1
|
Chen L, Chen WD, Xu YX, Ren YY, Zheng C, Lin YY, Zhou JL. Strategies for enhancing non-small cell lung cancer treatment: Integrating Chinese herbal medicines with epidermal growth factor receptor-tyrosine kinase inhibitors therapy. Eur J Pharmacol 2024; 980:176871. [PMID: 39117263 DOI: 10.1016/j.ejphar.2024.176871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Non-small cell lung cancer (NSCLC) poses a global health threat, and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib, afatinib, and osimertinib have achieved significant success in clinical treatment. However, the emergence of resistance limits the long-term efficacy of these treatments, necessitating urgent exploration of novel EGFR-TKIs. This review provides an in-depth summary and exploration of the resistance mechanisms associated with EGFR-TKIs, with a specific focus on representative drugs like gefitinib, afatinib, and osimertinib. Additionally, the review introduces a therapeutic strategy involving the combination of Chinese herbal medicines (CHMs) and chemotherapy drugs, highlighting the potential role of CHMs in overcoming NSCLC resistance. Through systematic analysis, we elucidate the primary resistance mechanisms of EGFR-TKIs in NSCLC treatment, emphasizing CHMs as potential treatment medicines and providing a fresh perspective for the development of next-generation EGFR-TKIs. This comprehensive review aims to guide the application of CHMs in combination therapy for NSCLC management, fostering the development of more effective and comprehensive treatment modalities to ultimately enhance patient outcomes.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wen-Da Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Zheng
- Zhejiang Institute for Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou, 310052, China.
| | - Yuan-Yuan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
2
|
Duan Q, Li R, Wang M, Cui Z, Zhu X, Chen F, Han F, Ma J. Exploring the anti-NSCLC mechanism of phillyrin targeting inhibition of the HSP90-AKT pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03481-1. [PMID: 39356318 DOI: 10.1007/s00210-024-03481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024]
Abstract
Phillyrin (PHN), derived from the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a kind of Chinese herbal medicine with the effect of clearing heat, and has been used in China for thousands of years in treating various tumors. However, the mechanism of its main components on non-small cell lung cancer (NSCLC) remains unclear. PHN is a distinct component extracted from Forsythia suspensa with promising anti-cancer activity against various tumor types. This study sought to elucidate the promising effects of PHN on NSCLC. Based on network pharmacology results, we identified potential PHN targets and pathways for NSCLC treatment. CCK-8 assay, wound healing assay, apoptosis assay, western blot, and in vivo experiments verified the inhibitory effect of PHN on NSCLC. Network pharmacology identified 160 potential PHN targets, 955 NSCLC-related targets, and 54 common targets, along with 132 pathways and 2 core genes. Biological experiments demonstrated that PHN significantly inhibited the growth and migration of A549 and LLC cells while promoting their apoptosis. Western blot analysis revealed down-regulation of AKT, HSP90AA1, and CDC37 expression, suggesting that PHN inhibits A549 and LLC cell proliferation by down-regulating the HSP90-AKT pathway. In vivo experiments confirmed that PHN significantly inhibited NSCLC growth with low toxicity. This study, using network pharmacology and biological experiments, verified the effectiveness of PHN against NSCLC through the HSP90-AKT pathway. These findings provide a foundation for further research and analysis.
Collapse
Affiliation(s)
- Qiong Duan
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Ruochen Li
- Sichuan Integrative Medicine Hospital, Chengdu, 610000, China
| | - Mingxiao Wang
- Sichuan Integrative Medicine Hospital, Chengdu, 610000, China
| | - Zhenting Cui
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Xia Zhu
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Fanghong Chen
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Feng Han
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China.
| | - Jianxin Ma
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China.
| |
Collapse
|
3
|
Zhang W, Fu J, Du J, Liu X, Cheng J, Wei C, Xu Y, Fu J. A disintegrin and metalloproteinase domain 10 expression inhibition by the small molecules adenosine, cordycepin and N6, N6-dimethyladenosine and immune regulation in malignant cancers. Front Immunol 2024; 15:1434027. [PMID: 39211038 PMCID: PMC11357967 DOI: 10.3389/fimmu.2024.1434027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
A disintegrin and metalloproteinase domain 10 (ADAM10), a member of the ADAM family, is a cellular surface protein with potential adhesion and protease/convertase functions. The expression regulations in cancers by natural products [adenosine (AD) and its analogs, cordycepin (CD), and N6, N6-dimethyladenosine (m6 2A)], and immune regulation are unclear. As results, AD, CD, and m6 2A inhibited ADAM10 expression in various cancer cell lines, indicating their roles in anti-cancer agents. Further molecular docking with ADAM10 protein found the binding energies of all docking groups were <-7 kcal/mol for all small-molecules (AD, CD and m6 2A), suggesting very good binding activities. In addition, analysis of the immunomodulatory roles in cancer showed that ADAM10 was negatively correlated with immunomodulatory genes such as CCL27, CCL14, CCL25, CXCR5, HLA-B, HLA-DOB1, LAG3, TNFRSF18, and TNFRSF4 in bladder urothelial carcinoma, thymoma, breast invasive carcinoma, TGCT, kidney renal papillary cell carcinoma, SKCM and thyroid carcinoma, indicating the immune-promoting roles for ADAM10. LAG3 mRNA levels were reduced by both AD and CD in vivo. ADAM10 is also negatively associated with tumor immunosuppression and interrelated with the immune infiltration of tumors. Overall, the present study determined ADAM10 expression by AD, CD and m6 2A, and in AD or CD/ADAM10/LAG3 signaling in cancers, and suggested a potential method for immunotherapy of cancers by targeting ADAM10 using the small molecules AD, CD and m6 2A.
