1
|
Paulson JR. Inducing Exit from Mitosis by Inactivating Cdk1/Cyclin B in Metaphase-Arrested Cells: A Tool to Study Mitotic Exit and Reestablishment of Interphase. Methods Mol Biol 2025; 2874:183-198. [PMID: 39614056 DOI: 10.1007/978-1-0716-4236-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Treatments which inhibit or inactivate Cdk1/cyclin B in metaphase-arrested mammalian cells and budding yeast are described. These treatments induce the cells to exit mitosis and return to interphase, though without chromosome segregation or cytokinesis, and they provide the basis for a method to identify enzymes or other proteins which act "downstream" from Cdk1 inactivation and to elucidate the roles of those proteins in mitotic exit. In this method, inactivation of Cdk1 is combined with inhibition or inactivation of a protein of interest and the effects are observed. This approach should be particularly useful for determining which protein phosphatases are involved in the transition from mitosis to G1-phase and for identifying their substrates.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI, USA.
| |
Collapse
|
2
|
Roy R, Gampa SC, Garimella SV. Role of specific CDKs in regulating DNA damage repair responses and replication stress. Curr Opin Pharmacol 2024; 79:102485. [PMID: 39265226 DOI: 10.1016/j.coph.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024]
Abstract
Cyclins along with their catalytic units, Cyclin-dependent kinases (CDKs) regulate the cell cycle transition and transcription; and are essentially known as 'master regulators' in modulating DNA damage response (DDR) and replication stress. In addition to influencing DNA repair and damage signaling, CDKs also play a pivotal role in cell division fidelity and the maintenance of genomic integrity after DNA damage. In this review, we focus on the intricate ways by which specific CDKs mainly CDK7, CDK9, and CDK12/13, regulate the cell cycle progression and transcription and how their modulation can lead to lethal effects on the integrity of the genome. With a better knowledge of how these CDKs control the DDR and replication stress, it is now possible to combine CDK inhibitors with chemotherapeutic drugs that damage DNA in ways that can be applied in clinical settings as successful therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Roy
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (deemed to be University), Visakhapatnam, 530045, India
| | - Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (deemed to be University), Visakhapatnam, 530045, India.
| |
Collapse
|
3
|
Roskoski R. Targeted and cytotoxic inhibitors used in the treatment of breast cancer. Pharmacol Res 2024; 210:107534. [PMID: 39631485 DOI: 10.1016/j.phrs.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer is the most commonly diagnosed malignancy and the fifth leading cause of cancer deaths worldwide. Surgery and radiation therapy are localized therapies for early-stage and metastatic breast cancer. The management of breast cancer is determined in large part by the HER2 (human epidermal growth factor receptor 2), HR (hormone receptor), ER (estrogen receptor), and PR (progesterone receptor) status. Our views of breast cancer are evolving as its molecular hallmarks are examined, which now include immunohistochemical markers (ER, PR, HER2, and proliferation marker protein Ki-67), genomic markers (BRCA1/2 and PIK3CA), and immunomarkers (tumor-infiltrating lymphocytes and PDL1). About two-thirds of malignancies of the breast are HR-positive/HER2-negative; accordingly, endocrine-based therapy is a major treatment option for these patients. Hormonal or endocrine therapy includes selective estrogen receptor modulators (SERMs) such as raloxifene, tamoxifen and toremifene, selective estrogen-receptor degraders (SERDs) including elacestrant and fulvestrant, and aromatase inhibitors such as anastrozole, letrozole, and exemestane. A variety of cytotoxic chemotherapeutic agents are used to treat HR-negative breast cancer patients. These agents include taxanes (docetaxel, nab-paclitaxel, and paclitaxel), anthracyclines (doxorubicin, epirubicin), anti-metabolites (capecitabine, gemcitabine, fluorouracil, methotrexate), alkylating agents (carboplatin, cisplatin, and cyclophosphamide), and drugs that target microtubules (eribulin, ixabepilone, ado-trastuzumab emtansine). Patients with ER-positive tumors are treated with 5-10 years of endocrine therapy and chemotherapy. For patients with metastatic breast cancer, standard first-line and follow-up therapy options include targeted approaches such as CDK4/6 inhibitors, PI3K inhibitors, PARP inhibitors, and anti-PDL1 immunotherapy, depending on the tumor type and molecular profile.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
4
|
Li GG, Chu XF, Xing YM, Xue X, Ihtisham B, Liang XF, Xu JX, Mi Y, Zheng PY. Baicalin Prevents Colon Cancer by Suppressing CDKN2A Protein Expression. Chin J Integr Med 2024; 30:1007-1017. [PMID: 38941045 DOI: 10.1007/s11655-024-4109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To observe the therapeutic effects and underlying mechanism of baicalin against colon cancer. METHODS The effects of baicalin on the proliferation and growth of colon cancer cells MC38 and CT26. WT were observed and predicted potential molecular targets of baicalin for colon cancer therapy were studied by network pharmacology. Furthermore, molecular docking and drug affinity responsive target stability (DARTS) analysis were performed to confirm the interaction between potential targets and baicalin. Finally, the mechanisms predicted by in silico analyses were experimentally verified in-vitro and in-vivo. RESULTS Baicalin significantly inhibited proliferation, invasion, migration, and induced apoptosis in MC38 and CT26 cells (all P<0.01). Additionally, baicalin caused cell cycle arrest at the S phase, while the G0/G1 phase was detected in the tiny portion of the cells. Subsequent network pharmacology analysis identified 6 therapeutic targets associated with baicalin, which potentially affect various pathways including 39 biological processes and 99 signaling pathways. In addition, molecular docking and DARTS predicted the potential binding of baicalin with cyclin dependent kinase inhibitor 2A (CDKN2A), protein kinase B (AKT), caspase 3, and mitogen-activated protein kinase (MAPK). In vitro, the expressions of CDKN2A, MAPK, and p-AKT were suppressed by baicalin in MC38 and CT26 cells. In vivo, baicalin significantly reduced the tumor size and weight (all P<0.01) in the colon cancer mouse model via inactivating p-AKT, CDKN2A, cyclin dependent kinase 4, cyclin dependent kinase 2, interleukin-1, tumor necrosis factor α, and activating caspase 3 and mouse double minute 2 homolog signaling (all P<0.05). CONCLUSION Baicalin suppressed the CDKN2A protein level to prevent colon cancer and could be used as a therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Gang-Gang Li
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Xiu-Feng Chu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Ya-Min Xing
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Bukhari Ihtisham
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Xin-Feng Liang
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Ji-Xuan Xu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Peng-Yuan Zheng
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China.
| |
Collapse
|
5
|
Abdelmegeed H, Abo-Salem HM, Zayed EM, El-Sawy ER. Anti colorectal cancer activity and in silico studies of novel pyridine nortopsentin analog as cyclin dependent kinase 6 inhibitor. Sci Rep 2024; 14:26327. [PMID: 39487179 PMCID: PMC11530689 DOI: 10.1038/s41598-024-75411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024] Open
Abstract
Nortopsentins are a vital class of deep-sea sponge metabolites which can be used as leads for antitumor agents. Although their action has been studied in several diseases' contexts, their cytotoxic activity against colorectal carcinoma has not yet been fully investigated. Therefore, a series of 2,6-bis(1H-indol-3-yl)-4-(substituted-phenyl)pyridin-5-carbonitriles 4a-j (nortopsentin analogs) was investigated for their cytotoxic activity against colorectal carcinoma. The analog 4i showed the highest antitumor activity via inducing cell cycle arrest at G1 phase. Cell cycle arrest was induced due to expression downregulation of CDK2, CDK4, and CDK6. In addition, 4i suppressed the enzymatic activity of CDK6. The theoretical study of some basic quantum factors and the geometric shape of compound 4i proved that the compound is stable and a soft molecule, in which the EHOMO and ELUMO energies were negative and had a small ∆E gap. 4i also demonstrated a high potential for oral bioavailability due to its adherence to Lipinski's rule of five. The molecular docking studies of 4i analog showed good binding mode with CDK6 active pocket through the formation of multiple interactions with its key amino acids.
Collapse
Affiliation(s)
- Heba Abdelmegeed
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Heba M Abo-Salem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Ehab M Zayed
- Green Chemistry Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Eslam R El-Sawy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt.
| |
Collapse
|
6
|
Xiao Y, Ouyang A, Fan L, Qin X, Li Y, Wang Z, Yuan P, Huang X, Hao J, Zhu H, Huang Q, Guo H, Jin R. Precision Delivery of Binary Cooperative Nanodrugs Self-Assembled by Berberine Glycyrrhetinic Acid Salts for Hepatocellular Carcinoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58489-58505. [PMID: 39413019 DOI: 10.1021/acsami.4c15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Berberine (BB) has demonstrated significant inhibitory effects on tumorigenesis and progression. However, its clinical application is hindered by challenges such as low bioavailability due to limited cell membrane permeability, nontargeted accumulation away from solid tumors, and increased toxicity associated with intravenous administration. To overcome these challenges, a lipophilic salt-forming strategy was employed to enhance lipophilicity, thereby promoting membrane permeability and targetability for tumor accumulation while simultaneously mitigating the toxicity associated with intravenous injection. In vitro findings revealed an almost 10-fold increase in fluorescence intensity with BB-GA NDs compared to BB alone. Furthermore, selective cytotoxicity against tumor cells exhibited a 4-fold elevation compared to normal cells. In vivo results underscored the remarkable tumor-selective accumulation of BB-GA NDs, effectively mitigating the intravenous injection toxicity associated with pure BB. The self-assembly of binary cooperative nanodrugs utilizing berberine glycyrrhetinic acid salts opens up innovative possibilities for drug delivery systems in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yang Xiao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Alu Ouyang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Ling Fan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Xin Qin
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Yu Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Zixin Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, P. R. China
| | - Xuejing Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Jie Hao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Hongyan Zhu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| | - Ronghua Jin
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, P. R. China
| |
Collapse
|
7
|
Han K, Chen Y, Sun X, Wen L, Wu Y, Chen S, Wei L, Yu J, Zeng T, Jiang L, Tan L. Combining serum CDK1 with tumor markers for the diagnosis of small cell lung cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03722-y. [PMID: 39397200 DOI: 10.1007/s12094-024-03722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE An investigation of the diagnostic and clinical value of cell cycle-dependent kinase 1 (CDK1) in small cell lung cancer (SCLC). METHODS A large tertiary hospital in Jiangxi Province enrolled 80 SCLC cases, 105 cases of non-small cell lung cancer (NSCLC), 114 cases of pulmonary nodule (PN) and 60 control cases from December 2022 to December 2023. ELISA was used to measure CDK1 levels in serum. The expression levers of neuron-specific enolase (NSE), Pro gastrin-releasing peptide (ProGRP), squamous cell carcinoma antigen (SCCA), carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199) and cytokeratin 19 fragment (YFRA21-1) were detected by electrochemiluminescence immunoassay. RESULTS ①CDK1, ProGRP, NSE, and CA199 expressions were significantly higher in the SCLC group compared to the NSCLC, PN and Control groups (P < 0.01). ②Spearman correlation analysis showed that serum levels of CDK1, NSE, and ProGRP were associated with clinical staging and lymph node metastasis in SCLC patients (P < 0.05). ③The serum levels of CDK1, NSE, and ProGRP in patients with extensive-disease (ED) SCLC were higher than those in patients with limited-disease (LD) SCLC (P < 0.05), and the serum levels of CDK1, NSE, and ProGRP in SCLC patients with lymph node metastasis were higher than those without lymph node metastasis (P < 0.05). ④Compared with the NSCLC group, the AUC of subjects diagnosed with SCLC by CDK1 was the largest and the sensitivity was the highest, 0.831 and 72.50%, the specificity of ProGRP in diagnosing SCLC is the highest, at 95.20% (P < 0.01). Compared with the PN group, CDK1 had the highest AUC, sensitivity, and specificity in diagnosing SCLC, with values of 0.93%, 88.80%, and 94.70%, respectively (P < 0.01). ⑤The combination of CDK1, ProGRP and NSE had the highest AUC and sensitivity of 0.903 and 86.30% for the diagnosis of SCLC (P < 0.01). CONCLUSION CDK1 not only plays an important role in assisting the diagnosis of SCLC but also in the differential diagnosis between SCLC and NSCLC. The combination of CDK1 and NSE and ProGRP can significantly improve the diagnostic performance and provide new ideas for the clinical diagnosis of SCLC.
