1
|
Maramai S, Saletti M, Paolino M, Giuliani G, Cazzola J, Spaiardi P, Talpo F, Frosini M, Pifferi A, Ballarotto M, Carotti A, Poggialini F, Vagaggini C, Dreassi E, Giorgi G, Dondio G, Cappelli A, Rosario Biella G, Anzini M. Novel multitarget directed ligands inspired by riluzole: A serendipitous synthesis of substituted benzo[b][1,4]thiazepines potentially useful as neuroprotective agents. Bioorg Med Chem 2024; 112:117872. [PMID: 39153378 DOI: 10.1016/j.bmc.2024.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Riluzole, the first clinically approved treatment for amyotrophic lateral sclerosis (ALS), represents a successful example of a drug endowed with a multimodal mechanism of action. In recent years, different series of riluzole-based compounds have been reported, including several agents acting as Multi-Target-Directed Ligands (MTLDs) endowed with neuroprotective effects. Aiming at identical twin structures inspired by riluzole (2a-c), a synthetic procedure was planned, but the reactivity of the system took a different path, leading to the serendipitous isolation of benzo[b][1,4]thiazepines 3a-c and expanded intermediates N-cyano-benzo[b][1,4]thiazepines 4a-c, which were fully characterized. The newly obtained structures 3a-c, bearing riluzole key elements, were initially tested in an in vitro ischemia/reperfusion injury protocol, simulating the cerebral stroke. Results identified compound 3b as the most effective in reverting the injury caused by an ischemia-like condition, and its activity was comparable, or even higher than that of riluzole, exhibiting a concentration-dependent neuroprotective effect. Moreover, derivative 3b completely reverted the release of Lactate Dehydrogenase (LDH), lowering the values to those of the control slices. Based on its very promising pharmacological properties, compound 3b was then selected to assess its effects on voltage-dependent Na+ and K+ currents. The results indicated that derivative 3b induced a multifaceted inhibitory effect on voltage-gated currents in SH-SY5Y differentiated neurons, suggesting its possible applications in epilepsy and stroke management, other than ALS. Accordingly, brain penetration was also measured for 3b, as it represents an elegant example of a MTDL and opens the way to further ex-vivo and/or in-vivo characterization.
Collapse
Affiliation(s)
- Samuele Maramai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Jessica Cazzola
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy
| | - Paolo Spaiardi
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy; INFN - Sezione di Pavia, Dipartimento di Fisica, Via Agostino Bassi 6, 27100 Pavia, Italy
| | - Francesca Talpo
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alice Pifferi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Ballarotto
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Andrea Carotti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Federica Poggialini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Chiara Vagaggini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Elena Dreassi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gerardo Rosario Biella
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy; INFN - Sezione di Pavia, Dipartimento di Fisica, Via Agostino Bassi 6, 27100 Pavia, Italy
| | - Maurizio Anzini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
2
|
Ji D, Jin C, Tao M, Sun Y, Chen H, Li H, Qu X, Ye H, Zhang L, Huang Z, Zhang Y, Kong T, Wu J. Design, synthesis, and biological evaluation of novel iNOS inhibitors as potent neuroprotective agents for ischemic stroke. Eur J Med Chem 2024; 280:116907. [PMID: 39368264 DOI: 10.1016/j.ejmech.2024.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Ischemic stroke (IS) is characterized by intricate pathophysiological mechanisms, where single-target treatments have often proven insufficient. Thus, multi-target therapeutic approaches are essential for effective IS management. In this study, we employed a molecular hybridization strategy, merging the structures of the iNOS inhibitor 1400W and the multi-target neuroprotective agent NBP, to develop a series of novel iNOS inhibitors BN-1 ∼ BN-4 with neuroprotective properties. Among these, BN-4 exhibited the most potent cell protective activity in OGD/R-induced SH-SY5Y and BV-2 cells. BN-4 not only reduced ROS levels induced by OGD/R in SH-SY5Y cells but also mitigated necrosis and apoptosis. By binding to iNOS in a manner similar to 1400W, BN-4 significantly inhibited iNOS activity. Furthermore, BN-4 demonstrated high stability, excellent blood-brain barrier permeability, and more than 100-fold increase in aqueous solubility compared to NBP. Additionally, BN-4 notably decreased infarct size and showed neuroprotective effects in tMCAO rats. These findings indicate that BN-4 holds promise as a novel candidate for treatment IS, offering enhanced therapeutic efficacy due to its superior pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Duorui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chengbin Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Mingshu Tao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuze Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Huiqin Chen
- School of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Xinjiang Medical University, Urumqi, 830054, PR China
| | - Hongyu Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaohan Qu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hui Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Xinjiang Medical University, Urumqi, 830054, PR China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Tiantian Kong
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830028, PR China.
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Zheng ZJ, Zhu LZ, Qiu H, Zheng WYX, You PT, Chen SH, Hu CL, Huang JR, Zhou YJ. Neferine inhibits BMECs pyroptosis and maintains blood-brain barrier integrity in ischemic stroke by triggering a cascade reaction of PGC-1α. Sci Rep 2024; 14:14438. [PMID: 38910141 PMCID: PMC11194274 DOI: 10.1038/s41598-024-64815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
Blood-brain barrier disruption is a critical pathological event in the progression of ischemic stroke (IS). Most studies regarding the therapeutic potential of neferine (Nef) on IS have focused on neuroprotective effect. However, whether Nef attenuates BBB disruption during IS is unclear. We here used mice underwent transient middle cerebral artery occlusion (tMCAO) in vivo and bEnd.3 cells exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro to simulate cerebral ischemia. We showed that Nef reduced neurobehavioral dysfunction and protected brain microvascular endothelial cells and BBB integrity. Molecular docking, short interfering (Si) RNA and plasmid transfection results showed us that PGC-1α was the most binding affinity of biological activity protein for Nef. And verification experiments were showed that Nef upregulated PGC-1α expression to reduce mitochondrial oxidative stress and promote TJ proteins expression, further improves the integrity of BBB in mice. Intriguingly, our study showed that neferine is a natural PGC-1α activator and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated Nef reduced mitochondria oxidative damage and ameliorates endothelial inflammation by inhibiting pyroptosis to improve BBB permeability through triggering a cascade reaction of PGC-1α via regulation of PGC-1α/NLRP3/GSDMD signaling pathway to maintain the integrity of BBB in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- Department of Pharmacy, Gongan Hospital of Traditional Chinese Medicine, Jingzhou, 434300, China
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Li-Zhi Zhu
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Han Qiu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002 West Sungang Rd, Shenzhen, 518020, China
| | - Wu-Yin-Xiao Zheng
- Department of Pharmacy, Gongan Hospital of Traditional Chinese Medicine, Jingzhou, 434300, China
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Peng-Tao You
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Shu-He Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Chun-Ling Hu
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jun-Rong Huang
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Ya-Jun Zhou
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002 West Sungang Rd, Shenzhen, 518020, China.
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
- Hubei Shizhen Laboratory, Wuhan, 430061, China.
