department of
Clinical and Experimental Medicine, University of Naples Federico II, Naples,
Italy
| | - M Romano
- Hepatogastroenterology Unit, Department
of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples,
Italy
| |
Collapse
|
30
|
Liu F, Li C, Zhu J, Ren L, Qi X. ABO blood type and risk of hepatocellular carcinoma: a meta-analysis. Expert Rev Gastroenterol Hepatol 2018; 12:927-933. [PMID: 30004289 DOI: 10.1080/17474124.2018.1500174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND ABO blood type is an invariant factor. There is a link between ABO blood type and some malignancies, such as gastric, pancreatic, and skin cancer. The role of ABO blood type in the pathogenesis of hepatocellular carcinoma (HCC) remains controversial. We performed a meta-analysis to explore the relationship between ABO blood type and risk of HCC. METHODS Literature search was conducted among the PubMed, EMBASE, and Cochrane Library databases. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. RESULTS Seven papers were included. They included 92,847 healthy subjects, 5,463 patients with hepatitis, 294 cirrhotic patients, and 3,322 HCC patients. The proportion of blood type O was significantly lower in HCC patients than healthy subjects (OR = 0.76, 95%CI = 0.66-0.87, P < 0.0001) without any significant heterogeneity (P = 0.55, I2 = 0%). The proportions of blood types A, B, and AB were not significantly different between HCC patients and healthy subjects. The proportion of ABO blood type was not significantly different between patients with HCC and those with hepatitis or cirrhosis. CONCLUSION HCC patients might have a lower proportion of blood type O than healthy subjects. Among the patients with chronic liver diseases, ABO blood type might not be associated with the risk of HCC.
Collapse
Affiliation(s)
- Fufang Liu
- a Meta-analysis Interest Group, General Hospital of Shenyang Military Area , Shenyang , Liaoning Province , China
- b Postgraduate College , Jinzhou Medical University , Jinzhou , Liaoning Province , China
| | - Chuan Li
- a Meta-analysis Interest Group, General Hospital of Shenyang Military Area , Shenyang , Liaoning Province , China
- c Section of Medical Service , General Hospital of Shenyang Military Area , Shenyang , Liaoning Province , China
| | - Jia Zhu
- a Meta-analysis Interest Group, General Hospital of Shenyang Military Area , Shenyang , Liaoning Province , China
| | - Linan Ren
- d Department of Gastroenterology , General Hospital of Shenyang Military Area , Shenyang , Liaoning Province , China
| | - Xingshun Qi
- a Meta-analysis Interest Group, General Hospital of Shenyang Military Area , Shenyang , Liaoning Province , China
- d Department of Gastroenterology , General Hospital of Shenyang Military Area , Shenyang , Liaoning Province , China
| |
Collapse
|
31
|
Ye Y, Scheff NN, Bernabé D, Salvo E, Ono K, Liu C, Veeramachaneni R, Viet CT, Viet DT, Dolan JC, Schmidt BL. Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology 2018; 139:182-193. [PMID: 30009833 DOI: 10.1016/j.neuropharm.2018.07.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/23/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022]
Abstract
Oral cancer is often painful and lethal. Oral cancer progression and pain may result from shared pathways that involve unresolved inflammation and elevated levels of pro-inflammatory cytokines. Resolvin D-series (RvDs) are endogenous lipid mediators derived from omega-3 fatty acids that exhibit pro-resolution and anti-inflammatory actions. These mediators have recently emerged as a novel class of therapeutics for diseases that involve inflammation; the specific roles of RvDs in oral cancer and associated pain are not defined. The present study investigated the potential of RvDs (RvD1 and RvD2) to treat oral cancer and alleviate oral cancer pain. We found down-regulated mRNA levels of GPR18 and GPR32 (which code for receptors RvD1 and RvD2) in oral cancer cells. Both RvD1 and RvD2 inhibited oral cancer proliferation in vitro. Using two validated mouse oral squamous cell carcinoma xenograft models, we found that RvD2, the more potent anti-inflammatory lipid mediator, significantly reduced tumor size. The mechanism of this action might involve suppression of IL-6, C-X-C motif chemokine 10 (CXCL10), and reduction of tumor necrosis. RvD2 generated short-lasting analgesia in xenograft cancer models, which coincided with decreased neutrophil infiltration and myeloperoxidase activity. Using a cancer supernatant model, we demonstrated that RvD2 reduced cancer-derived cytokines/chemokines (TNF-α, IL-6, CXCL10, and MCP-1), cancer mediator-induced CD11b+Ly6G- myeloid cells, and nociception. We infer from our results that manipulation of the endogenous pro-resolution pathway might provide a novel approach to improve oral cancer and cancer pain treatment.
Collapse
Affiliation(s)
- Yi Ye
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA.
| | - Nicole N Scheff
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Daniel Bernabé
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Elizabeth Salvo
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Kentaro Ono
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Cheng Liu
- Head and Neck Pathology, Langone Medical Center, USA
| | | | - Chi T Viet
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA
| | - Dan T Viet
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - John C Dolan
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Orthodontics, New York University, New York, NY, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA
| |
Collapse
|