Collapse
Affiliation(s)
- Kexin Han
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yinyi Chen
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xinlu Sun
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lili Wen
- Laboratory, Department of Nanchang Ninth Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Yang Wu
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Simei Chen
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Liping Wei
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jianlin Yu
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Tingting Zeng
- Department of Laboratory Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lei Jiang
- Jiangxi Long March Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Liming Tan
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
8
|
Masurkar PP, Prajapati P, Canedo J, Goswami S, Earl S, Bhattacharya K. Cost-effectiveness of CDK4/6 inhibitors in HR+/HER2- metastatic breast cancer: a systematic review and meta-analysis. Curr Med Res Opin 2024; 40:1753-1767. [PMID: 39305463 DOI: 10.1080/03007995.2024.2402074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 (CDK 4/6) inhibitors have emerged as a significant advancement in the treatment of HR+/HER2- metastatic breast cancer (MBC). Despite the clinical efficacy of CDK 4/6 inhibitors in HR+/HER2- metastatic breast cancer, there remains a significant gap in understanding their cost-effectiveness, particularly regarding the long-term economic impact and the key drivers of costs, when used in combination with endocrine therapy. This study aims to systematically review and conduct a meta-analysis of cost-effectiveness studies evaluating CDK4/6 inhibitors in treatment of HR+/HER2- advanced breast cancer and identify key drivers of costs of CDK4/6 inhibitors in combination with endocrine therapy. METHODS A comprehensive search of PubMed and Embase was conducted to identify peer-reviewed studies from February 2015 to March 2022 reporting cost-effectiveness of CDK4/6 inhibitors in MBC treatment. Incremental net benefits (INBs) were estimated, and meta-analysis was conducted. This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS We identified 120 articles, of which 18 were eligible for systematic review and 16 for meta-analysis. None of the three CDK4/6 inhibitors had positive INB compared to endocrine/aromatase inhibitors therapy alone. The pooled INB was estimated at -$149,266.87 (95% Confidence Interval (CI) = -$196,961.54, -$101,572.20). CONCLUSION The combination of CDK4/6 inhibitors and letrozole/endocrine therapy for the treatment of postmenopausal patients with advanced HR+/HER2 - MBC was not cost-effective.
Collapse
Affiliation(s)
- Prajakta P Masurkar
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, USA
- Now with Amgen Inc, Thousand Oaks, CA, USA
| | - Prachi Prajapati
- Department of Pharmacy Administration, University of Mississippi, University, MS, USA
| | - Joanne Canedo
- Department of Pharmacy Administration, University of Mississippi, University, MS, USA
| | - Swarnali Goswami
- Department of Pharmacy Administration, University of Mississippi, University, MS, USA
- Complete Health Economics and Outcomes Solutions, LLC, Chalfont, PA, USA
| | - Sally Earl
- Department of Pharmacy Practice, University of Mississippi, University, MS, USA
| | - Kaustuv Bhattacharya
- Department of Pharmacy Administration, University of Mississippi, University, MS, USA
- Center for Pharmaceutical Marketing and Management, University of Mississippi, University, MS, USA
| |
Collapse
|
9
|
Teotia V, Jha P, Chopra M. Discovery of Potential Inhibitors of CDK1 by Integrating Pharmacophore-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation Studies, and Evaluation of Their Inhibitory Activity. ACS OMEGA 2024; 9:39873-39892. [PMID: 39346877 PMCID: PMC11425824 DOI: 10.1021/acsomega.4c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
The ability of CDK1 to compensate for the absence of other cell cycle CDKs poses a great challenge to treat cancers that overexpress these proteins. Despite several studies focusing on the area, there are no FDA-approved drugs selectively targeting CDK1. Here, the study aimed to develop potential CDK1 selective inhibitors through drug repurposing and leveraging the structural insights provided by the hit molecules generated. Approximately 280,000 compounds from DrugBank, Selleckchem, Otava and an in-house library were screened initially based on fit values using 3D QSAR pharmacophores built for CDK1 and subsequently through Lipinski, ADMET, and TOPKAT filters. 10,310 hits were investigated for docking into the binding site of CDK1 determined using the crystal structure of human CDK1 in complex with NU6102. The best 55 hits with better docking scores were further analyzed, and 12 hits were selected for 100 ns MD simulations followed by binding energy calculations using the MM-PBSA method. Finally, 10 hit molecules were tested in an in vitro CDK1 Kinase inhibition assay. Out of these, 3 hits showed significant CDK1 inhibitory potential with IC50 < 5 μM. These results indicate these compounds can be used to develop subtype-selective CDK1 inhibitors with better efficacy and reduced toxicities in the future.
Collapse
Affiliation(s)
- Vineeta Teotia
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Prakash Jha
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Madhu Chopra
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
10
|
Wang S, Luo C, Guo J, Hu R, Shen B, Lin F, Zhang C, Liao C, He J, Wang Y, Qu J, Liu L. Enhancing Therapeutic Response and Overcoming Resistance to Checkpoint Inhibitors in Ovarian Cancer through Cell Cycle Regulation. Int J Mol Sci 2024; 25:10018. [PMID: 39337506 PMCID: PMC11431879 DOI: 10.3390/ijms251810018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Tumor cells invade normal surrounding tissues through continuous division. In this study, we hypothesized that cell cycle regulation changes the immune efficacy of ovarian cancer. To investigate this hypothesis, a Förster resonance energy transfer (FRET) sensor was constructed to characterize the cell activity in real time. Cell shrinkage caused by apoptosis induces the aggregation of proteins on the cell membrane, leading to variations in the fluorescence lifetime of FRET sensors. Moreover, we tracked cell activity across various cycles following co-culture with an immune checkpoint inhibitor. Consequently, we assessed how cell cycle regulation influences immunotherapy in a tumor mouse model. This approach, which involves inhibiting typical cell cycle processes, markedly enhances the effectiveness of immunotherapy. Our findings suggest that modulating the cycle progression of cancer cells may represent a promising approach to enhance the immune response of ovarian cancer cells and the efficacy of immunotherapy based on immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (S.W.); (C.L.); (J.G.); (R.H.); (B.S.); (F.L.); (C.Z.); (C.L.); (J.H.); (Y.W.); (J.Q.)
| |
Collapse
|
11
|
Bose K, Shajahan A, Sreekumar N, Aneesh TP. Heterocyclic Compounds as CDK9 Inhibitors: Structural Diversity, Mechanism of Action, and Therapeutic Potential in Cancer and Beyond. Chem Biodivers 2024:e202401797. [PMID: 39267257 DOI: 10.1002/cbdv.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Cyclin-dependent kinases (CDKs) are crucial proteins involved in key cellular processes, such as cell division and transcription. Their dysregulation plays a significant role in cancer development. Inhibiting cyclin-dependent kinase 9 (CDK9) impacts several survival pathways in cancer cells, presenting a promising therapeutic approach for various cancers. CDK9, in association with cyclin T1, forms the positive transcription elongation factor b (P-TEFb) complex, which phosphorylates the C-terminal domain (CTD) of RNA polymerase II (Pol II). This phosphorylation promotes the transition from transcription initiation to elongation. This review examines recent advancements in CDK9 modulators, with a particular emphasis on compounds currently in clinical trials.
Collapse
Affiliation(s)
- Kuntal Bose
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Afiya Shajahan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Nandana Sreekumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| |
Collapse
|
12
|
Wang L, Li S, Xiang S, Liu H, Sun H. Elucidating the Selective Mechanism of Drugs Targeting Cyclin-Dependent Kinases with Integrated MetaD-US Simulation. J Chem Inf Model 2024; 64:6899-6911. [PMID: 39172502 DOI: 10.1021/acs.jcim.4c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cyclin-dependent kinases (CDKs), including CDK12 and CDK13, play crucial roles in regulating the cell cycle and RNA polymerase II activity, making them vital targets for cancer therapies. SR4835 is a selective inhibitor of CDK12/13, showing significant potential for treating triple-negative breast cancer. To elucidate the selective mechanism of SR4835 among three CDKs (CDK13/12/9), we developed an innovative enhanced sampling method, integrated well-tempered metadynamics-umbrella sampling (IMUS). IMUS synergistically combines the comprehensive pathway exploration capability of well-tempered metadynamics (WT-MetaD) with the precise free energy calculation capability of umbrella sampling, enabling the efficient and accurate characterization of drug-target interactions. The accurate calculation of binding free energy and the detailed analysis of the kinetic mechanism of the drug-target interaction using IMUS successfully elucidate the drug selectivity mechanism targeting the three CDKs, showing that the selectivity is primarily arising from differences in the stability of H-bonds within the Hinge region of the kinases and the interaction patterns during the protein-ligand recognition process. These findings also underscore the utility of IMUS in efficiently and accurately capturing drug-target interaction processes with clear mechanisms.