| |
Collapse
|
4
|
Lu J, Zhang J, Wang X, Yuan F, Xin B, Li J, Yang Q, Li X, Zhang J, Wang X, Fu J, Guo C. Dl-3-n-butylphthalide promotes microglial phagocytosis and inhibits microglial inflammation via regulating AGE-RAGE pathway in APP/PS1 mice. Brain Res Bull 2024; 212:110969. [PMID: 38705540 DOI: 10.1016/j.brainresbull.2024.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative condition worldwide, and its correlation with microglial function is notably significant. Dl-3-n-butylphthalide (NBP), derived from the seeds of Apium graveolens L. (Chinese celery), has demonstrated the capacity to diminish Aβ levels in the brain tissue of Alzheimer's transgenic mice. Despite this, its connection to neuroinflammation and microglial phagocytosis, along with the specific molecular mechanism involved, remains undefined. In this study, NBP treatment exhibited a substantial improvement in learning deficits observed in AD transgenic mice (APP/PS1 transgenic mice). Furthermore, NBP treatment significantly mitigated the total cerebral Aβ plaque deposition. This effect was attributed to the heightened presence of activated microglia surrounding Aβ plaques and an increase in microglial phagocytosis of Aβ plaques. Transcriptome sequencing analysis unveiled the potential involvement of the AGE (advanced glycation end products) -RAGE (receptor for AGE) signaling pathway in NBP's impact on APP/PS1 mice. Subsequent investigation disclosed a reduction in the secretion of AGEs, RAGE, and proinflammatory factors within the hippocampus and cortex of NBP-treated APP/PS1 mice. In summary, NBP alleviates cognitive impairment by augmenting the number of activated microglia around Aβ plaques and ameliorating AGE-RAGE-mediated neuroinflammation. These findings underscore the related mechanism of the crucial neuroprotective roles of microglial phagocytosis and anti-inflammation in NBP treatment for AD, offering a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Jin Lu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jiawei Zhang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Xin
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingxia Li
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianping Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyan Wang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Jianliang Fu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Jia Y, Xiao H, Wang X, Liu Y, Wang J, Xie H, Shang H, Sun G, Tian Y. Design, synthesis, and evaluation of n-butylphthalide and ligustrazine hybrids as potent neuroprotective agents for the treatment of ischemic stroke in vitro and in vivo. Bioorg Chem 2024; 142:106961. [PMID: 37956636 DOI: 10.1016/j.bioorg.2023.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
A series of novel NBP-TMP hybrids with neuroprotective effects were designed and synthesized for the treatment of ischemic stroke. The anti-cerebral ischemic activity of these compounds was screened by evaluating their neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced SH-SY5Y cell injury model in vitro. Nine compounds 7e, 7h-7i, 7k, 7m-7p and 7r showed better activities on cell viability and LDH levels compared to NBP at the concentration of 6.25 μM. Among them, compound 7m showed the best potency with a percentage of protection 90.2 % compared to NBP (69.2 %) and other compounds. Preliminary structure-activity analysis revealed that the introduction of iodine and N-methylpiperazine groups could significantly improve the neuroprotective effect. Further mechanism research showed that compound 7m could reduce the damage to neuronal mitochondria caused by OGD/R by reducing ROS and increasing mitochondrial membrane potential (MMP), and reduce the apoptosis and necrosis of neurons to play a neuroprotective role. In addition, 7m could regulate the levels of mitochondrial apoptosis pathway-related proteins Bcl-2, Bax, and caspase 3. Finally, in vivo experiments showed that the compound 7m significantly inhibited ischemia-reperfusion injury and cerebral blood flow in rats, and showed a more significant neuroprotective effect than the positive drug NBP at a dose concentration of 20 mg/kg. In conclusion, our results suggest that 7m may be used as a novel lead compound for the future development of anti-cerebral ischemic agents.
Collapse
Affiliation(s)
- Yi Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Haiyan Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaolin Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ying Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haochen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
6
|
Liu Y, Duan R, Li P, Zhang B, Liu Y. 3-N-butylphthalide attenuates neuroinflammation in rotenone-induced Parkinson's disease models via the cGAS-STING pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241229041. [PMID: 38315064 PMCID: PMC10846052 DOI: 10.1177/03946320241229041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Neuroinflammation is crucial in the onset and progression of dopaminergic neuron loss in Parkinson's disease (PD). We aimed to determine whether 3-N-Butylphthalide (NBP) can protect against PD by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and the inflammatory response of microglia. MitoSOX/MitoTracker/Hoechst staining was used to detect the levels of mitochondrial reactive oxygen species (ROS) in BV2 cells. Quantitative Real-Time Polymerase Chain Reaction was used to measure the levels of free cytoplasmic mitochondrial DNA (mtDNA) in BV2 cells and mouse brain tissues. Behavioral impairments were assessed using rotarod, T-maze, and balance beam tests. Dopaminergic neurons and microglia were observed using immunohistochemical staining. Expression levels of cGAS, STING, nuclear factor kappa-B (NfκB), phospho- NfκB (p-NfκB), inhibitor of NfκBα (IκBα), and phospho-IκBα (p-IκBα) proteins in the substantia nigra and striatum were detected using Western Blot. NBP decreased mitochondrial ROS levels in rotenone-treated BV2 cells. NBP alleviated behavioral impairments and protected against rotenone-induced microgliosis and damage to dopaminergic neurons in the substantia nigra and striatum of rotenone-induced PD mice. NBP decreased rotenone-induced mtDNA leakage and mitigated neuroinflammation by inhibiting cGAS-STING pathway activation. NBP exhibited a protective effect in rotenone-induced PD models by significantly inhibiting the cGAS-STING pathway. Moreover, NBP can alleviate neuroinflammation, and is a potential therapeutic drug for alleviating clinical symptoms and delaying the progression of PD. This study provided insights for the potential role of NBP in PD therapy, potentially mitigating neurodegeneration, and consequently improving the quality of life and lifespan of patients with PD. The limitations are that we have not confirmed the exact mechanism by which NBP decreases mtDNA leakage, and this study was unable to observe the actual clinical therapeutic effect, so further cohort studies are required for validation.
Collapse
Affiliation(s)
- Yuqian Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Ruonan Duan
- Qilu Hospital of Shandong University, Jinan, China
| | - Peizheng Li
- Qilu Hospital of Shandong University, Jinan, China
| | - Bohan Zhang
- Qilu Hospital of Shandong University, Jinan, China
| | - Yiming Liu
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Dai MJ, Gui XX, Jia SM, Lv ST, Dou H, Cui W. Dl-3-n-butylphthalide promotes angiogenesis in ischemic stroke mice through upregulating autocrine and paracrine sonic hedgehog. Acta Pharmacol Sin 2023; 44:2404-2417. [PMID: 37580491 PMCID: PMC10692133 DOI: 10.1038/s41401-023-01137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/09/2023] [Indexed: 08/16/2023] Open
Abstract
Dl-3-n-butylphthalide (NBP) is a small-molecule drug used in the treatment of ischemic stroke in China, which is proven to ameliorate the symptoms of ischemic stroke and improve the prognosis of patients. Previous studies have shown that NBP accelerates recovery after stroke by promoting angiogenesis. In this study, we investigated the mechanisms underlying the angiogenesis-promoting effects of NBP in ischemic stroke models in vitro and in vivo. OGD/R model was established in human umbilical vein endothelial cells (HUVECs) and human brain microvascular endothelial cells (HBMECs), while the tMCAO model was established in mice. The cells were pretreated with NBP (10, 50, 100 µM); the mice were administered NBP (4, 8 mg/kg, i.v.) twice after tMCAO. We showed that NBP treatment significantly stimulated angiogenesis by inducing massive production of angiogenic growth factors VEGFA and CD31 in both in vitro and in vivo models of ischemic stroke. NBP also increased the tubule formation rate and migration capability of HUVECs in vitro. By conducting the weighted gene co-expression network analysis, we found that these effects were achieved by upregulating the expression of a hedgehog signaling pathway. We demonstrated that NBP treatment not only changed the levels of regulators of the hedgehog signaling pathway but also activated the transcription factor Gli1. The pro-angiogenesis effect of NBP was abolished when the hedgehog signaling pathway was inhibited by GDC-0449 in HUVECs, by Sonic Hedgehog(Shh) knockdown in HUVECs, or by intracerebroventricular injection of AAV-shRNA(shh)-CMV in tMCAO mice. Furthermore, we found that HUVECs produced a pro-angiogenic response not only to autocrine Shh, but also to paracrine Shh secreted by astrocytes. Together, we demonstrate that NBP promotes angiogenesis via upregulating the hedgehog signaling pathway. Our results provide an experimental basis for the clinical use of NBP.
Collapse
Affiliation(s)
- Mei-Jie Dai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xing-Xing Gui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-Miao Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-Ting Lv
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hao Dou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Zheng Y, Zhao F, Hu Y, Yan F, Tian Y, Wang R, Huang Y, Zhong L, Luo Y, Ma Q. LC-MS/MS metabolomic profiling of the protective butylphthalide effect in cerebral ischemia/reperfusion mice. J Stroke Cerebrovasc Dis 2023; 32:107347. [PMID: 37716103 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES This study was designed to investigate metabolic biomarker changes and related metabolic pathways of Butylphthalide (NBP) on cerebral ischemia/reperfusion. METHODS In this study, a mouse cerebral ischemia/reperfusion (I/R) model was prepared using the middle cerebral artery occlusion method, and neurobehavioral score and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining experiments were used to confirm the obvious NBP anti-cerebral ischemia effect. The protective effect of NBP in the mouse cerebral I/R model and its metabolic pathway and mechanism were investigated using mouse blood samples. RESULTS The metabolic profiles of mice in the I/R+NBP, I/R, and sham groups were significantly different. Under the condition that I/R vs. sham was downregulated and I/R + NBP vs. I/R was upregulated, 88 differential metabolites, including estradiol, ubiquinone-2, 2-oxoarginine, and L-histidine trimethylbetaine, were screened and identified. The related metabolic pathways involved arginine and proline metabolism, oxidative phosphorylation, ubiquitin and other terpenoid-quinone biosynthesis, and estrogen signaling. CONCLUSIONS Metabolomics was used to elucidate the NBP mechanism in cerebral ischemia treatment in mice, revealing synergistic NBP pharmacological characteristics with multiple targets.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Hu
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yue Tian
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
9
|
Huang Y, Wu Y, Yin H, Du L, Chen C. Senkyunolide I: A Review of Its Phytochemistry, Pharmacology, Pharmacokinetics, and Drug-Likeness. Molecules 2023; 28:molecules28083636. [PMID: 37110869 PMCID: PMC10144034 DOI: 10.3390/molecules28083636] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Senkyunolide I (SI) is a natural phthalide that has drawn increasing interest for its potential as a cardio-cerebral vascular drug candidate. In this paper, the botanical sources, phytochemical characteristics, chemical and biological transformations, pharmacological and pharmacokinetic properties, and drug-likeness of SI are reviewed through a comprehensive literature survey, in order to provide support for its further research and applications. In general, SI is mainly distributed in Umbelliferae plants, and it is relatively stable to heat, acid, and oxygen, with good blood-brain barrier (BBB) permeability. Substantial studies have established reliable methods for the isolation, purification, and content determination of SI. Its pharmacological effects include analgesic, anti-inflammatory, antioxidant, anti-thrombotic, anti-tumor effects, alleviating ischemia-reperfusion injury, etc. Pharmacokinetic parameters indicate that its metabolic pathway is mainly phase Ⅱ metabolism, and it is rapidly absorbed in vivo and widely distributed in the kidneys, liver, and lungs.