Collapse
Affiliation(s)
- Wenqian Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Xu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
4
|
Fu J, Li D, Zhang L, Maghsoudloo M, Cheng J, Fu J. Comprehensive analysis, diagnosis, prognosis, and cordycepin (CD) regulations for GSDME expressions in pan-cancers. Cancer Cell Int 2024; 24:279. [PMID: 39118110 PMCID: PMC11312966 DOI: 10.1186/s12935-024-03467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The Gasdermin E gene (GSDME) plays roles in deafness and cancers. However, the roles and mechanisms in cancers are complex, and the same gene exhibits different mechanisms and actions in different types of cancers. Online databases, such as GEPIA2, cBioPortal, and DNMIVD, were used to comprehensively analyze GSDME profiles, DNA methylations, mutations, diagnosis, and prognosis in patients with tumor tissues and matched healthy tissues. Western blotting and RT-PCR were used to monitor the regulation of GSDME by Cordycepin (CD) in cancer cell lines. We revealed that GSDME expression is significantly upregulated in eight cancers (ACC, DLBC, GBM, HNSC, LGG, PAAD, SKCM, and THYM) and significantly downregulated in seven cancers (COAD, KICH, LAML, OV, READ, UCES, and UCS). The overall survival was longer only in ACC, but shorter in four cancers, including COAD, KIRC, LIHC, and STAD, when GSDME was highly expressed in cancers compared with the corresponding normal tissues. Moreover, the high expression of GSDME was negatively correlated with the poor prognosis of ACC, while the low expression of GSDME was negatively correlated with the poor prognosis of COAD, suggesting that GSDME might serve as a good prognostic factor in these two cancer types. Accordingly, results indicated that the DNA methylations of those 7 CpG sites constitute a potentially effective signature to distinguish different tumors from adjacent healthy tissues. Gene mutations for GSDME were frequently observed in a variety of tumors, with UCES having the highest frequency. Moreover, CD treatment inhibited GSDME expression in different cancer cell lines, while overexpression of GSDME promoted cell migration and invasion. Thus, we have systematically and successfully clarified the GSDME expression profiles, diagnostic values, and prognostic values in pan-cancers. Targeting GSDME with CD implies therapeutic significance and a mechanism for antitumor roles in some types of cancers via increasing the sensitivity of chemotherapy. Altogether, our study may provide a strategy and biomarker for clinical diagnosis, prognostics, and treatment of cancers by targeting GSDME.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China
- Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu Province, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China.
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China.
| |
Collapse
|
5
|
Zhang J, Yang Z, Zhao Z, Zhang N. Structural and pharmacological insights into cordycepin for neoplasms and metabolic disorders. Front Pharmacol 2024; 15:1367820. [PMID: 38953102 PMCID: PMC11215060 DOI: 10.3389/fphar.2024.1367820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Cytotoxic adenosine analogues were among the earliest chemotherapeutic agents utilised in cancer treatment. Cordycepin, a natural derivative of adenosine discovered in the fungus Ophiocordyceps sinensis, directly inhibits tumours not only by impeding biosynthesis, inducing apoptosis or autophagy, regulating the cell cycle, and curtailing tumour invasion and metastasis but also modulates the immune response within the tumour microenvironment. Furthermore, extensive research highlights cordycepin's significant therapeutic potential in alleviating hyperlipidaemia and regulating glucose metabolism. This review comprehensively analyses the structure-activity relationship of cordycepin and its analogues, outlines its pharmacokinetic properties, and strategies to enhance its bioavailability. Delving into the molecular biology, it explores the pharmacological mechanisms of cordycepin in tumour suppression and metabolic disorder treatment, thereby underscoring its immense potential in drug development within these domains and laying the groundwork for innovative treatment strategies.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ziling Yang
- Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhuo Zhao
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
6
|
Wang C, Wang J, Qi Y. Adjuvant treatment with Cordyceps sinensis for lung cancer: A systematic review and meta-analysis of randomized controlled trials. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118044. [PMID: 38484953 DOI: 10.1016/j.jep.2024.118044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps sinensis (CS) is a fungus parasitic on lepidopteran larvae which is often used to treat lung diseases and regulate immune function. AIM OF THE STUDY This review aimed to evaluate the efficacy of CS in the adjuvant treatment of lung cancer. MATERIALS AND METHODS As of June 2022, the electronic database search was conducted in PubMed, EMBASE, Cochrane Library, China Biomedical Literature Database (CBM), China National Knowledge Infrastructure (CNKI), Wanfang Database and China Science Journal Database (VIP database). Randomized clinical trials (RCTs) that evaluated the efficacy of CS as an adjuvant treatment for lung cancer were included. After the quality evaluation, meta-analysis was performed with Stata 16.0 software. RESULTS A total of 12 RCTs with 928 patients were identified for this meta-analysis, which showed that as an adjuvant treatment, CS has the following advantages in the treatment of lung cancer: (1) Improved tumor response rate (TRR) (RR: 1.17, 95%CI: 1.05-1.29,P = 0.00); (2) improved immune function, including increased CD4 (MD: 4.98, 