Collapse
Affiliation(s)
- Lingling Wang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Shu Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Sutong Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Huanxiang Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
13
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
14
|
Zeng Y, Ren X, Jin P, Fan Z, Liu M, Zhang Y, Li L, Zhuo M, Wang J, Li Z, Wu M. Inhibitors and PROTACs of CDK2: challenges and opportunities. Expert Opin Drug Discov 2024; 19:1125-1148. [PMID: 38994606 DOI: 10.1080/17460441.2024.2376655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Abundant evidence suggests that the overexpression of CDK2-cyclin A/E complex disrupts normal cell cycle regulation, leading to uncontrolled proliferation of cancer cells. Thus, CDK2 has become a promising therapeutic target for cancer treatment. In recent years, insights into the structures of the CDK2 catalytic site and allosteric pockets have provided notable opportunities for developing more effective clinical candidates of CDK2 inhibitors. AREA COVERED This article reviews the latest CDK2 inhibitors that have entered clinical trials and discusses the design and discovery of the most promising new preclinical CDK2 inhibitors in recent years. Additionally, it summarizes the development of allosteric CDK2 inhibitors and CDK2-targeting PROTACs. The review encompasses strategies for inhibitor and PROTAC design, structure-activity relationships, as well as in vitro and in vivo biological assessments. EXPERT OPINION Despite considerable effort, no CDK2 inhibitor has yet received FDA approval for marketing due to poor selectivity and observed toxicity in clinical settings. Future research must prioritize the optimization of the selectivity, potency, and pharmacokinetics of CDK2 inhibitors and PROTACs. Moreover, exploring combination therapies incorporating CDK2 inhibitors with other targeted agents, or the design of multi-target inhibitors, presents significant promise for advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, China
| | - Zhida Fan
- Medical College, Guizhou University, Guiyang, China
| | | | - Yali Zhang
- Medical College, Guizhou University, Guiyang, China
| | - Linzhao Li
- Medical College, Guizhou University, Guiyang, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Min Wu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
15
|
Lin X, He Y, Liu Y, Zhou H, Xu X, Xu J, Zhou K. CDK1 promotes the phosphorylation of KIFC1 to regulate the tumorgenicity of endometrial carcinoma. J Gynecol Oncol 2024; 35:e68. [PMID: 38456590 PMCID: PMC11390247 DOI: 10.3802/jgo.2024.35.e68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE This study aims to clarify the mechanical action of cyclin-dependent protein kinase 1 (CDK1) in the development of endometrial carcinoma (EMCA), which may be associated with the phosphorylation of kinesin family member C1 (KIFC1) and further activate the PI3K/AKT pathway. METHODS The protein and gene expression of CDK1 in EMCA tissues and tumor cell lines were evaluated by western blot, quantitative polymerase chain reaction, and immunohistochemistry staining. Next, Cell Counting Kit-8 and colony formation assay detected cell survival and proliferation. Cell migration and invasion were measured by Transwell assay. Cell apoptosis and cell cycle were tested by flow cytometry. Immunofluorescence staining of γH2AX was used to evaluate DNA damage, respectively. Subsequently, a co-immunoprecipitation assay was used to detect the interaction between CDK1 and KIFC1. The phosphorylated protein of KIFC1 and PI3K/AKT was detected by western blot. Finally, the effect of CDK1 on the tumor formation of EMCA was evaluated in a nude mouse xenograft model. RESULTS CDK1 was highly expressed in EMCA tumor cell lines and tissues, which contributed to cell survival, proliferation, invasion, and migration, inhibited cell apoptosis, and induced DNA damage of EMCA cells dependent on the phosphorylation of KIFC1. Moreover, the CDK1-KIFC1 axis further activated PI3K/AKT pathway. Finally, CDK1 knockdown repressed tumor formation of EMCA in vivo. CONCLUSION We report that increased CDK1 promotes tumor progression and identified it as a potential prognostic marker and therapeutic target of EMCA.
Collapse
Affiliation(s)
- Xi Lin
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yingying He
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yiming Liu
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Huihao Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaomin Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jingui Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kening Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
16
|
Wang X, Zhao S, Xin Q, Zhang Y, Wang K, Li M. Recent progress of CDK4/6 inhibitors' current practice in breast cancer. Cancer Gene Ther 2024; 31:1283-1291. [PMID: 38409585 PMCID: PMC11405274 DOI: 10.1038/s41417-024-00747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Dysregulated cellular proliferation represents a hallmark feature across all cancers. Aberrant activation of the cyclin-dependent kinase 4 and 6 (CDK4/6) pathway, independent of mitogenic signaling, engenders uncontrolled breast cancer cell proliferation. Consequently, the advent of CDK4/6 inhibition has constituted a pivotal milestone in the realm of targeted breast cancer therapy. The combination of CDK4/6 inhibitors (CDK4/6i) with endocrine therapy (ET) has emerged as the foremost therapeutic modality for patients afflicted with hormone receptor-positive (HR + )/HER2-negative (HER2-) advanced breast cancer. At present, the Food and Drug Administration (FDA) has sanctioned various CDK4/6i for employment as the primary treatment regimen in HR + /HER2- breast cancer. This therapeutic approach has demonstrated a substantial extension of progression-free survival (PFS), often amounting to several months, when administered alongside endocrine therapy. Within this comprehensive review, we systematically evaluate the utilization strategies of CDK4/6i across various subpopulations of breast cancer and explore potential therapeutic avenues following disease progression during application of CDK4/6i therapy.
Collapse
Affiliation(s)
- Xueqing Wang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Shanshan Zhao
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Qinghan Xin
- Department of Breast Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Yunkun Zhang
- Department of Pathology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Kainan Wang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, China.
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
17
|
Zhao C, He Y, Shi H, Han C, Zhu X, Wang C, Wang B, Liu J, Shi Y, Hua D. Investigating the molecular mechanism of vitexin targeting CDK1 to inhibit colon cancer cell proliferation via GEO chip data mining, computer simulation, and biological activity verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03341-y. [PMID: 39145810 DOI: 10.1007/s00210-024-03341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024]
Abstract
The objective of this study is to explore the antiproliferative activity of the traditional Chinese medicine monomer vitexin on colon cancer HCT-116 cells and its underlying mechanism. The in vitro antiproliferative activity of vitexin on colon cancer HCT-116 cells was evaluated using the CCK-8 assay. Potential drug targets for colon cancer were identified through GEO chip data mining, and molecular docking using Schrödinger software was conducted. Molecular dynamics simulations were employed to deeply analyze the interaction between candidate compounds and target proteins. Flow cytometry was employed to examine the cell cycle. The impact of vitexin on the expression of CDK1/cyclinB proteins in HCT-116 cells was assessed through Western blot analysis, immunofluorescence, and CDK inhibition assay. Vitexin exhibited inhibitory effects on colon cancer HCT-116 cells, with a half inhibitory concentration (IC50) value of 203.27 ± 9.85 μmol/L. The analysis of differential gene expression in GEO and TCGA datasets, along with the GENECARD dataset of related disease genes, identified 91 disease targets, including "CDK1." Vitexin induced cell cycle arrest in the G2/M phase of HCT-116 cells. Molecular docking revealed a strong interaction between Vitexin and CDK1 (Docking score - 9.497), with molecular dynamics simulations confirming the stability of the Vitexin-CDK1 complex and comparable inhibitory effects to Flavopiridol. Vitexin can inhibit the expression of CDK1/cyclin B proteins in HCT-116 cells, with an IC50 of 58.06 ± 3.07 μmol/L. Vitexin may inhibit colon cancer HCT-116 cell proliferation by suppressing CDK1/cyclin B expression, leading to cell cycle arrest in the G2/M phase.
Collapse
Affiliation(s)
- Chenying Zhao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Yifan He
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Hailong Shi
- School of Basic Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Chaojun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Xingmei Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China.
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
18
|
Lei S, Sun J, Xie Y, Xiao X, He X, Lin S, Zhang H, Huang Z, Wang H, Wu X, Peng H, Liu J. Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target. Carcinogenesis 2024; 45:527-542. [PMID: 38902892 DOI: 10.1093/carcin/bgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.
Collapse
Affiliation(s)
- Shiying Lei
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajun Sun
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yifang Xie
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Huifang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zineng Huang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haiqin Wang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| |
Collapse
|
19
|
Dubey R, Makhija R, Sharma A, Sahu A, Asati V. Unveiling the promise of pyrimidine-modified CDK inhibitors in cancer treatment. Bioorg Chem 2024; 149:107508. [PMID: 38850781 DOI: 10.1016/j.bioorg.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Cyclin-dependent kinases (CDKs) constitute a vital family of protein-serine kinases, pivotal in regulating various cellular processes such as the cell cycle, metabolism, proteolysis, and neural functions. Dysregulation or overexpression of CDK kinases is directly linked to the development of cancer. However, the currently approved CDK inhibitors by the US FDA, such as palbociclib, ribociclib, Trilaciclib, Abemaciclib, etc., although effective, exhibit limited specificity and often lead to undesirable adverse effects. First and second-generation CDK inhibitors have not gained significant clinical interaction due to their high toxicity and lack of specificity. To address these challenges, a combined approach is being employed in the quest for newer CDK inhibitors aimed at mitigating toxicity and side effects associated with CDKIs. The discovery of therapeutic agents selectively targeting tumorous cells, such as CDK inhibitors, has demonstrated promise in treating various cancers, including breast cancer. Extensive literature reviews have facilitated the development of novel CDK inhibitors by combining medicinally preferred pyrimidine derivatives with other heterocyclic rings. Pyrimidine derivatives substituted with pyrazole, imidazole, benzamide, benzene sulfonamide, indole carbohydrazide, and other privileged heterocyclic rings have shown encouraging efficacy in inhibiting cyclin-dependent kinase activity. This review provides comprehensive data, including structure-activity relationship (SAR), anticancer activity, and kinetics studies of potent compounds. Additionally, molecular docking studies with compounds under clinical trial and patents filed on pyrimidine based CDK inhibitors in cancer treatment are included. This review serves as a valuable resource for further development of CDK kinase inhibitors for cancer treatment, offering insights into their efficacy, specificity, and potential clinical applications.
Collapse
Affiliation(s)
- Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Rahul Makhija
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Adarsh Sahu
- Amity Institute of Pharmacy, Amity University Jaipur (Rajasthan), India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
20
|
Bachmann V, Schädel P, Westhoff J, Perić M, Schömberg F, Skaltsounis AL, Höppener S, Pantsar T, Fischer D, Vilotijević I, Werz O. Bromo-substituted indirubins for inhibition of protein kinase-mediated signalling involved in inflammatory mediator release in human monocytes. Bioorg Chem 2024; 149:107470. [PMID: 38838619 DOI: 10.1016/j.bioorg.2024.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Targeting protein kinases that regulate signalling pathways in inflammation is an effective pharmacological approach to alleviate uncontrolled inflammatory diseases. In this context, the natural product indirubin and its 6-bromo-substituted analogue 6-bromoindirubin-3 -glycerol-oxime ether (6BIGOE; 1) were identified as potent inhibitors of glycogen synthase kinase-3β (GSK-3β). These inhibitors suppress the release of pro-inflammatory cytokines and prostaglandins (PG) from human monocytes. However, indirubin derivatives target several protein kinases such as cyclin-dependent kinases (CDKs) which has been a major concern for their application in inflammation therapy. Here, we report on a library of 13 5-bromo-substituted indirubin derivatives that have been designed to improve potency and target selectivity. Side-by-side comparison of reference compound 1 (6BIGOE) with 5-bromo derivatives revealed its isomer 2 (5BIGOE), as the most potent derivative able to supress pro-inflammatory cytokine and PG release in lipopolysaccharide-stimulated human monocytes. Analysis of protein kinase inhibition in intact monocytes, supported by our in silico findings, proposed higher selectivity of 1 for GSK-3β inhibition with lesser potency against CDKs 8 and 9. In contrast, 2 supressed the activity of these CDKs with higher effectiveness than GSK-3β, representing additional targets of indirubins within the inflammatory response. Encapsulation of 1 and 2 into polymer-based nanoparticles (NP) improved their pharmacological potential. In conclusion, the 5- and 6-brominated indirubins 1 and 2 as dual GSK-3β and CDK8/9 inhibitors represent a novel concept for intervention with inflammatory disorders.