Collapse
Affiliation(s)
- Yan Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Wu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Hongxiang Yin
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leilei Du
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| |
Collapse
|
10
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
11
|
Yang Q, Pu W, Hu K, Hu Y, Feng Z, Cai J, Li C, Li L, Zhou Z, Zhang J. Reactive Oxygen Species-Responsive Transformable and Triple-Targeting Butylphthalide Nanotherapy for Precision Treatment of Ischemic Stroke by Normalizing the Pathological Microenvironment. ACS NANO 2023; 17:4813-4833. [PMID: 36802489 DOI: 10.1021/acsnano.2c11363] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High potency and safe therapies are still required for ischemic stroke, which is a leading cause of global death and disability. Herein, a reactive oxygen species (ROS)-responsive, transformable, and triple-targeting dl-3-n-butylphthalide (NBP) nanotherapy was developed for ischemic stroke. To this end, a ROS-responsive nanovehicle (OCN) was first constructed using a cyclodextrin-derived material, which showed considerably enhanced cellular uptake in brain endothelial cells due to notably reduced particle size, morphological transformation, and surface chemistry switching upon triggering via pathological signals. Compared to a nonresponsive nanovehicle, this ROS-responsive and transformable nanoplatform OCN exhibited a significantly higher brain accumulation in a mouse model of ischemic stroke, thereby affording notably potentiated therapeutic effects for the nanotherapy derived from NBP-containing OCN. For OCN decorated with a stroke-homing peptide (SHp), we found significantly increased transferrin receptor-mediated endocytosis, in addition to the previously recognized targeting capability to activated neurons. Consistently, the engineered transformable and triple-targeting nanoplatform, i.e., SHp-decorated OCN (SON), displayed a more efficient distribution in the injured brain in mice with ischemic stroke, showing considerable localization in endothelial cells and neurons. Furthermore, the finally formulated ROS-responsive transformable and triple-targeting nanotherapy (NBP-loaded SON) demonstrated highly potent neuroprotective activity in mice, which outperformed the SHp-deficient nanotherapy at a 5-fold higher dose. Mechanistically, our bioresponsive, transformable, and triple-targeting nanotherapy attenuated the ischemia/reperfusion-induced endothelial permeability and improved dendritic remodeling and synaptic plasticity of neurons in the injured brain tissue, thereby promoting much better functional recovery, which were achieved by efficiently enhancing NBP delivery to the ischemic brain tissue, targeting injured endothelial cells and activated neurons/microglial cells, and normalizing the pathological microenvironment. Moreover, preliminary studies indicated that the ROS-responsive NBP nanotherapy displayed a good safety profile. Consequently, the developed triple-targeting NBP nanotherapy with desirable targeting efficiency, spatiotemporally controlled drug release performance, and high translational potential holds great promise for precision therapy of ischemic stroke and other brain diseases.
Collapse
Affiliation(s)
- Qinghua Yang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiqiang Feng
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Lab of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
12
|
Zhao Y, Zhang J, Zhang Y, Li S, Gao Y, Chang C, Liu X, Xu L, Yang G. Proteomic Analysis of Protective Effects of Dl-3-n-Butylphthalide against mpp + -Induced Toxicity via downregulating P53 pathway in N2A Cells. Proteome Sci 2023; 21:1. [PMID: 36597095 PMCID: PMC9809048 DOI: 10.1186/s12953-022-00199-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dl-3-n-butylphthalide (NBP) is an important medial therapy for acute ischemic stroke in China. Recent studied have revealed that NBP not only rescued the loss of dopaminergic neurons in cellular and animal models of Parkinson's disease (PD), but also could improve motor symptoms in PD patients. However, the protective mechanism is not fully understood. P53 is a multifunctional protein implicated in numerous cellular processes, including apoptosis, DNA repair, mitochondrial functions, redox homeostasis, autophagy and protein aggregations. In PD, p53 integrated with various neurodegeneration-related signals inducing neuronal loss, indicating the suppression of P53 might be a promising target for PD treatment. Therefore, the purpose of the current study was to systemically screen new therapeutic targets of NBP in PD. METHOD In our study, we constructed mpp + induced N2A cells to investigate the benefit effect of NBP in PD. MTT assay was performed to evaluate the cell viability; TMT-based LC-MS/MS was applied to determine the different expressed proteins (DEPs) of NBP pretreatment; online bioinformatics databases such as DAVID, STRING, and KEGG was used to construe the proteomic data. After further analyzed and visualized the protein-protein interactions (PPI) by Cytoscape, DEPs were verified by western blot. RESULT A total of 5828 proteins were quantified in the comparative proteomics experiments and 417 proteins were considered as DEPs (fold change > 1.5 and p < 0.05). Among the 417 DEPs, 140 were upregulated and 277 were downregulated in mpp + -induced N2A cells with NBP pretreatment. KEGG pathway analysis indicated that lysosome, phagosome, apoptosis, endocytosis and ferroptosis are the mainly enriched pathways. By using MCL clustering in PPI analysis, 48 clusters were generated and the subsequent KEGG analysis of the top 3 clusters revealed that P53 signaling pathway was recognized as the dominant pathway for NBP treatment. CONCLUSION NBP significantly relived mpp + -induced cell toxicity. The neuroprotective role of NBP was implicated with P53 signaling pathway in some extent. These findings will reinforce the understanding of the mechanism of NBP in PD and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Yuan Zhao
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Jian Zhang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yidan Zhang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuyue Li
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ya Gao
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Cui Chang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiang Liu
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lei Xu
- grid.452702.60000 0004 1804 3009Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Guofeng Yang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
13
|
Jia J, Deng J, Jin H, Yang J, Nan D, Yu Z, Yu W, Shen Z, Lu Y, Liu R, Wang Z, Qu X, Qiu D, Yang Z, Huang Y. Effect of Dl-3-n-butylphthalide on mitochondrial Cox7c in models of cerebral ischemia/reperfusion injury. Front Pharmacol 2023; 14:1084564. [PMID: 36909178 PMCID: PMC9992206 DOI: 10.3389/fphar.2023.1084564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Several studies have demonstrated the protective effect of dl-3-n-Butylphthalide (NBP) against cerebral ischemia, which may be related to the attenuation of mitochondrial dysfunction. However, the specific mechanism and targets of NBP in cerebral ischemia/reperfusion remains unclear. In this study, we used a chemical proteomics approach to search for targets of NBP and identified cytochrome C oxidase 7c (Cox7c) as a key interacting target of NBP. Our findings indicated that NBP inhibits mitochondrial apoptosis and reactive oxygen species (ROS) release and increases ATP production through upregulation of Cox7c. Subsequently, mitochondrial respiratory capacity was improved and the HIF-1α/VEGF pathway was upregulated, which contributed to the maintenance of mitochondrial membrane potential and blood brain barrier integrity and promoting angiogenesis. Therefore, our findings provided a novel insight into the mechanisms underlying the neuroprotective effects of NBP, and also proposed for the first time that Cox7c exerts a critical role by protecting mitochondrial function.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, Beijing, China.,National Center for Children's Health, Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jie Yang
- Leewe Biopharmaceutical Co., Ltd, Xianlin University, Nanjing, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing, China.,Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zemou Yu
- Department of Neurology, Peking University First Hospital, Beijing, China.,National Center for Children's Health, Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing, China.,Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiyuan Shen
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yuxuan Lu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Zhang Q, Han Y, Xiang H, Li M, Yang L, Liu Q, Zhang Y, Zhang Z, Lin Q, Zhang L. Biopharmaceutical, preclinical pharmacokinetic and pharmaco-dynamic investigations of an orally administered novel 3-nbutylphthalide prodrug for ischemic stroke treatment. Eur J Pharm Sci 2023; 180:106308. [PMID: 36272688 DOI: 10.1016/j.ejps.2022.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke (IS) has been contributing in leading causes of disability and death worldwide and the cases are still increasing. In China, naturally sourced compound 3-n-butylphthalide (NBP) is widely applied in clinical practice for IS treatment with established evidences of efficacy and safety. However, NBP is an oily liquid at room temperature and has no active brain targeting ability, quite limiting its broader application in clinical practice. Via intravenous injection (i.v.) a prodrug compound (DB1) we previously developed deriving from NBP had dramatically enhanced the pharmacological effects, where however, this i.v. route still discount future patient compliance. As druggability of DB1 in oral administration has yet to be elaborated, the current study intended to systemically investigate its biopharmaceutical properties, so as to further consider clinical applicability of DB1 oral preparations. Additionally, pharmacokinetics and pharmacodynamics of DB1 via oral administered route were also studied, illustrating broad potential of further DB1 medicine development. After the derivation, aqueous solubility of DB1 improved 3∼400 folds compared with NBP in various pH media, and n-octanol/water partition coefficient kept in the range of 0∼2. In situ single-pass intestinal perfusion on rats showed effective permeability coefficient of DB1 over 10-2 cm/s. In contrast to NBP, oral administration of DB1 could display significant enhanced bioavailability in rats and achieve increased accumulation in brain tissues. As expected, DB1 effectively alleviated oxidative stress damage and reduced infarct volume on ischemia/reperfusion (I/R) modeled rats, resulting in reduced mortality. Additionally, this new prodrug did not add any safety concerns based on NBP. Therefore, biopharmaceutical results and preclinical pharmacodynamic evidences support the conclusion that an oral administration of DB1 may have a good potential for clinical IS treatment.