95%CI: 1.49-8.47, P = 0.01), CD8 (MD: 1.60, 95%CI: 0.40-2.81, P = 0.01, I2 = 0.00%), NK (MD: 4.17, 95%CI: 2.26-6.08, P = 0.00), IgA (MD: 1.29, 95%CI: 0.35-2.24, P = 0.01), IgG (MD: 3.95, 95%CI: 0.98-6.92, P = 0.01) and IgM (MD: 6.44, 95%CI: 0.63-12.26, P = 0.03); (3) improved patients' quality of life based on the mean ± SD of Karnofsky Performance Status (KPS) (MD: 8.20, 95%CI: 6.87-9.53, P = 0.00); (4) reduced the incidence of adverse drug reactions (ADRs), including the incidence of myelosuppression (RR: 0.38, 95%CI: 0.19-0.75, P = 0.01), leukopenia (RR: 0.76, 95%CI: 0.63-0.92, P = 0.00), and thrombocytopenia (RR: 0.52, 95%CI: 0.31-0.86, P = 0.01) (5) reduced the incidence of radiation pneumonitis (RR: 0.74, 95%CI: 0.62-0.88, P = 0.00). However, the number of improved patients based on KPS (RR: 1.47, 95%CI: 0.98-2.20, P = 0.06) were similar between two groups, liver and renal damage (RR: 0.32, 95%CI: 0.09-1.10, P = 0.07) and gastrointestinal adverse reactions (RR: 0.80, 95%CI: 0.47-1.37, P = 0.42) as well. Subgroup analysis showed that CS could increase the TRR in the treatment with 6 g/d and 21 days/3-4 cycles. CONCLUSION Compared with conventional treatment, adjuvant treatment with CS of lung cancer not only improve TRR, QOL and immune function, but also reduce the incidence of ADRs and radiation pneumonitis. The optimal usage may be 6 g/d and 21 days/3 to 4 cycles. PROSPERO REGISTRATION NO CRD42022333681.
Collapse
Affiliation(s)
- Canran Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuanfu Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
7
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
8
|
Lu T, Zhou L, Chu Z, Song Y, Wang Q, Zhao M, Dai C, Chen L, Cheng G, Wang J, Guo Q. Cordyceps sinensis relieves non-small cell lung cancer by inhibiting the MAPK pathway. Chin Med 2024; 19:54. [PMID: 38528546 PMCID: PMC10962170 DOI: 10.1186/s13020-024-00895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/23/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE To determine the pharmacodynamic mechanism underlying Cordyceps sinensis relief in a murine model of non-small cell lung cancer (NSCLC). METHODS We created a murine model of NSCLC and studied the potential molecular mechanism by which C. sinensis relieved NSCLC using a combination of transcriptomics, proteomics, and experimental validation. RESULTS C. sinensis markedly suppressed the fluorescence values in mice with NSCLC, improved the pathologic morphology of lung tissue, ameliorated inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, interleukin-10, and the oxidative stress indicators superoxide dismutase, malondialdehyde, and glutathione peroxidase). Transcriptomics results showed that the therapeutic effect of C. sinensis was primarily involved in the differentiation and activation of T cells. Based on the proteomic results, C. sinensis likely exerted a protective effect by recruiting immune cells and suppressing tumor cell proliferation via the MAPK pathway. Finally, the experimental validation results indicated that C. sinensis significantly decreased the VEGF and Ki67 expression, downregulated RhoA, Raf-1, and c-fos expression, which are related to cell migration and invasion, increased the serum concentration of hematopoietic factors (EPO and GM-CSF), and improved the percentage of immune cells (natural killer cells, dendritic cells, and CD4+ and CD8+ lymphocytes), which enhanced immune function. CONCLUSIONS Based on our preclinical study, C. sinensis was shown to exert a protective effect on NSCLC, primarily by inhibiting the MAPK pathway.
Collapse
Affiliation(s)
- Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lirun Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zheng Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yang Song
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Minghong Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuanhao Dai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Chen R, Feng C, Chen L, Zheng X, Fang W, Wu S, Gao X, Chen C, Yang J, Wu Y, Chen Y, Zheng P, Hu N, Yuan M, Fu Y, Ying H, Zhou J, Jiang J. Single-cell RNA sequencing indicates cordycepin remodels the tumor immune microenvironment to enhance TIGIT blockade's anti-tumor effect in colon cancer. Int Immunopharmacol 2024; 126:111268. [PMID: 37992442 DOI: 10.1016/j.intimp.2023.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Both preclinical and clinical studies have extensively proven the effectiveness of TIGIT inhibitors in tumor immunotherapy. However, it has been discovered that the presence of CD226 on tumor-infiltrating lymphocytes is crucial for the effectiveness of both anti-TIGIT therapy alone and when combined with anti-PD-1 therapy for tumors. In our investigation, we observed that cordycepin therapy significantly augmented the expression of the Cd226 gene. As a result, it was hypothesized that cordycepin therapy could enhance the effectiveness of anti-TIGIT therapy. By employing single-cell RNA sequencing analysis of immune cells in the MC38 tumor model, we discovered that cordycepin combined with anti-TIGIT therapy led to a significant increase in the proportion of NK cells within the tumor immune microenvironment. This increased NK cell activity and decreased the expression of inhibitory receptors and exhaustion marker genes. In the combination therapy group, CD8+ T cells had lower exhaustion state scores and increased cytotoxicity, indicating a better immune response. The combination therapy group increased DCs in the tumor immune microenvironment and promoted cellular interaction with CD4+ T cell and CD8+ T cell populations while decreasing Treg cell interactions. In conclusion, cordycepin with anti-TIGIT therapy in colon cancer could reshape the tumor immune microenvironment and have notable anticancer effects.