Collapse
Affiliation(s)
- Vivien Bachmann
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Patrick Schädel
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Jan Westhoff
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Milica Perić
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Fritz Schömberg
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Product Chemistry, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Stephanie Höppener
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonrinne 3, FI-70210 Kuopio, Finland
| | - Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; FAU NeW - Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Ivan Vilotijević
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
21
|
Yuan R, Qian L, Xu H, Yun W. Cucurbitacins mitigate vascular neointimal hyperplasia by suppressing cyclin A2 expression and inhibiting VSMC proliferation. Animal Model Exp Med 2024; 7:397-407. [PMID: 38970173 PMCID: PMC11369011 DOI: 10.1002/ame2.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Restenosis frequently occurs after percutaneous angioplasty in patients with vascular occlusion and seriously threatens their health. Substantial evidence has revealed that preventing vascular smooth muscle cell proliferation using a drug-eluting stent is an effective approach to improve restenosis. Cucurbitacins have been demonstrated to exert an anti-proliferation effect in various tumors and a hypotensive effect. This study aims to investigate the role of cucurbitacins extracted from Cucumis melo L. (CuECs) and cucurbitacin B (CuB) on restenosis. METHODS C57BL/6 mice were subjected to left carotid artery ligation and subcutaneously injected with CuECs or CuB for 4 weeks. Hematoxylin-Eosin, immunofluorescence and immunohistochemistry staining were used to evaluate the effect of CuECs and CuB on neointimal hyperplasia. Western blot, real-time PCR, flow cytometry analysis, EdU staining and cellular immunofluorescence assay were employed to measure the effects of CuECs and CuB on cell proliferation and the cell cycle in vitro. The potential interactions of CuECs with cyclin A2 were performed by molecular docking. RESULTS The results demonstrated that both CuECs and CuB exhibited significant inhibitory effects on neointimal hyperplasia and proliferation of vascular smooth muscle cells. Furthermore, CuECs and CuB mediated cell cycle arrest at the S phase. Autodocking analysis demonstrated that CuB, CuD, CuE and CuI had high binding energy for cyclin A2. Our study also showed that CuECs and CuB dramatically inhibited FBS-induced cyclin A2 expression. Moreover, the expression of cyclin A2 in CuEC- and CuB-treated neointima was downregulated. CONCLUSIONS CuECs, especially CuB, exert an anti-proliferation effect in VSMCs and may be potential drugs to prevent restenosis.
Collapse
Affiliation(s)
- Ruqiang Yuan
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Lei Qian
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Hu Xu
- Health Science CenterEast China Normal UniversityShanghaiChina
| | - Weijing Yun
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
22
|
Zhang GQ, Xi C, Ju NT, Shen CT, Qiu ZL, Song HJ, Luo QY. Targeting glutamine metabolism exhibits anti-tumor effects in thyroid cancer. J Endocrinol Invest 2024; 47:1953-1969. [PMID: 38386265 PMCID: PMC11266413 DOI: 10.1007/s40618-023-02294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/25/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Effective treatment for patients with advanced thyroid cancer is lacking. Metabolism reprogramming is required for cancer to undergo oncogenic transformation and rapid tumorigenic growth. Glutamine is frequently used by cancer cells for active bioenergetic and biosynthetic needs. This study aims to investigate whether targeting glutamine metabolism is a promising therapeutic strategy for thyroid cancer. METHODS The expression of glutaminase (GLS) and glutamate dehydrogenase (GDH) in thyroid cancer tissues was evaluated by immunohistochemistry, and glutamine metabolism-related genes were assessed using real time-qPCR and western blotting. The effects of glutamine metabolism inhibitor 6-diazo-5-oxo-l-norleucine (DON) on thyroid cancer cells were determined by CCK-8, clone formation assay, Edu incorporation assay, flow cytometry, and Transwell assay. The mechanistic study was performed by real time-qPCR, western blotting, Seahorse assay, and gas chromatography-mass spectrometer assay. The effect of DON prodrug (JHU-083) on thyroid cancer in vivo was assessed using xenograft tumor models in BALB/c nude mice. RESULTS GLS and GDH were over-expressed in thyroid cancer tissues, and GLS expression was positively associated with lymph-node metastasis and TNM stage. The growth of thyroid cancer cells was significantly inhibited when cultured in glutamine-free medium. Targeting glutamine metabolism with DON inhibited the proliferation of thyroid cancer cells. DON treatment did not promote apoptosis, but increased the proportion of cells in the S phase, accompanied by the decreased expression of cyclin-dependent kinase 2 and cyclin A. DON treatment also significantly inhibited the migration and invasion of thyroid cancer cells by reducing the expression of N-cadherin, Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-9. Non-essential amino acids, including proline, alanine, aspartate, asparagine, and glycine, were reduced in thyroid cancer cells treated with DON, which could explain the decrease of proteins involved in migration, invasion, and cell cycle. The efficacy and safety of DON prodrug (JHU-083) for thyroid cancer treatment were verified in a mouse model. In addition to suppressing the proliferation and metastasis potential of thyroid cancer in vivo, enhanced innate immune response was also observed in JHU-083-treated xenograft tumors as a result of decreased expression of cluster of differentiation 47 and programmed cell death ligand 1. CONCLUSIONS Thyroid cancer exhibited enhanced glutamine metabolism, as evidenced by the glutamine dependence of thyroid cancer cells and high expression of multiple glutamine metabolism-related genes. Targeting glutamine metabolism with DON prodrug could be a promising therapeutic option for advanced thyroid cancer.
Collapse
Affiliation(s)
- G-Q Zhang
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - C Xi
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - N-T Ju
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - C-T Shen
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Z-L Qiu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - H-J Song
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Q-Y Luo
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
23
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
24
|
Cavalu S, Abdelhamid AM, Saber S, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Yahya G, Salama MM. Cell cycle machinery in oncology: A comprehensive review of therapeutic targets. FASEB J 2024; 38:e23734. [PMID: 38847486 DOI: 10.1096/fj.202400769r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt
| | - Mohamed M Salama
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
25
|
Hassanzadeh A, Shomali N, Kamrani A, Soltani-Zangbar MS, Nasiri H, Akbari M. Cancer therapy by cyclin-dependent kinase inhibitors (CDKIs): bench to bedside. EXCLI JOURNAL 2024; 23:862-882. [PMID: 38983782 PMCID: PMC11231458 DOI: 10.17179/excli2024-7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 07/11/2024]
Abstract
A major characteristic of cancer is dysregulated cell division, which results in aberrant growth of cells. Consequently, medicinal targets that prevent cell division would be useful in the fight against cancer. The primary regulator of proliferation is a complex consisting of cyclin and cyclin-dependent kinases (CDKs). The FDA has granted approval for CDK inhibitors (CDKIs) to treat metastatic hormone receptor-positive breast cancer. Specifically, CDK4/6 CDKIs block the enzyme activity of CDK4 and CDK6. Unfortunately, the majority of first-generation CDK inhibitors, also known as pan-CDK inhibitors because they target multiple CDKs, have not been authorized for clinical use owing to their serious side effects and lack of selection. In contrast to this, significant advancements have been created to permit the use of pan-CDK inhibitors in therapeutic settings. Notably, the toxicity and negative consequences of pan-CDK inhibitors have been lessened in recent years thanks to the emergence of combination therapy tactics. Therefore, pan-CDK inhibitors have renewed promise for clinical use when used in a combination regimen. The members of the CDK family have been reviewed and their primary roles in cell cycle regulation were covered in this review. Next, we provided an overview of the state of studies on CDK inhibitors.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Abe N, Sakiyama A, Suzuki M, Win-Shwe TT, Suzuki T, Kawashima T, Tsukahara S. Ethynylestradiol feminizes gene expression partly in testis developing as ovotestis and disrupts asymmetric Müllerian duct development by eliminating asymmetric gene expression in Japanese quail embryos. Toxicol Sci 2024; 199:210-226. [PMID: 38526210 DOI: 10.1093/toxsci/kfae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
In avian embryos, xenoestrogens induce abnormalities in reproductive organs, particularly the testes and Müllerian ducts (MDs). However, the molecular mechanisms remain poorly understood. We investigated the effects of ethynylestradiol (EE2) exposure on gene expression associated with reproductive organ development in Japanese quail embryos. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis revealed that the left testis containing ovary-like tissues following EE2 exposure highly expressed the genes for steroidogenic enzymes (P450scc, P45017α, lyase, and 3β-HSD) and estrogen receptor-β, compared to the right testis. No asymmetry was found in these gene expression without EE2. EE2 induced hypertrophy in female MDs and suppressed atrophy in male MDs on both sides. RNA sequencing analysis of female MDs showed 1,366 differentially expressed genes between developing left MD and atrophied right MD in the absence of EE2, and these genes were enriched in Gene Ontology terms related to organogenesis, including cell proliferation, migration and differentiation, and angiogenesis. However, EE2 reduced asymmetrically expressed genes to 21. RT-qPCR analysis indicated that genes promoting cell cycle progression and oncogenesis were more highly expressed in the left MD than in the right MD, but EE2 eliminated such asymmetric gene expression by increasing levels on the right side. EE2-exposed males showed overexpression of these genes in both MDs. This study reveals part of the molecular basis of xenoestrogen-induced abnormalities in avian reproductive organs, where EE2 may partly feminize gene expression in the left testis, developing as the ovotestis, and induce bilateral MD malformation by canceling asymmetric gene expression underlying MD development.