Collapse
Affiliation(s)
- Qiang Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610064, PR China; Med-X Center for Materials, Sichuan University, Chengdu 610064, PR China
| | - Yikun Han
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610064, PR China
| | - Honglin Xiang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610064, PR China
| | - Min Li
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610064, PR China
| | - Lan Yang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610064, PR China
| | - Qiang Liu
- YaoPharma Co., Ltd., Chongqing 401121, PR China
| | - Yan Zhang
- YaoPharma Co., Ltd., Chongqing 401121, PR China
| | - Zhirong Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610064, PR China
| | - Qing Lin
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610064, PR China; Med-X Center for Materials, Sichuan University, Chengdu 610064, PR China.
| | - Ling Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610064, PR China; Med-X Center for Materials, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
15
|
Mostafa MA. Synthesis, anticancer evaluation and molecular docking study of novel 4‐hydroxybenzo[
h
][1,6]naphthyridine‐2,5‐dione derivatives. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mai A. Mostafa
- Department of Chemistry, Faculty of Education Ain Shams University Roxy 11711 Cairo Egypt
| |
Collapse
|
16
|
CaMKIIα Signaling Is Required for the Neuroprotective Effects of Dl-3-n-Butylphthalide in Alzheimer's Disease. Mol Neurobiol 2022; 59:3370-3381. [PMID: 35305243 DOI: 10.1007/s12035-022-02777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and most anti-AD drugs have failed in clinical trials; hence, it is urgent to find potentially effective drugs against AD. DL-3-n-butylphthalide (NBP) is a compound extracted from celery seed and is a multiple-target drug. Several studies have demonstrated the neuroprotective effects of NBP on cognitive impairment, but the mechanisms of NBP remains relatively unexplored. In this study, we found that NBP could alleviated the increase of intracellular Ca2+ and reversed down-regulation of Ca2+/calmodulin-dependent protein kinase alpha (CaMKIIα) signaling and rescued neuronal apoptosis in SH-SY5Y cells treated by Aβ oligomers. However, these neuroprotective effects of NBP on neuronal damage and CaMKIIα signaling were abolished when CaMKIIα expression was knocked down or its activity was inhibited. Thus, our findings suggested that CaMKIIα signaling was required for the neuroprotective effects of NBP in AD and provided an improved basis for elucidating the mechanism and treatment of NBP in AD.
Collapse
|
17
|
Han J, Shi X, Xu J, Lin W, Chen Y, Han B, Wang Y, Xu J. DL-3-n-butylphthalide prevents oxidative stress and atherosclerosis by targeting Keap-1 and inhibiting Keap-1/Nrf-2 interaction. Eur J Pharm Sci 2022; 172:106164. [DOI: 10.1016/j.ejps.2022.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
|
18
|
The Quinazoline Otaplimastat (SP-8203) Reduces the Hemorrhagic Transformation and Mortality Aggravated after Delayed rtPA-Induced Thrombolysis in Cerebral Ischemia. Int J Mol Sci 2022; 23:ijms23031403. [PMID: 35163322 PMCID: PMC8835804 DOI: 10.3390/ijms23031403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Acute ischemic stroke is the leading cause of morbidity and mortality worldwide. Recombinant tissue plasminogen activator (rtPA) is the only agent clinically approved by FDA for patients with acute ischemic stroke. However, delayed treatment of rtPA (e.g., more than 3 h after stroke onset) exacerbates ischemic brain damage by causing intracerebral hemorrhage and increasing neurotoxicity. In the present study, we investigated whether the neuroprotant otaplimastat reduced delayed rtPA treatment-evoked neurotoxicity in male Sprague Dawley rats subjected to embolic middle cerebral artery occlusion (eMCAO). Otaplimastat reduced cerebral infarct size and edema and improved neurobehavioral deficits. In particular, otaplimastat markedly reduced intracerebral hemorrhagic transformation and mortality triggered by delayed rtPA treatment, consequently extending the therapeutic time window of rtPA. We further found that ischemia-evoked extracellular matrix metalloproteases (MMPs) expression was closely correlated with cerebral hemorrhagic transformation and brain damage. In ischemic conditions, delayed rtPA treatment further increased brain injury via synergistic expression of MMPs in vascular endothelial cells. In oxygen-glucose-deprived endothelial cells, otaplimastat suppressed the activity rather than protein expression of MMPs by restoring the level of tissue inhibitor of metalloproteinase (TIMP) suppressed in ischemia, and consequently reduced vascular permeation. This paper shows that otaplimastat under clinical trials is a new drug which can inhibit stroke on its own and extend the therapeutic time window of rtPA, especially when administered in combination with rtPA.
Collapse
|
19
|
Gong T, Chen Z, Liu M, Cheng J. Recent Progress in the Synthesis of 2-Benzofuran-1(3 H)-one. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Otero-Losada M, Gubellini P, Capani F, Perez-Lloret S. Editorial: Neuroprotection and Disease Modification in Parkinson's Disease. Front Pharmacol 2021; 12:813471. [PMID: 34955865 PMCID: PMC8692833 DOI: 10.3389/fphar.2021.813471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
| | - Paolo Gubellini
- Aix-Marseille University, CNRS, IBDM UMR7288, Parc Scientifique de Luminy, Marseille, France
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina.,Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Santiago Perez-Lloret
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
| |
Collapse
|
21
|
Que R, Zheng J, Chang Z, Zhang W, Li H, Xie Z, Huang Z, Wang HT, Xu J, Jin D, Yang W, Tan EK, Wang Q. Dl-3-n-Butylphthalide Rescues Dopaminergic Neurons in Parkinson's Disease Models by Inhibiting the NLRP3 Inflammasome and Ameliorating Mitochondrial Impairment. Front Immunol 2021; 12:794770. [PMID: 34925379 PMCID: PMC8671881 DOI: 10.3389/fimmu.2021.794770] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Neuroinflammation and mitochondrial impairment play important roles in the neuropathogenesis of Parkinson’s disease (PD). The activation of NLRP3 inflammasome and the accumulation of α-synuclein (α-Syn) are strictly correlated to neuroinflammation. Therefore, the regulation of NLRP3 inflammasome activation and α-Syn aggregation might have therapeutic potential. It has been indicated that Dl-3-n-butylphthalide (NBP) produces neuroprotection against some neurological diseases such as ischemic stroke. We here intended to explore whether NBP suppressed NLRP3 inflammasome activation and reduced α-Syn aggregation, thus protecting dopaminergic neurons against neuroinflammation. Methods In our study, we established a MPTP-induced mouse model and 6-OHDA-induced SH-SY5Y cell model to examine the neuroprotective actions of NBP. We then performed behavioral tests to examine motor dysfunction in MPTP-exposed mice after NBP treatment. Western blotting, immunofluorescence staining, flow cytometry and RT-qPCR were conducted to investigate the expression of NLRP3 inflammasomes, neuroinflammatory cytokines, PARP1, p-α-Syn, and markers of microgliosis and astrogliosis. Results The results showed that NBP exerts a neuroprotective effect on experimental PD models. In vivo, NBP ameliorated behavioral impairments and reduced dopaminergic neuron loss in MPTP-induced mice. In vitro, treatment of SH-SY5Y cells with 6-OHDA (100uM,24 h) significantly decreased cell viability, increased intracellular ROS production, and induced apoptosis, while pretreatment with 5uM NBP could alleviated 6-OHDA-induced cytotoxicity, ROS production and cell apoptosis to some extent. Importantly, both in vivo and in vitro, NBP suppressed the activation of the NLRP3 inflammasome and the aggregation of α-Syn, thus inhibited neuroinflammation ameliorated mitochondrial impairments. Conclusions In summary, NBP rescued dopaminergic neurons by reducing NLRP3 inflammasome activation and ameliorating mitochondrial impairments and increases in p-α-Syn levels. This current study may provide novel neuroprotective mechanisms of NBP as a potential therapeutic agent.