Collapse
Affiliation(s)
- Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Chen Feng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Weiwei Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Xinran Gao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Can Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Jiayi Yang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Yue Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Yuanyuan Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Nan Hu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Maoling Yuan
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Yuanyuan Fu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China.
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Jun Zhou
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
10
|
Li T, Luo N, Fu J, Du J, Liu Z, Tan Q, Zheng M, He J, Cheng J, Li D, Fu J. Natural Product Cordycepin (CD) Inhibition for NRP1/CD304 Expression and Possibly SARS-CoV-2 Susceptibility Prevention on Cancers. Microorganisms 2023; 11:2953. [PMID: 38138098 PMCID: PMC10745444 DOI: 10.3390/microorganisms11122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
NRP1/CD304 is a typical membrane-bound co-receptor for the vascular endothelial cell growth factor (VEGF), semaphorin family members, and viral SARS-CoV-2. Cordycepin (CD) is a natural product or active gradient from traditional Chinese medicine (TCM) from Cordyceps militaris Link and Ophiocordyceps sinensis (Berk.). However, NRP1 expression regulation via CD in cancers and the potential roles and mechanisms of SARS-CoV-2 infection are not clear. In this study, online databases were analyzed, Western blotting and quantitative RT-PCR were used for NRP1 expression change via CD, molecular docking was used for NRP/CD interaction, and a syncytial formation assay was used for CD inhibition using a pseudovirus SARS-CoV-2 entry. As a result, we revealed that CD inhibits NRP1 expressed in cancer cells and prevents viral syncytial formation in 293T-hACE2 cells, implying the therapeutic potential for both anti-cancer and anti-viruses, including anti-SARS-CoV-2. We further found significant associations between NRP1 expressions and the tumor-immune response in immune lymphocytes, chemokines, receptors, immunostimulators, immune inhibitors, and major histocompatibility complexes in most cancer types, implying NRP1's roles in both anti-cancer and anti-SARS-CoV-2 entry likely via immunotherapy. Importantly, CD also downregulated the expression of NRP1 from lymphocytes in mice and downregulated the expression of A2AR from the lung cancer cell line H1975 when treated with CD, implying the NRP1 mechanism probably through immuno-response pathways. Thus, CD may be a therapeutic component for anti-cancer and anti-viral diseases, including COVID-19, by targeting NRP1 at least.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Na Luo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
| | - Zhiying Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
| | - Qi Tan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (T.L.); (N.L.); (J.F.); (J.D.); (Z.L.); (Q.T.); (M.Z.); (J.H.); (J.C.)
| |
Collapse
|
11
|
He Z, Wang Y, Han L, Hu Y, Cong X. The mechanism and application of traditional Chinese medicine extracts in the treatment of lung cancer and other lung-related diseases. Front Pharmacol 2023; 14:1330518. [PMID: 38125887 PMCID: PMC10731464 DOI: 10.3389/fphar.2023.1330518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lung cancer stands as one of the most prevalent malignancies worldwide, bearing the highest morbidity and mortality rates among all malignant tumors. The treatment of lung cancer primarily encompasses surgical procedures, radiotherapy, and chemotherapy, which are fraught with significant side effects, unfavorable prognoses, and a heightened risk of metastasis and relapse. Although targeted therapy and immunotherapy have gradually gained prominence in lung cancer treatment, diversifying the array of available methods, the overall recovery and survival rates for lung cancer patients remain suboptimal. Presently, with a holistic approach and a focus on syndrome differentiation and treatment, Traditional Chinese Medicine (TCM) has emerged as a pivotal player in the prognosis of cancer patients. TCM possesses characteristics such as targeting multiple aspects, addressing a wide range of concerns, and minimizing toxic side effects. Research demonstrates that Traditional Chinese Medicine can significantly contribute to the treatment or serve as an adjunct to chemotherapy for lung cancer and other lung-related diseases. This is achieved through mechanisms like inhibiting tumor cell proliferation, inducing tumor cell apoptosis, suppressing tumor angiogenesis, influencing the cellular microenvironment, regulating immune system function, impacting signal transduction pathways, and reversing multidrug resistance in tumor cells. In this article, we offer an overview of the advancements in research concerning Traditional Chinese Medicine extracts for the treatment or adjunctive chemotherapy of lung cancer and other lung-related conditions. Furthermore, we delve into the challenges that Traditional Chinese Medicine extracts face in lung cancer treatment, laying the foundation for the development of diagnostic, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
- Zhenglin He