Collapse
Affiliation(s)
- Natsuko Abe
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Akari Sakiyama
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Maho Suzuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Tin-Tin Win-Shwe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Takehiro Suzuki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Takaharu Kawashima
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
27
|
Zhang W, Liu Y, Jang H, Nussinov R. CDK2 and CDK4: Cell Cycle Functions Evolve Distinct, Catalysis-Competent Conformations, Offering Drug Targets. JACS AU 2024; 4:1911-1927. [PMID: 38818077 PMCID: PMC11134382 DOI: 10.1021/jacsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Zhao W, Liu Y, Yang Y, Wang L. New link between RNH1 and E2F1: regulates the development of lung adenocarcinoma. BMC Cancer 2024; 24:635. [PMID: 38783241 PMCID: PMC11118993 DOI: 10.1186/s12885-024-12392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a non-small cell carcinoma. Ribonuclease/angiogenin inhibitor 1 (RNH1) exerts multiple roles in virous cancers. E2F1 is a critical transcription factor involved in the LUAD development. Here, we analyze the expression of RNH1 in LUAD patients, investigate the biological function of RNH1 in LUAD, and demonstrate its potential mechanisms through E2F1 in LUAD. METHODS In the present study, we presented the expression of RNH1 in LUAD based on the database and confirmed it by western blot detection of RNH1 in human LUAD tissues. Lentiviral infection was constructed to silence or overexpress RNH1 in NCI-H1395 and NCI-H1437 cells. We assess the role of RNH1 on proliferation in LUAD cells by MTT assay, colony formation assays, and cell cycle detection. Hoechst staining and flow cytometry were used to evaluate the effects of RNH1 on apoptosis of LUAD cells. The function of RNH1 in invasion and migration was investigated by Transwell assay. Dual luciferase assay, ChIP detection, and pull-down assay were conducted to explore the association of E2F1 in the maintenance of RNH1 expression and function. The regulation of E2F1 on the functions of RNH1 in LUAD cells was explored. Mouse experiments were performed to confirm the in-vivo role of RNH1 in LUAD. mRNA sequencing indicated that RNH1 overexpression altered the expression profile of LUAD cells. RESULTS RNH1 expression in LUAD tissues of patients was presented in this work. Importantly, RNH1 knockdown improved the proliferation, migration and invasion abilities of cells and RNH1 overexpression produced the opposite effects. Dual luciferase assay proved that E2F1 bound to the RNH1 promoter (-1064 ∼ -1054, -1514 ∼ -1504) to reduce the transcriptional activity of RNH1. ChIP assay indicated that E2F1 DNA was enriched at the RNH1 promoter (-1148 ∼ -943, -1628 ∼ -1423). Pull-down assays also showed the association between E2F1 and RNH1 promoter (-1148 ∼ -943). E2F1 overexpression contributed to the malignant behavior of LUAD cells, while RNH1 overexpression reversed it. High-throughput sequencing showed that RNH1 overexpression induced multiple genes expression changes, thereby modulating LUAD-related processes. CONCLUSION Our study demonstrates that binding of E2F1 to the RNH1 promoter may lead to inhibition of RNH1 expression and thus promoting the development of LUAD.
Collapse
Affiliation(s)
- Wenyue Zhao
- Department of Thoracic Surgery, The First Hospital of China Medical University, 155# Nanjing North Street, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Yang
- Department of Operating Room, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liming Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, 155# Nanjing North Street, Shenyang, Liaoning, China.
| |
Collapse
|
29
|
Roskoski R. Combination immune checkpoint and targeted protein kinase inhibitors for the treatment of renal cell carcinomas. Pharmacol Res 2024; 203:107181. [PMID: 38614375 DOI: 10.1016/j.phrs.2024.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Kidney cancers comprise about 3% of all new malignancies in the United States. Renal cell carcinomas (RCCs) are the most common type of renal malignancy making up about 85% of kidney cancer cases. Signs and symptoms of renal cell carcinomas can result from local tumor growth, paraneoplastic syndromes, or distant metastases. The classic triad of presentation with flank pain, hematuria, and a palpable abdominal mass occurs in fewer than 10% of patients. Most diagnoses result from incidental imaging findings (ultrasonography or abdominal CT imaging) performed for another reason. Localized disease is treated by partial nephrectomy, total nephrectomy, or ablation (tumor destruction with heat or cold). When the tumors have metastasized, systemic therapy with protein-tyrosine kinase antagonists including sorafenib, sunitinib, pazopanib, and tivozanib that target vascular endothelial, platelet-derived, fibroblast, hepatocyte, and stem cell factor growth factor receptors (VEGFR, PDGFR, FGFR, MET, and Kit) were prescribed after 2005. The monoclonal antibody immune checkpoint inhibitor nivolumab (targeting programed cell death protein 1, PD1) was approved for the treatment of RCCs in 2015. It is usually used now in combination with ipilimumab (targeting CTLA-4) or cabozantinib (a multikinase blocker). Other combination therapies include pembrolizumab (targeting PD1) and axitinib (a VEGFR and PDGFR blocker) or lenvatinib (a multikinase inhibitor). Since the KEYNOTE-426 clinical trial, the use of immune checkpoint inhibitors in combination with protein-tyrosine kinase inhibitors is now the standard of care for most patients with metastatic renal cell carcinomas and monotherapies are used only in those individuals who cannot receive or tolerate immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
30
|
Niu P, Tao Y, Meng Q, Huang Y, Li S, Ding K, Ma D, Ye Z, Fan M. Discovery of novel macrocyclic derivatives as potent and selective cyclin-dependent kinase 2 inhibitors. Bioorg Med Chem 2024; 104:117711. [PMID: 38583237 DOI: 10.1016/j.bmc.2024.117711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Cyclin-dependent kinase 2 (CDK2) is a member of CDK family of kinases (CDKs) that regulate the cell cycle. Its inopportune or over-activation leads to uncontrolled cell cycle progression and drives numerous types of cancers, especially ovarian, uterine, gastric cancer, as well as those associated with amplified CCNE1 gene. However, developing selective lead compound as CDK2 inhibitors remains challenging owing to similarities in the ATP pockets among different CDKs. Herein, we described the optimization of compound 1, a novel macrocyclic inhibitor targeting CDK2/5/7/9, aiming to discover more selective and metabolically stable lead compound as CDK2 inhibitor. Molecular dynamic (MD) simulations were performed for compound 1 and 9 to gain insights into the improved selectivity against CDK5. Further optimization efforts led to compound 22, exhibiting excellent CDK2 inhibitory activity, good selectivity over other CDKs and potent cellular effects. Based on these characterizations, we propose that compound 22 holds great promise as a potential lead candidate for drug development.
Collapse
Affiliation(s)
- Pengpeng Niu
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Yanxin Tao
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Qingyuan Meng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yixing Huang
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310022, China
| | - Shan Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Ke Ding
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Dawei Ma
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Zu Ye
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
31
|
Rii J, Sakamoto S, Mizokami A, Xu M, Fujimoto A, Saito S, Koike H, Tamura T, Arai T, Yamada Y, Goto Y, Sazuka T, Imamura Y, Suzuki K, Kanai Y, Anzai N, Ichikawa T. L-type amino acid transporter 1 inhibitor JPH203 prevents the growth of cabazitaxel-resistant prostate cancer by inhibiting cyclin-dependent kinase activity. Cancer Sci 2024; 115:937-953. [PMID: 38186218 PMCID: PMC10920979 DOI: 10.1111/cas.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
L-type amino acid transporter 1 (LAT1, SLC7A5) is an amino acid transporter expressed in various carcinomas, and it is postulated to play an important role in the proliferation of cancer cells through the uptake of essential amino acids. Cabazitaxel is a widely used anticancer drug for treating castration-resistant prostate cancer (CRPC); however, its effectiveness is lost when cancer cells acquire drug resistance. In this study, we investigated the expression of LAT1 and the effects of a LAT1-specific inhibitor, JPH203, in cabazitaxel-resistant prostate cancer cells. LAT1 was more highly expressed in the cabazitaxel-resistant strains than in the normal strains. Administration of JPH203 inhibited the growth, migration, and invasive ability of cabazitaxel-resistant strains in vitro. Phosphoproteomics using liquid chromatography-mass spectrometry to comprehensively investigate changes in phosphorylation due to JPH203 administration revealed that cell cycle-related pathways were affected by JPH203, and that JPH203 significantly reduced the kinase activity of cyclin-dependent kinases 1 and 2. Moreover, JPH203 inhibited the proliferation of cabazitaxel-resistant cells in vivo. Taken together, the present study results suggest that LAT1 might be a valuable therapeutic target in cabazitaxel-resistant prostate cancer.
Collapse
Grants
- #20K09555 Grants-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan
- #20H03813 Grants-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan
- #20K09572 Grants-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan
- #20K18087 Grants-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Junryo Rii
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Shinichi Sakamoto
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Minhui Xu
- Bio‐System PharmacologyOsaka University Graduate School of MedicineOsakaJapan
| | - Ayumi Fujimoto
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Shinpei Saito
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
- Department of PharmacologyChiba University Graduate School of MedicineChibaJapan
| | - Hidekazu Koike
- Department of UrologyGunma University Graduate School of MedicineMaebashiJapan
| | - Takaaki Tamura
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Takayuki Arai
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Yasutaka Yamada
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Yusuke Goto
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Tomokazu Sazuka
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Yusuke Imamura
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Kazuhiro Suzuki
- Department of UrologyGunma University Graduate School of MedicineMaebashiJapan
| | - Yoshikatsu Kanai
- Bio‐System PharmacologyOsaka University Graduate School of MedicineOsakaJapan
| | - Naohiko Anzai
- Department of PharmacologyChiba University Graduate School of MedicineChibaJapan
| | - Tomohiko Ichikawa
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| |
Collapse
|
32
|
Turcu-Stiolica A, Udristoiu I, Subtirelu MS, Gheorman V, Aldea M, Dumitrescu EA, Volovat SR, Median DM, Lungulescu CV. Digging in real-word electronic database for assessing CDK 4/6 inhibitors adherence in breast cancer patients from Romania. Front Pharmacol 2024; 15:1345482. [PMID: 38464732 PMCID: PMC10920324 DOI: 10.3389/fphar.2024.1345482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: It is imperative for patients to respect the prescribed treatments to achieve the anticipated clinical outcomes, including the outpatients receiving oral anti-cancer drugs such as selective cyclin-dependent kinase 4/6 inhibitors (CDK 4/6i). With the introduction of three CDK 4/6i drugs in the Romanian pharmaceutical market in 2018, our study aimed to evaluate medication adherence and the influencing factors among patients undergoing treatment with palbociclib, ribociclib, or abemaciclib for advanced or metastatic breast cancer. Methods: Medication adherence was assessed using the Proportion of Days Covered (PDC) method, and Spearman correlation analysis was conducted to explore the relationships between adherence, age, gender, and follow-up duration. Results: The study enrolled 330 breast cancer patients, with an average follow-up period of 14.6 ± 12.5 months for palbociclib, 10.6 ± 7.1 months for ribociclib, and 8.6 ± 6.4 months for abemaciclib-treated patients. A small proportion of patients demonstrated non-adherence: 12.8% for palbociclib, 14.6% for ribociclib, and 14.7% for abemaciclib. Among patients receiving palbociclib, there was no significant correlation between adherence, age (rho = 0.07, p = 0.35), or gender (rho = -0.144, p = 0.054). However, a significant correlation was found with the duration of follow-up (rho = -0.304, p < 0.0001). Similar results were observed for patients receiving ribociclib or abemaciclib. Most patients received combination therapy with letrozole (46%) and exemestane (13%) for palbociclib, letrozole (48%) and fulvestrant (19%) for ribociclib, and fulvestrant (39%) and letrozole (27%) for abemaciclib, Discussion: High adherence rates were observed among patients treated with CDK 4/6i drugs, with no significant differences noted among the three drugs in this class. However, the collected patient data was limited, lacking information on adverse reactions that could potentially lead to treatment discontinuation, as determined by the oncologist's decision not to prescribe. Consequently, a comprehensive understanding of all factors contributing to the low adherence levels is hindered.