Collapse
Affiliation(s)
- Rongfang Que
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjie Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hualing Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Tao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dana Jin
- College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore.,Department of Neurology, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Li X, Li W, Wei W, Fan J, Liu Z, Shi X. Sequential Cobalt/Rhodium‐Catalyzed Tandem Cyclization of Aromatic Aldehydes with Acrylates for Preparing 3‐Substituted Phthalides in Oxygen Atmosphere and Neat Water. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xin‐Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Wan‐Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Wen‐Ting Wei
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Zhong‐Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Xian‐Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| |
Collapse
|
23
|
Lin C, Huang S, Zhang J, Yuan H, Yao T, Chen L. Dl-3-N-Butylphthalide Attenuates Hypoxic Injury of Neural Stem Cells by Increasing Hypoxia-Inducible Factor-1alpha. J Stroke Cerebrovasc Dis 2021; 31:106221. [PMID: 34837757 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE To assess the potential effect of dl-3-N-butylphthalide (dl-NBP) for the proliferation and differentiation of neural stem cells (NSCs) against hypoxia and the underlying mechanism. MATERIALS AND METHODS Hippocampal NSCs were obtained from fetal rats. NSCs combined with dl-NBP and single NSCs were cultured. The impact of siRNA-mediated hypoxia-inducible factor-1alpha (HIF-1α) knockdown on NSCs was detected with western blotting (WB) and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR). Cell-counting kit-8 assay was used for evaluating the viability of NSCs. Levels of HIF-1α protein were measured using WB, and vascular endothelial growth factor (VEGF) expression was quantified using RT-qPCR and enzyme-linked immunosorbent assay. RESULTS Compared with 7 different concentrations of dl-NBP, 0.25 g/L was determined as the optimal concentration to significantly increase the viability of NSCs (p < 0.001). Dl-NBP can significantly increase the viability of hypoxic NSCs (p < 0.001) and improve the differentiation of hypoxic NSCs into astrocytes (p = 0.001) and oligodendrocytes (p < 0.001). Meanwhile, Dl-NBP can significantly elevate levels of HIF-1α protein (p < 0.001) and VEGF mRNA (p = 0.001) / protein (p < 0.001) in NSCs in the hypoxic environment. However, after transfection with HIF-1α siRNA in NSCs, the viability and differentiation of NSCs was not recovered using dl-NBP under the hypoxic condition, as well as levels of HIF-1α and VEGF. CONCLUSION Dl-NBP can reverse the weaker proliferation and differentiation power of NSCs in the hypoxic environment. The HIF-1α - VEGF pathway may be implicated in this protective effect of dl-NBP.
Collapse
Affiliation(s)
- Chaoqun Lin
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510006, China
| | - Jianfeng Zhang
- Department of Neurosurgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Huaitao Yuan
- Department of Neurosurgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Tuchao Yao
- Department of Neurosurgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Lukui Chen
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Department of Neurosurgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
24
|
Stromsnes K, Lagzdina R, Olaso-Gonzalez G, Gimeno-Mallench L, Gambini J. Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomedicines 2021; 9:1074. [PMID: 34440278 PMCID: PMC8392236 DOI: 10.3390/biomedicines9081074] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Drugs are bioactive compounds originally discovered from chemical structures present in both the plant and animal kingdoms. These have the ability to interact with molecules found in our body, blocking them, activating them, or increasing or decreasing their levels. Their actions have allowed us to cure diseases and improve our state of health, which has led us to increase the longevity of our species. Among the molecules with pharmacological activity produced by plants are the polyphenols. These, due to their molecular structure, as drugs, also have the ability to interact with molecules in our body, presenting various pharmacological properties. In addition, these compounds are found in multiple foods in our diet. In this review, we focused on discussing the bioavailability of these compounds when we ingested them through diet and the specific mechanisms of action of polyphenols, focusing on studies carried out in vitro, in animals and in humans over the last five years. Knowing which foods have these pharmacological activities could allow us to prevent and aid as concomitant treatment against various pathologies.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| | - Rudite Lagzdina
- Faculty of Medicine, Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| | - Lucia Gimeno-Mallench
- Department of Biomedical Sciences, Faculty of Health Sciences, Cardenal Herrera CEU University, 46115 Valencia, Spain;
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| |
Collapse
|
25
|
Han B, Xu J, Shi X, Zheng Z, Shi F, Jiang F, Han J. DL-3-n-Butylphthalide Attenuates Myocardial Hypertrophy by Targeting Gasdermin D and Inhibiting Gasdermin D Mediated Inflammation. Front Pharmacol 2021; 12:688140. [PMID: 34168567 PMCID: PMC8217660 DOI: 10.3389/fphar.2021.688140] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Pressure overload leads to a hypertrophic milieu that produces deleterious cardiac dysfunction. Inflammation is a key pathophysiological mechanism underpinning myocardial hypertrophy. DL-3-n-butylphthalide (NBP), a neuroprotective agent, also has potent cardioprotective effects. In this study, the potential of NBP to antagonize myocardial hypertrophy was evaluated in C57BL/6 mice in vivo and in rat primary cardiomyocytes in vitro. In mice, NBP treatment reduced cardiac hypertrophy and dysfunction in a transverse aortic constriction (TAC)-induced pressure overload model. In angiotensin (Ang) II-challenged cardiomyocytes, NBP prevents cell size increases and inhibits gasdermin D (GSDMD)-mediated inflammation. Furthermore, overexpression of GSDMD-N reduced the protective effects of NBP against Ang II-induced changes. Using molecular docking and MD simulation, we found that the GSDMD-N protein may be a target of NBP. Our study shows that NBP attenuates myocardial hypertrophy by targeting GSDMD and inhibiting GSDMD-mediated inflammation.
Collapse
Affiliation(s)
- Bingjiang Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jiajun Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhanxiong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Fengjie Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Fenfen Jiang
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
26
|
Kokotkiewicz A, Badura A, Tabaczyńska Ż, Lorenc A, Buciński A, Luczkiewicz M. Optimization of Distillation Conditions for Improved Recovery of Phthalides from Celery (Apium graveolens L.) Seeds. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/137612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Novel brain-targeting 3-n-butylphthalide prodrugs for ischemic stroke treatment. J Control Release 2021; 335:498-514. [PMID: 34087248 DOI: 10.1016/j.jconrel.2021.05.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Currently, ischemic stroke is the leading cause of disability and death worldwide, and the performance of corresponding drugs is often unsatisfactory owing to the complex pathological processes and the impediment of the blood-brain barrier (BBB). Here, we employed various tertiary amino groups, including different linear, cyclic, and bimolecular drug structures, to modify 3-n-butylphthalide (NBP), a natural product used for ischemic stroke treatment, which has poor bioavailability, to generate a series of six prodrugs. These prodrugs showed significantly improved solubility and cellular uptake, which were primarily driven by putative pyrilamine cationic transporters. They also displayed more efficient brain delivery in vivo, reaching as high as 21.5-fold brain accumulation increase compared with NBP, leading to much higher bioavailability and stronger therapeutic effects. The toxicity of these molecules is also lower or similar to that of unmodified NBP. We showed that the tertiary amino group-modified NBP prodrugs are effective and safe for treating ischemic stroke with significantly enhanced druggability; hence, they have potential for further clinical development.