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Wu S, Fang W, Chen L, Feng C, Chen R, Ying H, Zheng X, Jiang J. Cordycepin remodels the tumor microenvironment of colorectal cancer by down-regulating the expression of PD-L1. J Cancer Res Clin Oncol 2023; 149:17567-17579. [PMID: 37910234 DOI: 10.1007/s00432-023-05460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE Colorectal cancer, as a common malignant tumor, poses a serious threat to human life. Cordycepin, derived from Cordyceps militaris extract, which was established as a capable inhibitor of tumor growth. Nevertheless, the precise antitumor mechanism of cordycepin in colorectal cancer cells remains elusive. METHODS Herein, our initial focus was to explore the tumor-suppressive impact of cordycepin through its influence on various biological functions in murine colorectal cancer cells, conducted by an in vitro setting. First, we investigated the tumor-suppressive effect of cordycepin on the regulation of biological functions in murine colorectal cancer cells in vitro. Furthermore, we evaluated the in vivo antitumor potential of cordycepin using a mouse preclinical tumor model, and further explored the antitumor mechanism. RESULTS Our findings revealed that cordycepin effectively inhibit the proliferation, invasion, and migration of murine colon cancer cells. Moreover, there is a substantial reduction in the expression of PD-L1 observed in tumor cells, in response to cordycepin treatment. Collectively, these results demonstrate the significant tumor-suppressive attributes of cordycepin against colorectal cancer. Consequently, our study lays a solid foundation for the potential clinical utilization of cordycepin in cancer therapy. CONCLUSION Cordycepin inhibits the biological functions of colorectal cancer cells and suppresses tumor growth by reducing the expression of PD-L1.
Collapse
Affiliation(s)
- Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
| | - Weiwei Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
| | - Chen Feng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, Jiangsu, China.
| |
Collapse
|
13
|
Chen L, Zheng X, Huang H, Feng C, Wu S, Chen R, Jiang H, Yuan M, Fu Y, Ying H, Zhou J, Jiang J. Cordycepin synergizes with CTLA-4 blockade to remodel the tumor microenvironment for enhanced cancer immunotherapy. Int Immunopharmacol 2023; 124:110786. [PMID: 37611443 DOI: 10.1016/j.intimp.2023.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
The strategy of using immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, leading to remarkable clinical outcomes. However, certain cancer types and patient demographics continue to face unique challenges. As a result, it is vital to investigate combination therapies that involve ICIs to boost therapeutic efficacy. Cordycepin, an adenosine derivative composed of adenine and pentose, holds immense promise for treating inflammation and cancer. Our recent research has demonstrated that the combined treatment of cordycepin and the anti-CD47 antibody significantly curtails tumor growth and extends the lifespan of tumor-bearing mice. In the current study, we showed that the combination of cordycepin and CTLA-4 blockade had a profound impact on suppressing tumor growth. We utilized the MC38 and CT26 tumor models to evaluate the therapeutic effect of cordycepin, CTLA-4 blockade, and their combined approach. Flow cytometry results unveiled that cordycepin, when combined with CTLA-4 blockade, considerably augmented the presence of tumor-infiltrating CD8+T cells and diminished the population of Foxp3+Tregs within the tumor microenvironment (TME). Additionally, we employed single-cell analysis to examine the TME's reconfiguration upon the combined treatment of anti-CTLA-4 and cordycepin. We observed a significant impact on inhibiting tumor growth and substantially extended survival in tumor-bearing mice. Our data also demonstrated an increased proportion of effector CD8+T cells in the combined treatment group compared to all other groups, while exhausted CD8+T cells diminished in the combined group compared to the anti-CTLA-4 treatment alone. In conclusion, our findings supported the idea that combining cordycepin and CTLA-4 blockade could modify the effector and exhaustion status of CD8+T cells, thereby bolstering CD8+T-cell-mediated anti-tumor immunity in the TME. Collectively, our current study successfully established a combination therapeutic strategy utilizing cordycepin and CTLA-4 blockade. This strategy demonstrated a significant synergistic effect against cancer, highlighting its importance in cancer treatment.
Collapse
Affiliation(s)
- Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China
| | - Hao Huang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China
| | - Chen Feng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China
| | - Maoling Yuan
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China
| | - Yuanyuan Fu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, China
| | - Jun Zhou
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Jiangsu, Changzhou 213003, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
14
|
Taghinejad Z, Kazemi T, Fadaee M, Farshdousti Hagh M, Solali S. Pharmacological and therapeutic potentials of cordycepin in hematological malignancies. Biochem Biophys Res Commun 2023; 678:135-143. [PMID: 37634411 DOI: 10.1016/j.bbrc.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/16/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
Hematological malignancies(HMs) are highly heterogeneous diseases with globally rising incidence. Despite major improvements in the management of HMs, conventional therapies have limited efficacy, and relapses with high mortality rates are still frequent. Cordycepin, a nucleoside analog extracted from Cordyceps species, represents a wide range of therapeutic effects, including anti-inflammatory, anti-tumor, and anti-metastatic activities. Cordycepin induces apoptosis in different subtypes of HMs by triggering adenosine receptors, death receptors, and several vital signaling pathways such as MAPK, ERK, PI3K, AKT, and GSK-3β/β-catenin. This review article summarizes the impact of utilizing cordycepin on HMs, and highlights its potential as a promising avenue for future cancer research based on evidence from in vitro and in vivo studies, as well as clinical trials.