Collapse
Affiliation(s)
- Adina Turcu-Stiolica
- Pharmacoeconomics Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ion Udristoiu
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Victor Gheorman
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Madalina Aldea
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Simona Ruxandra Volovat
- Department of Medical Oncology, University of Medicine and Pharmacy Grigore T. Popa Iasi, Iasi, Romania
| | - Dragos Mircea Median
- Gynecologic Oncology Department, Filantropia Clinical Hospital Bucharest, Bucharest, Romania
| | | |
Collapse
|
33
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res 2024; 200:107059. [PMID: 38216005 DOI: 10.1016/j.phrs.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 80 FDA-approved therapeutic agents that target about two dozen different protein kinases and seven of these drugs were approved in 2023. Of the approved drugs, thirteen target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), twenty block nonreceptor protein-tyrosine kinases, and 43 inhibit receptor protein-tyrosine kinases. The data indicate that 69 of these drugs are prescribed for the treatment of neoplasms. Six drugs (abrocitinib, baricitinib, deucravacitinib, ritlecitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 80 approved drugs, nearly two dozen are used in the treatment of multiple diseases. The following seven drugs received FDA approval in 2023: capivasertib (HER2-positive breast cancer), fruquintinib (metastatic colorectal cancer), momelotinib (myelofibrosis), pirtobrutinib (mantle cell lymphoma, chronic lymphocytic leukemia, small lymphocytic lymphoma), quizartinib (Flt3-mutant acute myelogenous leukemia), repotrectinib (ROS1-positive lung cancer), and ritlecitinib (alopecia areata). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 80 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, polar surface area, potency, solubility, lipophilic efficiency, and ligand efficiency.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
34
|
Qi J, Wu G, He M, Xu Y, Yang Z, Ding L, Wang Y, Zhang Z. CDK16 as a potential prognostic biomarker correlated with an immunosuppressive tumor microenvironment and benefits in enhancing the effectiveness of immunotherapy in human cancers. Aging (Albany NY) 2024; 16:1879-1896. [PMID: 38261737 PMCID: PMC10866429 DOI: 10.18632/aging.205465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Cyclin-Dependent Kinase 16 (CDK16) plays significant biological roles in various diseases. Nonetheless, its function in different cancer types and its relationship with the Tumor Immune Microenvironment (TIME) are still not well-understood. METHODS We analyzed the expression profile, genetic alterations, clinical features, and prognostic value of CDK16 in pan-cancer using data from The Cancer Genome Atlas, Genotype-Tissue Expression databases, and in vitro experiments. Additionally, the TIMER2 and ImmuCellAI databases were utilized to assess the correlation between CDK16 expression and immune cell infiltration levels. Finally, we examined the correlation between CDK16 and the response to immunotherapy using collected immunotherapy data. RESULTS CDK16 is notably overexpressed in pan-cancer and is a risk factor for poor prognosis in various cancers. Our findings reveal that CDK16 regulates not only cell cycle-related functions to promote cell proliferation but also the autoimmunity-related functions of the innate and adaptive immune systems, along with other immune-related signaling pathways. Moreover, CDK16 overexpression contributes to an immunosuppressive tumor microenvironment, extensively suppressing immune-related features such as the expression of immune-related genes and pathways, as well as the count of immune-infiltrating cells. Our analysis indicated that individuals with low CDK16 expression showed higher response rates to immune checkpoint inhibitors and longer overall survival compared to those with high CDK16 expression. CONCLUSIONS This study establishes CDK16 as a potential biomarker for predicting poor prognosis in a wide range of cancers. Its role in shaping the immunosuppressive tumor microenvironment and influencing the efficacy of immunotherapy highlights the urgent need for developing targeted therapies against CDK16, offering new avenues for cancer treatment and management.
Collapse
Affiliation(s)
- Juntao Qi
- Department of Urology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518000, China
- Department of Health Management, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410000, China
| | - Gujie Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Min He
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - You Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Zheng Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Liang Ding
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Yan Wang
- Department of Urology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518000, China
| | - Zhi Zhang
- Department of Health Management, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410000, China
| |
Collapse
|
35
|
Zaky YA, Rashad MW, Zaater MA, El Kerdawy AM. Discovery of dual rho-associated protein kinase 1 (ROCK1)/apoptosis signal-regulating kinase 1 (ASK1) inhibitors as a novel approach for non-alcoholic steatohepatitis (NASH) treatment. BMC Chem 2024; 18:2. [PMID: 38172941 PMCID: PMC10765837 DOI: 10.1186/s13065-023-01081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
In the current study we suggest a novel approach to curb non-alcoholic steatohepatitis (NASH) progression, and we suggest privileged scaffolds for the design of novel compounds for this aim. NASH is an advanced form of non-alcoholic fatty liver disease that can further progress into fibrosis, cirrhosis, and hepatocellular carcinoma. It is a widely emerging disease affecting 25% of the global population and has no current approved treatments. Protein kinases are key regulators of cellular pathways, of which, Rho-associated protein kinase 1 (ROCK1) and apoptosis signal-regulating kinase 1 (ASK1) play an important role in the progression of NASH and they stand out as promising targets for NASH therapy. Interestingly, their kinase domains are found to be similar in sequence and topology; therefore, dual inhibition of ROCK1 and ASK1 is expected to be amenable and could achieve a more favourable outcome. To reach this goal, a training set of ROCK1 and ASK1 protein structures co-crystalized with type 1 (ATP-competitive) inhibitors was constructed to manually generate receptor-based pharmacophore models representing ROCK1 and ASK1 inhibitors' common pharmacophoric features. The models produced were assessed using a test set of both ROCK1 and ASK1 actives and decoys, and their performance was evaluated using different assessment metrics. The best pharmacophore model obtained, showing a Mathew's correlation coefficient (MCC) of 0.71, was then used to screen the ZINC purchasable database retrieving 6178 hits that were filtered accordingly using several medicinal chemistry and pharmacokinetics filters returning 407 promising compounds. To confirm that these compounds are capable of binding to the target kinases, they were subjected to molecular docking simulations at both protein structures. The results were then assessed individually and filtered, setting the spotlight on various privileged scaffolds that could be exploited as the nucleus for designing novel ROCK1/ASK1 dual inhibitors.
Collapse
Affiliation(s)
- Yara A Zaky
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt.
| | - Mai W Rashad
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Marwa A Zaater
- Master Postgraduate Program, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, College of Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, UK
| |
Collapse
|
36
|
Basnet R, Amissah OB, Basnet BB, Huang R, Sun Y, de Dieu Habimana J, Li Z. Potential Target of CDK6 Signaling Pathway for Cancer Treatment. Curr Drug Targets 2024; 25:724-739. [PMID: 39039674 DOI: 10.2174/0113894501313781240627062206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Cancer involves uncontrolled cell growth due to genetic mutations. Tumors can form when CDK6, a gene essential for controlling cell growth, isn't working correctly. Researchers are investigating drugs that inhibit CDK6; some of them appear promising. Nevertheless, CDK6 is advantageous and harmful to cancer because it controls other cellular processes. By inhibiting CDK6 and CDK4, CDK4/6 inhibitors offer a novel therapeutic strategy that stops cell proliferation. The study investigates the function of CDK6 in cancer, the difficulties in targeting CDK6, and possible remedies. OBJECTIVE Scientists have developed drugs designed to block CDK6 and prevent it from altering other proteins. These drugs, also known as CDK6 inhibitors, help treat cancer. Finding the best drugs for CDK6 is still tricky, though. The drugs' selectivity, potency, and cost are some difficulties. These factors depend on CDK6's structure and interactions with other proteins. The structure of CDK6 and how it influences its function and regulation are explained in this review. It also describes CDK6's function in cancer and its interaction with other molecules and proteins, which is crucial for cell division. This review also discusses the present and upcoming therapies that target CDK6, as well as how CDK6 interacts with drugs that block it. CONCLUSION This review presents the structure, current research, and overview of CDK6. It also reviews the role of CDK6 in cancer, function, and regulation. Additionally, it explores its role in cancer signaling networks and its interaction with CDK6 inhibitors. Lastly, it discusses the current status and prospects of therapies targeting CDK6.
Collapse
Affiliation(s)
- Rajesh Basnet
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
37
|
Roskoski R. Cost in the United States of FDA-approved small molecule protein kinase inhibitors used in the treatment of neoplastic and non-neoplastic diseases. Pharmacol Res 2024; 199:107036. [PMID: 38096958 DOI: 10.1016/j.phrs.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Because genetic alterations including mutations, overexpression, translocations, and dysregulation of protein kinases are involved in the pathogenesis of many illnesses, this enzyme family is the target of many drug discovery programs worldwide. The FDA has approved 80 small molecule protein kinase inhibitors with 77 drugs orally bioavailable. The data indicate that 69 of these medicinals are approved for the management of neoplasms including solid tumors such as breast and lung cancer as well as non-solid tumors such as leukemia. Moreover, the remaining 11 drugs target non-neoplastic diseases including psoriasis, rheumatoid arthritis, and ulcerative colitis. The cost of drugs was obtained from www.pharmacychecker.com using the FDA label to determine the dosage and number of tablets required per day. This methodology excludes any private or governmental insurance coverage, which would cover the entire cost or more likely a fraction of the stated price. The average monthly cost for the treatment of neoplastic diseases was $17,900 with a price of $44,000 for futibatinib (used to treat cholangiocarcinomas with FGFR2 fusions) and minimum of $5100 for binimetinib (melanoma). The average monthly cost for the treatment of non-neoplastic diseases was $6800 with a maximum of $17,000 for belumosudil (graft vs. host disease) and a minimum of $200 for netarsudil eye drops (glaucoma). There is a negative correlation of the cost of the drugs and the incidence of the targeted disease. Many of these agents are or were designated as orphan drugs meaning that there are fewer than 200,000 potential patients in the United States.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
38
|
Sun J, Liang S, Liu X, Zhang S, Li M, Zhang Q, Chen J. Insights into the selectivity of a brain-penetrant CDK4/6 vs CDK1/2 inhibitor for glioblastoma used in multiple replica molecular dynamics simulations. J Biomol Struct Dyn 2023:1-20. [PMID: 38112295 DOI: 10.1080/07391102.2023.2294175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Cyclin dependent kinases (CDKs) play an important role in cell cycle regulation and their dysfunction is associated with many cancers. That is why CDKs have been attractive targets for the treatment of cancer. Glioblastoma is a cancer caused by the aberrant expression of CDK4/6, so exploring the mechanism of the selection of CDK4/6 toward inhibitors relative to the other family members CDK1/2 is essential. In this work, multiple replica molecular dynamics (MRMD) simulations, principal component analysis (PCA), free energy landscapes (FELs), molecular mechanics Poisson-Boltzmann/Generalized Born surface area (MM-PB/GBSA) and other methods were integrated to decipher the selectively binding mechanism of the inhibitor N1J to CDK4/6 and CDK1/2. Molecular electrostatic potential (MESP) analysis provides an explanation for the N1J selectivity. Residue-based free energy decomposition reveals that most of the hot residues are located at the same location of CDKs proteins, but the different types of residues in different proteins cause changes in binding energy, which is considered as a potential developmental direction to improve the selectivity of inhibitors to CDK4/6. These results provide insights into the source of inhibitor and CDK4/6 selectivity for the future development of more selective inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiahao Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shanshan Liang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Meng Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
39
|
Kuang Z, Guo K, Cao Y, Jiang M, Wang C, Wu Q, Hu G, Ao M, Huang M, Qin J, Zhao T, Lu S, Sun C, Li M, Wu T, Liu W, Fang M. The novel CDK9 inhibitor, XPW1, alone and in combination with BRD4 inhibitor JQ1, for the treatment of clear cell renal cell carcinoma. Br J Cancer 2023; 129:1915-1929. [PMID: 37884683 PMCID: PMC10703862 DOI: 10.1038/s41416-023-02464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a highly lethal malignancy with few therapeutic options. Cyclin‑dependent kinase 9 (CDK9), a potential therapeutic target of many cancers, has been recently observed to be upregulated in ccRCC patients. Therefore, we aimed to investigate the therapeutic potential of CDK9 in ccRCC and develop a novel CDK9 inhibitor with low toxicity for ccRCC treatment. METHODS The expression of CDK9 in ccRCC was checked using the online database and tissue microarray analysis. shRNA-mediated CDK9 knockdown and CDK inhibitor were applied to evaluate the effect of CDK9 on ccRCC. Medicinal chemistry methods were used to develop a new CDK9 inhibitor with drugability. RNA-seq and ChIP-seq experiments were conducted to explore the mechanism of action. MTS, western blotting, and colony formation assays were performed to evaluate the anti-ccRCC effects of CDK9 knockdown and inhibition in vitro. The in vivo anti-tumour efficacy was evaluated in a xenograft model. RESULTS CDK9 is overexpressed and associated with poor survival in ccRCC. Knockdown or inhibition of CDK9 significantly suppressed ccRCC cells. XPW1 was identified as a new potent and selective CDK9 inhibitor with excellent anti-ccRCC activity and low toxicity. In mechanism, XPW1 transcriptionally inhibited DNA repair programmes in ccRCC cells, resulting in an excellent anti-tumour effect. CDK9 and BRD4 were two highly correlated transcriptional regulators in ccRCC patients, and the BRD4 inhibitor JQ1 enhanced XPW1's anti-ccRCC effects in vitro and in vivo. CONCLUSIONS This work provides valuable insights into the therapeutic potential of CDK9 in ccRCC. The CDK9 inhibitor XPW1 would be a novel therapeutic agent for targeting ccRCC, alone or in rational combinations.