Collapse
|
28
|
Li H, Wang H, Zhang L, Wang M, Li Y. Dl-3-n-Butylphthalide Alleviates Behavioral and Cognitive Symptoms Via Modulating Mitochondrial Dynamics in the A53T-α-Synuclein Mouse Model of Parkinson's Disease. Front Neurosci 2021; 15:647266. [PMID: 34121985 PMCID: PMC8193045 DOI: 10.3389/fnins.2021.647266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/26/2021] [Indexed: 01/23/2023] Open
Abstract
Background Aggregation and neurotoxicity of the presynaptic protein α-synuclein and the progressive loss of nigral dopaminergic neurons are believed to be the key hallmarks of Parkinson’s disease (PD). A53T mutant α-synuclein causes early onset PD and more severe manifestations. A growing body of evidence shows that misfolding or deposition of α-synuclein is linked to the maintenance of mitochondrial dynamics, which has been proven to play an important role in the pathogenesis of PD. It has been observed that Dl-3-n-butylphthalide (NBP) may be safe and effective in improving the non-tremor-dominant PD. However, the potential mechanism remains unclear. This study aimed to investigate whether NBP could decrease the loss of dopaminergic neurons and α-synuclein deposition and explore its possible neuroprotective mechanisms. Methods A total of 20 twelve-month-old human A53T α-synuclein transgenic mice and 10 matched adult C57BL/6 mice were included in the study; 10 adult C57BL/6 mice were selected as the control group and administered with saline (0.2 ml daily for 14 days); 20 human A53T α-synuclein transgenic mice were randomly divided into A53T group (treated in the same manner as in the control group) and A53T + NBP group (treated with NBP 0.2 ml daily for 14 days). Several markers of mitochondrial fission and fusion and mitophagy were determined, and the behavioral, olfactory, and cognitive symptoms were assessed as well. Results In the present study, it was observed that the A53T-α-synuclein PD mice exhibited anxiety-like behavioral disturbance, impairment of coordination ability, memory deficits, and olfactory dysfunction, loss of dopaminergic neurons, and α-synuclein accumulation. Meanwhile, the mitofusin 1 expression was significantly decreased, and the mitochondrial number and dynamin-related protein 1, Parkin, and LC3 levels were increased. The detected levels of all markers were reversed by NBP treatment, and the mitochondrial morphology was partially recovered. Conclusion In the present study, a valuable neuropharmacological role of NBP has been established in the A53T-α-synuclein PD mouse model. Possible neuroprotective mechanisms might be that NBP is involved in the maintenance of mitochondrial dynamics including mitochondrial fission and fusion and clearance of damaged mitochondria. It is essential to perform further experiments to shed light on the precise mechanisms of NBP on mitochondrial homeostasis.
Collapse
Affiliation(s)
- Huiying Li
- Department of Neurology, Beijing Aerospace General Hospital, Beijing, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Ling Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College, Beijing, China
| | - Manshi Wang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College, Beijing, China
| | - Yanfeng Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College, Beijing, China.,Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
29
|
Luo R, Zhu L, Zeng Z, Zhou R, Zhang J, Xiao S, Bi W. Dl-butylphthalide inhibits rotenone-induced oxidative stress in microglia via regulation of the Keap1/Nrf2/HO-1 signaling pathway. Exp Ther Med 2021; 21:597. [PMID: 33884035 PMCID: PMC8056112 DOI: 10.3892/etm.2021.10029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Activated microglia are a source of superoxide which often increases oxidative stress in the brain microenvironment, increase production of reactive oxygen species (ROS) and directly or indirectly lead to dopaminergic neuronal death in the substantia nigra. Thus superoxide contributes to the pathogenesis of Parkinson's disease (PD). Evidence suggests that mitochondria are the main source of ROS, which cause oxidative stress in cells. Levels of ROS are thus associated with the function of the mitochondrial complex. Therefore, protecting the mitochondrial function of microglia is important for the treatment of PD. Dl-butylphthalide (NBP), a compound isolated from Chinese celery seeds, has been approved by the China Food and Drug Administration for the treatment of acute ischemic stroke. Recently, NBP demonstrated therapeutic potential for PD. However, the mechanism underlying its neuroprotective effect remains unclear. The present study aimed to investigate the effect of NBP on rotenone-induced oxidative stress in microglia and its underlying mechanisms. The results demonstrated that NBP treatment significantly increased mitochondrial membrane potential and decreased ROS level in rotenone-induced microglia. Western blot analysis showed that NBP treatment promoted entry of nuclear respiratory factor-2 (Nrf2) into the nucleus, increased heme oxygenase-1 (HO-1) expression and decreased the level of the Nrf2 inhibitory protein, Kelch-like ECH-associated protein 1. Overall, the findings indicated that NBP inhibited rotenone-induced microglial oxidative stress via the Keap1/Nrf2/HO-1 pathway, suggesting that NBP may serve as a novel agent for the treatment of PD.
Collapse
Affiliation(s)
- Rixin Luo
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhaohao Zeng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Ruiyi Zhou
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiawei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shu Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
30
|
Wang L, Yang YF, Chen L, He ZQ, Bi DY, Zhang L, Xu YW, He JC. Compound Dihuang Granule Inhibits Nigrostriatal Pathway Apoptosis in Parkinson's Disease by Suppressing the JNK/AP-1 Pathway. Front Pharmacol 2021; 12:621359. [PMID: 33897417 PMCID: PMC8060647 DOI: 10.3389/fphar.2021.621359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
Compound Dihuang Granule (CDG) is widely used in traditional Chinese medicine (TCM) for the treatment of Parkinson's disease (PD). It has been shown to alleviate PD symptoms. However, the molecular mechanisms of its action have not been established. To establish the molecular mechanisms of CDG against PD, we used TCM network pharmacology methods to predict its molecular targets and signaling pathways, followed by experimental validation. The Core Protein protein interaction (PPI) network of the 150 intersections between CDG and PD-related genes, comprising 23 proteins, including CASP3 (caspase-3), MAPK8 (JNK), FOS (c-Fos), and JUN (c-Jun). KEGG and GO analyses revealed that apoptotic regulation and MAPK signaling pathways were significantly enriched. Since c-Jun and c-Fos are AP-1 subunits, an important downstream JNK effector, we investigated if the JNK/AP-1 pathway influences CDG against apoptosis through the nigrostriatal pathways in PD rat models. Molecular docking analysis found that the top three bioactive compounds exhibiting the highest Degree Centrality following online database and LC-MS analysis had high affinities for JNK. Experimental validation analysis showed that CDG decreased the number of rotating laps and suppressed the levels of phosphorylated c-Jun, c-Fos, and JNK, as well as the number of TUNEL positive cells and the cleaved caspase-3 level in the nigrostriatal pathway. Furthermore, CDG treatment elevated the number of TH neurons, TH expression level, and Bcl-2/Bax protein ratio in a 6-OHDA-induced PD rat. These findings are in tandem with those obtained using SP600125, a specific JNK inhibitor. In conclusion, CDG suppresses the apoptosis of the nigrostriatal pathway and relieves PD symptoms by suppressing the JNK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Experiment Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-fang Yang
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhu-qing He
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dian-yong Bi
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-wu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-cheng He
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Dexamethasone does not ameliorate gliosis in a mouse model of neurodegenerative disease. Biochem Biophys Rep 2020; 24:100817. [PMID: 33015377 DOI: 10.1016/j.bbrep.2020.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Prolonged neuroinflammation is a driving force for neurodegenerative disease, and agents against inflammatory responses are regarded as potential treatment strategies. Here we aimed to evaluate the prevention effects on gliosis by dexamethasone (DEX), an anti-inflammation drug. We used DEX to treat the nicastrin conditional knockout (cKO) mouse, a neurodegenerative mouse model. DEX (10 mg/kg) was given to 2.5-month-old nicastrin cKO mice, which have not started to display neurodegeneration and gliosis, for 2 months. Immunohistochemistry (IHC) and Western blotting techniques were used to detect changes in neuroinflammatory responses. We found that activation of glial fibrillary acidic protein (GFAP) positive or ionized calcium binding adapter molecule1 (Iba1) positive cells was not inhibited in nicastrin cKO mice treated with DEX as compared to those treated with saline. These data suggest that DEX does not prevent or ameliorate gliosis in a neurodegenerative mouse model when given prior to neuronal or synaptic loss.