Collapse
Affiliation(s)
- Zahra Taghinejad
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Manouchehr Fadaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Chen M, Luo J, Jiang W, Chen L, Miao L, Han C. Cordycepin: A review of strategies to improve the bioavailability and efficacy. Phytother Res 2023; 37:3839-3858. [PMID: 37329165 DOI: 10.1002/ptr.7921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/18/2023]
Abstract
Cordycepin is a bioactive compound extracted from Cordyceps militaris. As a natural antibiotic, cordycepin has a wide variety of pharmacological effects. Unfortunately, this highly effective natural antibiotic is proved to undergo rapid deamination by adenosine deaminase (ADA) in vivo and, as a consequence, its half-life is shortened and bioavailability is decreased. Therefore, it is of critical importance to work out ways to slow down the deamination so as to increase its bioavailability and efficacy. This study reviews recent researches on a series of aspects of cordycepin such as the bioactive molecule's pharmacological action, metabolism and transformation as well as the underlying mechanism, pharmacokinetics and, particularly, the methods for reducing the degradation to improve the bioavailability and efficacy. It is drawn that there are three methods that can be applied to improve the bioavailability and efficacy: to co-administrate an ADA inhibitor and cordycepin, to develop more effective derivatives via structural modification, and to apply new drug delivery systems. The new knowledge can help optimize the application of the highly potent natural antibiotic-cordycepin and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Min Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Medicine, Linyi University, Linyi, China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijing Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Zhao XP, Zheng XL, Huang M, Xie YJ, Nie XW, Nasim AA, Yao XJ, Fan XX. DMU-212 against EGFR-mutant non-small cell lung cancer via AMPK/PI3K/Erk signaling pathway. Heliyon 2023; 9:e15812. [PMID: 37305501 PMCID: PMC10256861 DOI: 10.1016/j.heliyon.2023.e15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 06/13/2023] Open
Abstract
Although some important advances have been achieved in clinical and diagnosis in the past few years, the management of non-small cell lung cancer (NSCLC) is ultimately dissatisfactory due to the low overall cure and survival rates. Epidermal growth factor (EGFR) has been recognized as a carcinogenic driver and is a crucial pharmacological target for NSCLC. DMU-212, an analog of resveratrol, has been reported to have significant inhibitory effects on several types of cancer. However, the effect of DMU-212 on lung cancer remains unclear. Therefore, this study aims to determine the effects and underlying mechanism of DMU-212 on EGFR-mutant NSCLC cells. The data found that the cytotoxicity of DMU-212 on three EGFR-mutant NSCLC cell lines was significantly higher than that of normal lung epithelial cell. Further study showed that DMU-212 can regulate the expression of cell cycle-related proteins including p21 and cyclin B1 to induce G2/M phase arrest in both H1975 and PC9 cells. Moreover, treatment with DMU-212 significantly promoted the activation of AMPK and simultaneously down-regulated the expression of EGFR and the phosphorylation of PI3K, Akt and ERK. In conclusion, our study suggested that DMU-212 inhibited the growth of NSCLCs via targeting of AMPK and EGFR.
Collapse
|
17
|
Liu Y, Luo X, Liu J, Ma Y, Tan J, Wang W, Hu J, Fu X, Xu L, Yu F, Xu S, Ma H, Yu X, You Q, Wang Z, Li L, Zhang X, Sun X. Shenlingcao oral liquid for patients with non-small cell lung cancer receiving adjuvant chemotherapy after radical resection: A multicenter randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154723. [PMID: 36871476 DOI: 10.1016/j.phymed.2023.154723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Low quality of life (QoL) in patients with non-small cell lung cancer (NSCLC) receiving adjuvant chemotherapy after radical resection is a major global health issue. High-quality evidence for the effectiveness of Shenlingcao oral liquid (SOL) as a complementary treatment in this patients is lacking at present. PURPOSE To determine whether complementary SOL treatment in NSCLC patients receiving adjuvant chemotherapy would yield greater improvements in QoL than chemotherapy alone. STUDY DESIGN We conducted a multicenter, randomized controlled trial of stages IIA-IIIA NSCLC patients undergoing adjuvant chemotherapy in seven hospitals. METHODS Using stratified blocks, participants were randomized in a 1:1 ratio to receive SOL combined with conventional chemotherapy or conventional chemotherapy alone. The primary outcome was the change in global QoL from baseline to the fourth chemotherapy cycle, and intention-to-treat analysis was applied with a mixed-effect model. Secondary outcomes were functional QoL, symptoms, and performance status scores at the 6-month follow-up. Missing data were handled with multiple imputation and a pattern-mixture model. RESULTS Among 516 randomized patients, 446 (86.43%) completed the study. After the fourth chemotherapy cycle, in comparison with the control group, patients receiving SOL showed a lower reduction in mean global QoL (-2.76 vs. -14.11; mean difference [MD], 11.34; 95% confidence interval [CI], 8.28 to 14.41), greater improvement in physical function (MD, 11.61; 95% CI, 8.57 to 14.65), role function (MD, 10.15; 95% CI, 5.75 to 14.54), and emotional function (MD, 4.71; 95% CI, 1.85 to 7.57), and greater improvements in lung cancer-related symptoms (e.g., fatigue, nausea/vomiting, and appetite loss) and performance status during the 6-month follow-up period (treatment main effect, p < 0.05). CONCLUSION SOL treatment for NSCLC patients receiving adjuvant chemotherapy can significantly improve QoL and performance status within 6 months after radical resection. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03712969.