Collapse
Affiliation(s)
- Zhijian Kuang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
- College of Arts, Sichuan University, 610207, Chengdu, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Mengxue Jiang
- School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Chaojie Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
- Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical Colloge), 519 East Beijing Rd, 330029, Nanchang, Jiangxi, China
| | - Qiaoqiong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Guosheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Mingfeng Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Jingbo Qin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Taige Zhao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Sheng Lu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Cuiling Sun
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Tong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China.
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
40
|
Xia Y, Xiang L, Yao M, Ai Z, Yang W, Guo J, Fan S, Liu N, Yang X. Proteomics, Transcriptomics, and Phosphoproteomics Reveal the Mechanism of Talaroconvolutin-A Suppressing Bladder Cancer via Blocking Cell Cycle and Triggering Ferroptosis. Mol Cell Proteomics 2023; 22:100672. [PMID: 37866481 PMCID: PMC10696259 DOI: 10.1016/j.mcpro.2023.100672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Talaroconvolutin-A (TalaA) is a compound from the endophytic fungus T. convolutispora of the Chinese herbal medicine Panax notoginseng. Whether TalaA exerts anticancer activity in bladder cancer remains unknown. Using CCK8 assay, EdU staining, crystal violet staining, flow cytometry, living/dead cell staining, and Western blotting, we studied the anticancer activity of TalaA in vitro. Moreover, we performed xenograft tumor implantation. The antitumor effects were evaluated through H&E and immunohistochemistry staining. Proteomics was conducted to detect changes in the protein profile; transcriptomics was performed to detect changes in mRNA abundance; phosphoproteomics was used to detect changes in protein phosphorylation. TalaA inhibited tumor cell proliferation, DNA replication, and colony formation in a dose-dependent manner in bladder cancer cells. The IC50 values of TalaA on SW780 and UM-UC-3 cells were 5.7 and 8.2 μM, respectively. TalaA (6.0 mg/kg) significantly repressed the growth of xenografted tumors and did not affect the body weight nor cause obvious hepatorenal toxicity. TalaA arrested the cell cycle by downregulating cyclinA2, cyclinB1, and AURKB and upregulating p21/CIP. TalaA also elevated intracellular reactive oxygen species and upregulated transferrin and heme oxygenase 1 to induce ferroptosis. Moreover, TalaA was able to bind to MAPKs (MAPK1, MAPK8, and MAPK14) to inhibit the phosphorylation of ∗SP∗ motif of transcription regulators. This study revealed that TalaA inhibited bladder cancer by arresting cell cycle to suppress proliferation and triggering ferroptosis to cause cell death. Conclusively, TalaA would be a potential candidate for treating bladder cancer by targeting MAPKs, suppressing the cell cycle, and inducing ferroptosis.
Collapse
Affiliation(s)
- Yong Xia
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, China.
| | - Longquan Xiang
- Department of Pathology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Ming Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhiying Ai
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, China
| | - Wei Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Jianhua Guo
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, China
| | - Shuhao Fan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, China
| | - Ning Liu
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
41
|
Zhang R, Wang J, Du Y, Yu Z, Wang Y, Jiang Y, Wu Y, Le T, Li Z, Zhang G, Lv L, Ma H. CDK5 destabilizes PD-L1 via chaperon-mediated autophagy to control cancer immune surveillance in hepatocellular carcinoma. J Immunother Cancer 2023; 11:e007529. [PMID: 38007240 PMCID: PMC10679996 DOI: 10.1136/jitc-2023-007529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND In the past few years, immunotherapies of hepatocellular carcinoma (HCC) targeting programmed cell death protein 1 (PD-1) and its ligand programmed cell death ligand 1 (PD-L1), have achieved durable clinical benefits. However, only a fraction of HCC patients showed objective clinical response to PD-1/PD-L1 blockade alone. Despite the impact on post-translational modifications of PD-L1 being substantial, its significance in resistance to HCC immunotherapy remains poorly defined. METHODS Cyclin-dependent kinase 5 (CDK5) expression was knocked down in HCC cells, CDK5 and PD-L1 protein levels were examined by Western blot. Coimmunoprecipitation was conducted to evaluate the interaction between proteins. Preclinical HCC mice model was constructed to evaluate the effect of CDK5 inhibitor alone or in combination with PD-1 antibody. Clinical HCC samples were used to elucidate the clinical relevance of CDK5, PD-L1, and PD-L1 T290 phosphorylation in HCC. RESULTS We find that CDK5 deficiency upregulates PD-L1 protein expression in HCC cells and decipher a novel molecular mechanism under which PD-L1 is downregulated by CDK5, that is, CDK5 mediated PD-L1 phosphorylation at T290 promotes its binding with chaperon protein heat-shock cognate protein 70 (HSC70) and degradation through chaperon-mediated autophagy. Notably, treatment of CDK5 inhibitor, PNU112455A, effectively upregulates the tumorous PD-L1 level, promotes the response to anti-PD-1 immunotherapy,and prolongs the survival time of mice bearing HCC tumors. What is more, the T290 phosphorylation status of PD-L1 correlates with the prognosis of HCC. CONCLUSIONS Targeting CDK5 can synergize with PD-1 blockade to suppress HCC growth, which may have clinical benefits. Our study reveals a unique regulation of the degradation of PD-L1 in HCC, and provides an attractive therapeutic target, a potential drug, and a new prognostic marker for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Ruonan Zhang
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Yu Du
- Nourse Centre for Pet Nutrition, Wuhu, Anhui, China
| | - Ze Yu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Yihan Wang
- School of Management, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yixiao Jiang
- Department of General Surgery, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Yixin Wu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Ting Le
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Ziqi Li
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Guoqiang Zhang
- Department of General Surgery, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Lei Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haijie Ma
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
42
|
Ye H, Shi W, Yang J, Wang L, Jiang X, Zhao H, Qin L, Qin J, Li L, Cai W, Guan J, Yang H, Zhou H, Yu Z, Sun H, Jiao Z. PICH Activates Cyclin A1 Transcription to Drive S-Phase Progression and Chemoresistance in Gastric Cancer. Cancer Res 2023; 83:3767-3782. [PMID: 37646571 DOI: 10.1158/0008-5472.can-23-1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The chemotherapeutic agent 5-fluorouracil (5-FU) remains the backbone of postoperative adjuvant treatment for gastric cancer. However, fewer than half of patients with gastric cancer benefit from 5-FU-based chemotherapies owing to chemoresistance and limited clinical biomarkers. Here, we identified the SNF2 protein Polo-like kinase 1-interacting checkpoint helicase (PICH) as a predictor of 5-FU chemosensitivity and characterized a transcriptional function of PICH distinct from its role in chromosome separation. PICH formed a transcriptional complex with RNA polymerase II (Pol II) and ATF4 at the CCNA1 promoter in an ATPase-dependent manner. Binding of the PICH complex promoted cyclin A1 transcription and accelerated S-phase progression. Overexpressed PICH impaired 5-FU chemosensitivity in human organoids and patient-derived xenografts. Furthermore, elevated PICH expression was negatively correlated with survival in postoperative patients receiving 5-FU chemotherapy. Together, these findings reveal an ATPase-dependent transcriptional function of PICH that promotes cyclin A1 transcription to drive 5-FU chemoresistance, providing a potential predictive biomarker of 5-FU chemosensitivity for postoperative patients with gastric cancer and prompting further investigation into the transcriptional activity of PICH. SIGNIFICANCE PICH binds Pol II and ATF4 in an ATPase-dependent manner to form a transcriptional complex that promotes cyclin A1 expression, accelerates S-phase progression, and impairs 5-FU chemosensitivity in gastric cancer.