Collapse
|
32
|
Marco-Contelles J, Zhang Y. From Seeds of Apium graveolens Linn. to a Cerebral Ischemia Medicine: The Long Journey of 3- n-Butylphthalide. J Med Chem 2020; 63:12485-12510. [PMID: 32672958 DOI: 10.1021/acs.jmedchem.0c00887] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
3-n-Butylphthalide (NBP) as well as its derivatives and analogues (NBPs), in racemic or enantiomerically pure forms, possess potent and diverse pharmacological properties and have shown a great potential therapeutic interest for many human conditions, especially for cerebral ischemia. This Perspective outlines the synthesis and therapeutic applications of NBPs.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006-Madrid, Spain
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China.,Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
33
|
Pan YL, Zheng HL, Wang J, Yang C, Li X, Cheng JP. Enantioselective Allylation of Oxocarbenium Ions Catalyzed by Bi(OAc)3/Chiral Phosphoric Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu-Liang Pan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han-Liang Zheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Akinmoladun AC, Obadaye TS, Olaleye MT, Akindahunsi AA. Prophylaxis with a multicomponent nutraceutical abates transient cerebral ischemia/reperfusion injury. J Food Biochem 2020; 45:e13351. [PMID: 32614085 DOI: 10.1111/jfbc.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/01/2022]
Abstract
The effect of a multicomponent nutraceutical on cerebral ischemia/reperfusion injury in male Wistar rats was investigated. Animals were administered with the nutraceutical, Trévo™, for 7 days before 30 min of bilateral common carotid artery occlusion-induced cerebral ischemia and 24 hr of reperfusion. Behavioral assessment, biochemical estimations in the brain cortex, striatum, and hippocampus, and hippocampal histopathological evaluation were carried out after treatments. Results showed that ischemia/reperfusion-induced motor and cognitive deficits were abated in rats pretreated with Trévo™. Additionally, prophylaxis with Trévo™ blunted ischemia/reperfusion-induced redox stress, proinflammatory events, disturbances in neurotransmitter metabolism, mitochondrial dysfunction, and histoarchitectural aberrations in the discreet brain regions. In summary, supplementation with Trévo™ provided neuroprotection to rats against transient cerebral ischemia/reperfusion injury and could be explored as a promising approach in stroke prevention. PRACTICAL APPLICATIONS: There is a worldwide increase in the incidence of cerebral ischemia or stroke. Although an advanced health care system and effective control of risk factors have led to the declining incidence in developed nations, a definitive cure for stroke remains elusive and the situation is growing worse in developing nations. The results of the present study revealed that supplementation with Trévo™ ameliorated neurobehavioral, neurochemical, and histopathological consequences of brain ischemia/reperfusion injury and could, therefore, be beneficial in stroke prevention and management.
Collapse
Affiliation(s)
| | - Tobi S Obadaye
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Mary T Olaleye
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
35
|
Wang W, Wang S, Liu T, Ma Y, Huang S, Lei L, Wen A, Ding Y. Resveratrol: Multi-Targets Mechanism on Neurodegenerative Diseases Based on Network Pharmacology. Front Pharmacol 2020; 11:694. [PMID: 32477148 PMCID: PMC7240052 DOI: 10.3389/fphar.2020.00694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Resveratrol is a natural polyphenol in lots of foods and traditional Chinese medicines, which has shown promising treatment for neurodegenerative diseases (NDs). However, the molecular mechanisms of its action have not been systematically studied yet. In order to elucidate the network pharmacological prospective effects of resveratrol on NDs, we assessed of pharmacokinetics (PK) properties of resveratrol, studied target prediction and network analysis, and discussed interacting pathways using a network pharmacology method. Main PK properties of resveratrol were acquired. A total of 13,612 genes related to NDs, and 138 overlapping genes were determined through matching the 175 potential targets of resveratrol with disease-associated genes. Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to obtain more in-depth understanding of resveratrol on NDs. Accordingly, nodes with high degrees were obtained according using a PPI network, and AKT1, TP53, IL6, CASP3, VEGFA, TNF, MYC, MAPK3, MAPK8, and ALB were identified as hub target genes, which showed better affinity with resveratrol in silico studies. In addition, our experimental results demonstrated that resveratrol markedly enhanced the decreased levels of Bcl-2 and significantly reduced the increased expression of Bax and Caspase-3 in hippocampal neurons induced by glutamate exposure. Western blot results confirmed that resveratrol inhibited glutamate-induced apoptosis of hippocampal neurons partly by regulating the PI3K/AKT/mTOR pathway. In conclusion, we found that resveratrol could target multiple pathways forming a systematic network with pharmacological effects.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, 940 Hospital of PLA Joint Logistics Support Forces, Lanzhou, China
| | - Yang Ma
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shaojie Huang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Lei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
36
|
Zhang Y, Zhang Y, Han Y, Tian Y, Wu P, Xin A, Wei X, Shi Y, Zhang Z, Su G, Shi Y, Liu J. Pharmacokinetics, tissue distribution, and safety evaluation of a ligustilide derivative (LIGc). J Pharm Biomed Anal 2020; 182:113140. [PMID: 32036300 DOI: 10.1016/j.jpba.2020.113140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/10/2020] [Accepted: 01/31/2020] [Indexed: 11/30/2022]
Abstract
Ligustilide (LIG) is the main active ingredient of Angelica sinensis (Oliv.) Diels and has a neuroprotective effect against ischemic stroke. However, owing to its multi-conjugated unstable structure, the compound has poor drug-forming properties. Therefore, we synthesized highly stable colorless needle crystals (known as ligusticum cycloprolactam, LIGc) through the structural modification of LIG. After a stability experiment was conducted at room temperature for four months, no impurity peaks were found by HPLC-DAD analysis, which indicated that LIGc resolved the stability issues of LIG. LIGc was absorbed and eliminated rapidly after intravenous administration (Cmax = 6.42 ± 1.65 mg/L at a dose of 20 mg/kg) and oral administration (Tmax = 0.5 h, Cmax = 9.89 ± 1.62 mg/L at a dose of 90 mg/kg, t1/2z approximately 2.5 h). The absolute oral bioavailability (F) of LIGc was clearly higher than the F of LIG reported in the literature (F, 83.97 % versus 2.6 %). Linear dose-dependent pharmacokinetics were observed after oral administration, with a higher area under the curve (AUC0-t, 22.31 ± 2.88 mg/L*h) observed at 90 mg/kg than that at 45 mg/kg (AUC0-t, 13.673 ± 0.666 mg/L*h). Tissue distribution results indicated that LIGc easily crossed the blood-brain barrier (BBB) and was distributed widely to the main tissues and organs of rats. We also conducted a preliminary safety assessment of LIGc by means of an acute toxicity test in KM mice. All mice had excellent health status (ig, dosage of 5.0 g/kg), with no histopathological changes observed in the main organs.
Collapse
Affiliation(s)
- Yanxia Zhang
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yaming Zhang
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yanming Han
- Department of Neurology, Second Hospital Affiliated to Lanzhou University, Lanzhou, 730000, China
| | - Ye Tian
- Department of Neurology, Second Hospital Affiliated to Lanzhou University, Lanzhou, 730000, China
| | - Pengcheng Wu
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Aiyi Xin
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiaoning Wei
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhenchang Zhang
- Department of Neurology, Second Hospital Affiliated to Lanzhou University, Lanzhou, 730000, China
| | - Gang Su
- Department of Genetics, Lanzhou University, Lanzhou, 730000, China
| | - Yanping Shi
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Junxi Liu
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
37
|
Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics. J Clin Med 2020; 9:jcm9041061. [PMID: 32276438 PMCID: PMC7231062 DOI: 10.3390/jcm9041061] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Among the major neurodegenerative disorders (NDDs), Alzheimer’s disease (AD) and Parkinson’s disease (PD), are a huge socioeconomic burden. Over many centuries, people have sought a cure for NDDs from the natural herbals. Many medicinal plants and their secondary metabolites are reported with the ability to alleviate the symptoms of NDDs. The major mechanisms identified, through which phytochemicals exert their neuroprotective effects and potential maintenance of neurological health in ageing, include antioxidant, anti-inflammatory, antithrombotic, antiapoptotic, acetylcholinesterase and monoamine oxidase inhibition and neurotrophic activities. This article reviews the mechanisms of action of some of the major herbal products with potential in the treatment of NDDs according to their molecular targets, as well as their regional sources (Asia, America and Africa). A number of studies demonstrated the beneficial properties of plant extracts or their bioactive compounds against NDDs. Herbal products may potentially offer new treatment options for patients with NDDs, which is a cheaper and culturally suitable alternative to conventional therapies for millions of people in the world with age-related NDDs.