Collapse
Affiliation(s)
- Yanmei Liu
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China; Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Xiaochao Luo
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China; Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Jiali Liu
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China; Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Yu Ma
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China; Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Jing Tan
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China; Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Wen Wang
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China; Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310003, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shidong Xu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Haitao Ma
- Department of Thoracic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiuyi Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Qingjun You
- Department of Thoracic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Zhiqiang Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Ling Li
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China; Sichuan Center of Technology Innovation for Real World Data, Chengdu, China.
| | - Xun Zhang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300051, China.
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China; Sichuan Center of Technology Innovation for Real World Data, Chengdu, China.
| |
Collapse
|
18
|
Ma YC, Huang P, Wang XL, Liu GQ. Multi-omics analysis unravels positive effect of rotenone on the cordycepin biosynthesis in submerged fermentation of Cordyceps militaris. BIORESOURCE TECHNOLOGY 2023; 373:128705. [PMID: 36746212 DOI: 10.1016/j.biortech.2023.128705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cordycepin is the key pharmacologically active compound of Cordyceps militaris, and various fermentation strategies have been developed to increase cordycepin production. This study aimed to investigate the effect of rotenone on cordycepin biosynthesis in submerged fermentation of C. militaris, and also to explore its possible induction mechanisms via multi-omics analysis. Adding 5 mg/L rotenone significantly increased the cordycepin production by 316.09 %, along with mycelial growth inhibition and cell wall destruction. Moreover, transcriptomic analysis and metabolomic analysis revealed the accumulation of cordycepin was promoted by alterations in energy metabolism and amino acid metabolism pathways. Finally, the integration analysis of the two omics confirmed rotenone altered the nucleotide metabolism pathway toward adenosine and up-regulated the cordycepin synthesis genes (cns1-3) to convert adenosine to cordycepin. This work reports, for the first time, rotenone could act as an effective inducer of cordycepin synthesis.
Collapse
Affiliation(s)
- You-Chu Ma
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004, China; Microbial Variety Creation Center, Hunan Provincial Laboratory of Yuelushan Seed Industry, Changsha 410004, China
| | - Ping Huang
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004, China
| | - Xiao-Ling Wang
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004, China; Microbial Variety Creation Center, Hunan Provincial Laboratory of Yuelushan Seed Industry, Changsha 410004, China
| | - Gao-Qiang Liu
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004, China; Microbial Variety Creation Center, Hunan Provincial Laboratory of Yuelushan Seed Industry, Changsha 410004, China.
| |
Collapse
|
19
|
Fu J, Song B, Du J, Liu S, He J, Xiao T, Zhou B, Li D, Liu X, He T, Cheng J, Fu J. Impact of BSG/CD147 gene expression on diagnostic, prognostic and therapeutic strategies towards malignant cancers and possible susceptibility to SARS-CoV-2. Mol Biol Rep 2023; 50:2269-2281. [PMID: 36574092 PMCID: PMC9793814 DOI: 10.1007/s11033-022-08231-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND BSG (CD147) is a member of the immunoglobulin superfamily that shows roles for potential prognostics and therapeutics for metastatic cancers and SARS-CoV-2 invasion for COVID-19. The susceptibility of malignant cancers to SARS-CoV-2 as well as the correlations between disease outcome and BSG expression in tumor tissues have not been studied in depth. METHODS In this study, we explored the BSG expression profile, survival correlation, DNA methylation, mutation, diagnostics, prognostics, and tumor-infiltrating lymphocytes (TILs) from different types of cancer tissues with corresponding healthy tissues. In vitro studies for cordycepin (CD), N6-(2-hydroxyethyl) adenosine (HEA), N6, N6-dimethyladenosine (m62A) and 5'-uridylic acid (UMP) on BSG expression were also conducted. RESULTS We revealed that BSG is conserved among different species, and significantly upregulated in seven tumor types, including ACC, ESCA, KICH, LIHC, PAAD, SKCM and THYM, compared with matched normal tissues, highlighting the susceptibility of these cancer patients to SARS-CoV-2 invasion, COVID-19 severity and progression of malignant cancers. High expression in BSG was significantly correlated with a short OS in LGG, LIHC and OV patients, but a long OS in KIRP patients. Methylation statuses in the BSG promoter were significantly higher in BRCA, HNSC, KIRC, KIRP, LUSC, PAAD, and PRAD tumor tissues, but lower in READ. Four CpGs in the BSG genome were identified as potential DNA methylation biomarkers which could be used to predict malignant cancers from normal individuals. Furthermore, a total of 65 mutation types were found, in which SARC showed the highest mutation frequency (7.84%) and THYM the lowest (0.2%). Surprisingly, both for disease-free and progression-free survival in pan-cancers were significantly reduced after BSG mutations. Additionally, a correlation between BSG expression and immune lymphocytes of CD56bright natural killer cell, CD56dim natural killer cell and monocytes, MHC molecules of HLA-A, HLA-B, HLA-C and TAPBP, immunoinhibitor of PVR, PVRL2, and immunostimulators of TNFRSF14, TNFRSF18, TNFRSF25, and TNFSF9, was revealed in most cancer types. Moreover, BSG expression was downregulated by CD, HEA, m62A or UMP in cancer cell lines, suggesting therapeutic potentials for interfering entry of SARS-CoV-2. CONCLUSIONS Altogether, our study highlights the values of targeting BSG for diagnostic, prognostic and therapeutic strategies to fight malignant cancers and COVID-19. Small molecules CD, HEA, m62A and UMP imply therapeutic potentials in interfering with entry of SARS-CoV-2 and progression of malignant cancers.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Binghui Song