Collapse
Affiliation(s)
- Huili Ye
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Long Wang
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xiangyan Jiang
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Huiming Zhao
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Long Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Junjie Qin
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Lianshun Li
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Weiwen Cai
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Junhong Guan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Hanteng Yang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Huinian Zhou
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Zeyuan Yu
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Zuoyi Jiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| |
Collapse
|
43
|
Beeraka NM, Zhang J, Mandal S, Vikram P. R. H, Liu J, B. M. N, Zhao D, Vishwanath P, B. M. G, Fan R. Screening fructosamine-3-kinase (FN3K) inhibitors, a deglycating enzyme of oncogenic Nrf2: Human FN3K homology modelling, docking and molecular dynamics simulations. PLoS One 2023; 18:e0283705. [PMID: 37910519 PMCID: PMC10619859 DOI: 10.1371/journal.pone.0283705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/14/2023] [Indexed: 11/03/2023] Open
Abstract
Fructosamine-3-kinase (FN3K) is involved in the deglycation of Nrf2, a significant regulator of oxidative stress in cancer cells. However, the intricate functional aspects of FN3K and Nrf2 in breast cancers have not been explored vividly. The objectives of this study are to design the human FN3K protein using homology modeling followed by the screening of several anticancer molecules and examining their efficacy to modulate FN3K activity, Nrf2-mediated antioxidant signalling. Methods pertinent to homology modeling, virtual screening, molecular docking, molecular dynamics simulations, assessment of ADME properties, cytotoxicity assays for anticancer molecules of natural/synthetic origin in breast cancer cells (BT-474, T-47D), and Western blotting were used in this study. The screened anticancer molecules including kinase inhibitors of natural and synthetic origin interacted with the 3-dimensional structure of the catalytic domain in human FN3K protein designed through homology modeling by significant CDOCKER interaction energies. Subsequently, gefitinib, sorafenib, neratinib, tamoxifen citrate, and cyclosporine A enhanced the expression of FN3K in BT-474 cell lines with simultaneous alteration in Nrf2-driven antioxidant signalling. Oxaliplatin significantly downregulated FN3K expression and modulated Nrf2-driven antioxidant signalling when compared to cisplatin and other anticancer drugs. Hence, the study concluded the potential implications of existing anticancer drugs to modulate FN3K activity in breast cancers.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Subhankar Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Hemanth Vikram P. R.
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Namitha B. M.
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Prashanth Vishwanath
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Gurupadayya B. M.
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol 2023; 14:1282203. [PMID: 37964867 PMCID: PMC10642231 DOI: 10.3389/fphar.2023.1282203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Tanshinone is a lipophilic compound that is present in traditional Chinese medicine and is derived from the roots of Salvia miltiorrhiza (Danshen). It has been proven to be highly effective in combating tumors in various parts of the body, including liver carcinoma, gastric cancer, ovarian cancer, cervix carcinoma, breast cancer, colon cancer, and prostate cancer. Tanshinone can efficiently prevent the reproduction of cancerous cells, induce cell death, and inhibit the spread of cancerous cells, which are mainly involved in the PI3K/Akt signaling pathway, NF-κB pathway, Bcl-2 family, Caspase cascades, MicroRNA, MAPK signaling pathway, p21, STAT3 pathway, miR30b-P53-PTPN11/SHP2 axis, β-catenin, and Skp2. However, the properties and mechanisms of tanshinone's anti-tumor effects remain unclear currently. Thus, this study aims to review the research progress on tumor prevention and mechanisms of tanshinone to gain new perspectives for further development and clinical application of tanshinone.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
45
|
Noblejas-López MDM, Tébar-García D, López-Rosa R, Alcaraz-Sanabria A, Cristóbal-Cueto P, Pinedo-Serrano A, Rivas-García L, Galán-Moya EM. TACkling Cancer by Targeting Selective Protein Degradation. Pharmaceutics 2023; 15:2442. [PMID: 37896202 PMCID: PMC10610449 DOI: 10.3390/pharmaceutics15102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Targeted protein degradation has emerged as an alternative therapy against cancer, offering several advantages over traditional inhibitors. The new degrader drugs provide different therapeutic strategies: they could cross the phospholipid bilayer membrane by the addition of specific moieties to extracellular proteins. On the other hand, they could efficiently improve the degradation process by the generation of a ternary complex structure of an E3 ligase. Herein, we review the current trends in the use of TAC-based technologies (TACnologies), such as PROteolysis TArgeting Chimeras (PROTAC), PHOtochemically TArgeting Chimeras (PHOTAC), CLIck-formed Proteolysis TArgeting Chimeras (CLIPTAC), AUtophagy TArgeting Chimeras (AUTAC), AuTophagosome TEthering Compounds (ATTEC), LYsosome-TArgeting Chimeras (LYTAC), and DeUBiquitinase TArgeting Chimeras (DUBTAC), in experimental development and their progress towards clinical applications.
Collapse
Affiliation(s)
- María del Mar Noblejas-López
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
| | - David Tébar-García
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
| | - Raquel López-Rosa
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
| | - Ana Alcaraz-Sanabria
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
| | - Pablo Cristóbal-Cueto
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
| | - Alejandro Pinedo-Serrano
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
| | - Lorenzo Rivas-García
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
| | - Eva M. Galán-Moya
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
- Facultad de Enfermería, Campus de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| |
Collapse
|
46
|
Zhu H, Zhou R, Cao D, Tang J, Li M. A pharmacophore-guided deep learning approach for bioactive molecular generation. Nat Commun 2023; 14:6234. [PMID: 37803000 PMCID: PMC10558534 DOI: 10.1038/s41467-023-41454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
The rational design of novel molecules with the desired bioactivity is a critical but challenging task in drug discovery, especially when treating a novel target family or understudied targets. We propose a Pharmacophore-Guided deep learning approach for bioactive Molecule Generation (PGMG). Through the guidance of pharmacophore, PGMG provides a flexible strategy for generating bioactive molecules. PGMG uses a graph neural network to encode spatially distributed chemical features and a transformer decoder to generate molecules. A latent variable is introduced to solve the many-to-many mapping between pharmacophores and molecules to improve the diversity of the generated molecules. Compared to existing methods, PGMG generates molecules with strong docking affinities and high scores of validity, uniqueness, and novelty. In the case studies, we use PGMG in a ligand-based and structure-based drug de novo design. Overall, the flexibility and effectiveness make PGMG a useful tool to accelerate the drug discovery process.
Collapse
Affiliation(s)
- Huimin Zhu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Renyi Zhou
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
47
|
Li Y, Zhou X, Lyu Z. Analysis of two-gene signatures and related drugs in small-cell lung cancer by bioinformatics. Open Med (Wars) 2023; 18:20230806. [PMID: 37808164 PMCID: PMC10560035 DOI: 10.1515/med-2023-0806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Small-cell lung cancer (SCLC) has a poor prognosis and can be diagnosed with systemic metastases. Nevertheless, the molecular mechanisms underlying the development of SCLC are unclear, requiring further investigation. The current research aims to identify relevant biomarkers and available drugs to treat SCLC. The bioinformatics analysis comprised three Gene Expression Omnibus datasets (including GSE2149507, GSE6044, and GSE30219). Using the limma R package, we discovered differentially expressed genes (DEGs) in the current work. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were made by adopting the DAVID website. The DEG protein-protein interaction network was built based on the Search Tool for the Retrieval of Interacting Genes/Proteins website and visualized using the CytoHubba plugin in Cytoscape, aiming to screen the top ten hub genes. Quantitative real-time polymerase chain reaction was adopted for verifying the level of the top ten hub genes. Finally, the potential drugs were screened and identified using the QuartataWeb database. Totally 195 upregulated and 167 downregulated DEGs were determined. The ten hub genes were NCAPG, BUB1B, TOP2A, CCNA2, NUSAP1, UBE2C, AURKB, RRM2, CDK1, and KIF11. Ten FDA-approved drugs were screened. Finally, two genes and related drugs screened could be the prospective drug targets for SCLC treatment.
Collapse
Affiliation(s)
- Yi Li
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Xiwen Zhou
- Medical College, Shantou University, Shantou, China
| | - Zhi Lyu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Senior Cadres Ward, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
48
|
Sircar A, Singh S, Xu-Monette ZY, Coyle KM, Hilton LK, Chavdoula E, Ranganathan P, Jain N, Hanel W, Tsichlis P, Alinari L, Peterson BR, Tao J, Muthusamy N, Baiocchi R, Epperla N, Young KH, Morin R, Sehgal L. Exploiting the fibroblast growth factor receptor-1 vulnerability to therapeutically restrict the MYC-EZH2-CDKN1C axis-driven proliferation in Mantle cell lymphoma. Leukemia 2023; 37:2094-2106. [PMID: 37598282 PMCID: PMC10539170 DOI: 10.1038/s41375-023-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
Mantle cell lymphoma (MCL) is a lethal hematological malignancy with a median survival of 4 years. Its lethality is mainly attributed to a limited understanding of clinical tumor progression and resistance to current therapeutic regimes. Intrinsic, prolonged drug treatment and tumor-microenvironment (TME) facilitated factors impart pro-tumorigenic and drug-insensitivity properties to MCL cells. Hence, elucidating neoteric pharmacotherapeutic molecular targets involved in MCL progression utilizing a global "unified" analysis for improved disease prevention is an earnest need. Using integrated transcriptomic analyses in MCL patients, we identified a Fibroblast Growth Factor Receptor-1 (FGFR1), and analyses of MCL patient samples showed that high FGFR1 expression was associated with shorter overall survival in MCL patient cohorts. Functional studies using pharmacological intervention and loss of function identify a novel MYC-EZH2-CDKN1C axis-driven proliferation in MCL. Further, pharmacological targeting with erdafitinib, a selective small molecule targeting FGFRs, induced cell-cycle arrest and cell death in-vitro, inhibited tumor progression, and improved overall survival in-vivo. We performed extensive pre-clinical assessments in multiple in-vivo model systems to confirm the therapeutic potential of erdafitinib in MCL and demonstrated FGFR1 as a viable therapeutic target in MCL.
Collapse
Affiliation(s)
- Anuvrat Sircar
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Satishkumar Singh
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Krysta Mila Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Evangelia Chavdoula
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Parvathi Ranganathan
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Walter Hanel
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip Tsichlis
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Lapo Alinari
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Blake R Peterson
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jianguo Tao
- Division of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Natarajan Muthusamy
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Robert Baiocchi
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Narendranath Epperla
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Durham, NC, USA
| | - Ryan Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, BC, Canada
| | - Lalit Sehgal
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
49
|
Yan Z, Du Y, Zhang H, Zheng Y, Lv H, Dong N, He F. Research progress of anticancer drugs targeting CDK12. RSC Med Chem 2023; 14:1629-1644. [PMID: 37731700 PMCID: PMC10507796 DOI: 10.1039/d3md00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) is a transcription-associated CDK that plays key roles in transcription, translation, mRNA splicing, the cell cycle, and DNA damage repair. Research has identified that high expression of CDK12 in organs such as the breast, stomach, and uterus can lead to HER2-positive breast cancer, gastric cancer and cervical cancer. Inhibiting high expression of CDK12 suppresses tumor growth and proliferation, suggesting that it is both a biomarker for cancer and a potential target for cancer therapy. CDK12 inhibitors can competitively bind the CDK12 hydrophobic pocket with ATP to avoid CDK12 phosphorylation, blocking subsequent signaling pathways. The development of CDK12 inhibitors is challenging due to the high homology of CDK12 with other CDKs. This review summarizes the research progress of CDK12 inhibitors, their mechanism of action and the structure-activity relationship, providing new insights into the design of CDK12 selective inhibitors.
Collapse
Affiliation(s)
- Zhijia Yan
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yongli Du
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Haibin Zhang
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yong Zheng
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Huiting Lv
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Ning Dong
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Fang He
- School of Water Conservancy and Environment, University of Jinan 336 Nanxinzhuang West Road Jinan 250022 China
| |
Collapse
|
50
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|