Collapse
|
38
|
Shi S, Yin H, Li J, Wang L, Wang W, Wang X. Studies of pathology and pharmacology of diabetic encephalopathy with KK-Ay mouse model. CNS Neurosci Ther 2020; 26:332-342. [PMID: 31401815 PMCID: PMC7052806 DOI: 10.1111/cns.13201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/28/2022] Open
Abstract
AIMS Pathogenesis of diabetic encephalopathy (DE) is not completely understood until now. The purposes of this study were to illustrate the changes in morphology, function, and important transporters in neurons and glia during DE, as well as to reveal the potential therapeutic effects of medicines and the diet control on DE. METHODS Spontaneous obese KK-Ay mice were used to investigate diabetes-induced cognitive disorder, the morphology, function, and protein expression changes in impact animal and the cell level studies. The new drug candidate PHPB, donepezil, and low-fat food were used to observe the therapeutic effects. RESULTS KK-Ay mice at 5 months of age showed typical characteristics of type 2 diabetes mellitus (T2DM) and appeared significant cognitive deficits. Morphological study showed microtubule-associated protein 2 (MAP2) expression was increased in hippocampal neurons and glial fibrillary acidic protein (GFAP) expression decreased in astrocytes. Meanwhile, the vesicular glutamate transporter 1 (vGLUT1) expression was increased and glucose transporter 1 (GLUT1) decreased, and the expression of brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was also reduced in KK-Ay mice. Microglia were activated, and IL-1β and TNF-α were increased obviously in the brains of the KK-Ay mice. Most of the above changes in the KK-Ay mice at 5 months of age could be relieved by diet intervention (DR) or by treatment of donepezil or new drug candidate PHPB. CONCLUSION KK-Ay mouse is a useful animal model for studying DE. The alterations of morphology, structure, and function of astrocyte and microglia in KK-Ay mice might be rescued by DR and by treatment of medicine. The proteins we reported in this study could be used as biomarkers and the potential drug targets for DE study and treatment.
Collapse
Affiliation(s)
- Si Shi
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hua‐Jing Yin
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiang Li
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ling Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei‐Ping Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiao‐Liang Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
39
|
Wang Y, Shen Y, Liu Z, Gu J, Xu C, Qian S, Zhang X, Zhou B, Jin Y, Sun Y. Dl-NBP (Dl-3-N-Butylphthalide) Treatment Promotes Neurological Functional Recovery Accompanied by the Upregulation of White Matter Integrity and HIF-1α/VEGF/Notch/Dll4 Expression. Front Pharmacol 2020; 10:1595. [PMID: 32038259 PMCID: PMC6993069 DOI: 10.3389/fphar.2019.01595] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023] Open
Abstract
Dl-3-n-butylphthalide (dl-NBP) was approved by the FDA of China for the treatment of acute ischemic stroke. Dl-NBP has been shown to promote neurological functional recovery and enhance white matter integrity using an endothelin-1-induced focal permanent cerebral ischemia model, which could mimic those patients who have no opportunity to receive either tissue plasminogen activator (tPA) thrombolysis or endovascular therapy. However, it is not clear whether dl-NBP could promote neurological functional recovery in a focal transient cerebral ischemia model, which could mimic those patients who have the opportunity to receive either tPA thrombolysis or endovascular therapy. In this study, using a model of middle cerebral artery occlusion in mice, we aim to explore the effect of two-week dl-NBP treatment on neurological functional recovery after ischemic stroke as well as its underlying mechanism. Our results showed that dl-NBP treatment promoted functional recovery assessed by neurological scores and an adhesive remove test, and this improved the integrity of white matter after 60-min ischemia and 14-day reperfusion. In addition, dl-NBP increased the number of RECA-1 positive vessels and enhanced the expression of the tight junction protein occludin. More importantly, dl-NBP also promoted the expression of hypoxia-induced factor-1α, the vascular endothelial growth factor, Notch, and delta-like ligand 4. In conclusion, our study provides evidence that dl-NBP treatment could also promote functional recovery after focal transient ischemia stroke, and this recovery is associated with upregulated white matter integrity, microvessels, and the tight junction protein occludin. Our results suggested that, in future, dl-NBP may also be applied in clinic to promote functional recovery during the later phase of focal transient ischemic stroke.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, The Second Affiliated Hospital of Jiaxing City, Jiaxing, China
| | - Yufei Shen
- Department of Neurology, The Second Affiliated Hospital of Jiaxing City, Jiaxing, China
| | - Ziyun Liu
- Department of Neurology, Bengbu Medical College, Bengbu, China
| | - Jingxia Gu
- Department of Neurology, The Second Affiliated Hospital of Jiaxing City, Jiaxing, China
| | - Congying Xu
- Department of Neurology, The Second Affiliated Hospital of Jiaxing City, Jiaxing, China
| | - Shuxia Qian
- Department of Neurology, The Second Affiliated Hospital of Jiaxing City, Jiaxing, China
| | - Xiaoling Zhang
- Department of Neurology, The Second Affiliated Hospital of Jiaxing City, Jiaxing, China
| | - Beiqun Zhou
- Department of Neurology, The Second Affiliated Hospital of Jiaxing City, Jiaxing, China
| | - Yuhua Jin
- Department of Neurology, The Second Affiliated Hospital of Jiaxing City, Jiaxing, China
| | - Yanyun Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
40
|
Luo R, Wangqin R, Zhu L, Bi W. Neuroprotective mechanisms of 3-n-butylphthalide in neurodegenerative diseases. Biomed Rep 2019; 11:235-240. [PMID: 31798868 PMCID: PMC6873419 DOI: 10.3892/br.2019.1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Since 3-n-butylphthalide (NBP) was approved by the China Food and Drug Administration for the treatment of acute ischemia stroke in 2002, a number of studies have investigated NBP worldwide. In recent years, NBP has also demonstrated potential as treatment of several neurodegenerative diseases, which has increased the interest in its mechanisms of protection and action. Clinical studies and studies that used cell or animal models, have directly demonstrated neuroprotective effects of NBP via the following mechanisms: i) Inhibiting the inflammatory reaction; ii) reducing mitochondrial oxidative stress; iii) regulating apoptosis and autophagy; iv) inducing resistance to endoplasmic reticulum stress; and v) decreasing abnormal protein deposition. Therefore, NBP may be a potential drug for neurodegenerative diseases, and it is particularly important to identify the mechanism of NBP as it may assist with the development of new drugs for neurodegeneration. The present review summarizes the neuroprotective mechanisms of NBP and discusses new perspectives and prospects. The aim of the current review is to provide a new summary regarding NBP and its associated mechanisms.
Collapse
Affiliation(s)
- Rixin Luo
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Runqi Wangqin
- Department of Neurology, Duke University Medical Center, Durham, NC 27705, USA
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
41
|
Jung HY, Chang S, Hong S. Strategic Approach to the Metamorphosis of γ-Lactones to NH γ-Lactams via Reductive Cleavage and C–H Amidation. Org Lett 2019; 21:7099-7103. [DOI: 10.1021/acs.orglett.9b02673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hoi-Yun Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
42
|
Han QY, Zhang H, Zhang X, He DS, Wang SW, Cao X, Dai YT, Xu Y, Han LJ. dl-3-n-butylphthalide preserves white matter integrity and alleviates cognitive impairment in mice with chronic cerebral hypoperfusion. CNS Neurosci Ther 2019; 25:1042-1053. [PMID: 31334611 PMCID: PMC6698981 DOI: 10.1111/cns.13189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023] Open
Abstract
Aims Effects of dl‐3‐n‐butylphthalide (NBP) on white matter damage and cognitive impairment in vascular cognitive impairment (VCI) have not been well studied. This study aimed to investigate the effects of NBP treatment on chronic cerebral hypoperfusion‐induced white matter lesions and cognitive dysfunction in mice. Methods Mice were subjected to bilateral common carotid artery stenosis (BCAS) for over 30 days. The cerebral blood flow was detected using a laser Doppler flowmetry. Cognitive functions were assessed by several behavioral tests. We also evaluated the effects of NBP on the blood‐brain barrier (BBB) disruption and reactive astrogliosis, using Evans Blue extravasation, Western blot, CBA, and immunofluorescence in BCAS mice and cultured astrocytes. Results The results indicated that NBP treatment attenuated spatial memory dysfunction while promoted cerebral perfusion and white matter integrity in BCAS mice. Moreover, NBP treatment prevented BBB leakage and damage of endothelial cells, as well as disruption of endothelial tight junctions. Furthermore, NBP administration effectively decreased the number of activated astrocytes and pro‐inflammatory cytokines, as well as the production of MMPs, in BCAS‐induced mice and LPS‐stimulated astrocytes. Conclusion Our results indicated that NBP represents a promising therapy for chronic cerebral hypoperfusion‐induced white matter damage and cognitive impairment.
Collapse
Affiliation(s)
- Qin-Yu Han
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - He Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Dong-Sheng He
- Department of Neurology, The Northern Area of Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Sun-Wei Wang
- Department of Neurology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yu-Tian Dai
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Li-Juan Han
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
43
|
Niu F, Sharma A, Feng L, Ozkizilcik A, Muresanu DF, Lafuente JV, Tian ZR, Nozari A, Sharma HS. Nanowired delivery of DL-3-n-butylphthalide induces superior neuroprotection in concussive head injury. PROGRESS IN BRAIN RESEARCH 2019; 245:89-118. [DOI: 10.1016/bs.pbr.2019.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|