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Ting Xiao
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Basic Medical School, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Department of Gynecology and Obstetrics, Guangdong Women and Children Hospital, Guangzhou, 511400 Guangdong China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Basic Medical School, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Tao He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Institute for Cancer Medicine and Basic Medical School, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| |
Collapse
|
20
|
Khan MA, Tania M. Cordycepin and kinase inhibition in cancer. Drug Discov Today 2023; 28:103481. [PMID: 36584876 DOI: 10.1016/j.drudis.2022.103481] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Cordycepin, a nucleoside from Cordyceps mushrooms, has many beneficial properties for health, including anticancer activities. In cancer cells, cordycepin targets various signaling molecules. Here, we review the possible anticancer mechanisms of cordycepin involving the targeting of kinases. Abnormal kinase expression is involved in cancer development and progression through different molecular mechanisms, including phosphorylation, amplification, genetic mutations, and epigenetic regulation. Research suggests that kinases, such as the c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), AMP kinase (AMPK), phosphoinositide 3-kinase (PI3K)/Akt, extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR), glycogen synthase kinase (GSK)-3β, and focal adhesion kinase (FAK) pathways, can be targeted by cordycepin and disrupting their activity. Given that kinase inhibitors can have crucial roles in cancer treatment, targeting kinases might be one of the molecular mechanisms involved in the anticancer potential of cordycepin.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; Nature Study Society of Bangladesh, Dhaka, Bangladesh.
| | - Mousumi Tania
- Nature Study Society of Bangladesh, Dhaka, Bangladesh; Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh.
| |
Collapse
|
21
|
Zhang J, Liu P, Chen J, Yao D, Liu Q, Zhang J, Zhang HW, Leung ELH, Yao XJ, Liu L. Upgrade of chrysomycin A as a novel topoisomerase II inhibitor to curb KRAS-mutant lung adenocarcinoma progression. Pharmacol Res 2023; 187:106565. [PMID: 36414124 DOI: 10.1016/j.phrs.2022.106565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/20/2022]
Abstract
A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Jianwei Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Dahong Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Juanhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau.
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| |
Collapse
|
22
|
Feng C, Chen R, Fang W, Gao X, Ying H, Zheng X, Chen L, Jiang J. Synergistic effect of CD47 blockade in combination with cordycepin treatment against cancer. Front Pharmacol 2023; 14:1144330. [PMID: 37138855 PMCID: PMC10149837 DOI: 10.3389/fphar.2023.1144330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
Cordycepin is widely considered a direct tumor-suppressive agent. However, few studies have investigated as the effect of cordycepin therapy on the tumor microenvironment (TME). In our present study, we demonstrated that cordycepin could weaken the function of M1-like macrophages in the TME and also contribute to macrophage polarization toward the M2 phenotype. Herein, we established a combined therapeutic strategy combining cordycepin and an anti-CD47 antibody. By using single-cell RNA sequencing (scRNA-seq), we showed that the combination treatment could significantly enhance the effect of cordycepin, which would reactivate macrophages and reverse macrophage polarization. In addition, the combination treatment could regulate the proportion of CD8+ T cells to prolong the progression-free survival (PFS) of patients with digestive tract malignancies. Finally, flow cytometry validated the changes in the proportions of tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs). Collectively, our findings suggested that the combination treatment of cordycepin and the anti-CD47 antibody could significantly enhance tumor suppression, increase the proportion of M1 macrophages, and decrease the proportion of M2 macrophages. In addition, the PFS in patients with digestive tract malignancies would be prolonged by regulating CD8 + T cells.
Collapse
Affiliation(s)
- Chen Feng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Weiwei Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Xinran Gao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiang Su, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- *Correspondence: Jingting Jiang, ; Lujun Chen,
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- *Correspondence: Jingting Jiang, ; Lujun Chen,
| |
Collapse
|
23
|
Liu S, Yang L, Fu J, Li T, Zhou B, Wang K, Wei C, Fu J. Comprehensive analysis, immune, and cordycepin regulation for SOX9 expression in pan-cancers and the matched healthy tissues. Front Immunol 2023; 14:1149986. [PMID: 37020558 PMCID: PMC10067558 DOI: 10.3389/fimmu.2023.1149986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
SRY-box transcription factor 9 (SOX9) (OMIM 608160) is a transcription factor. The expression of SOX9 in pan-cancers and the regulation by small molecules in cancer cell lines are unclear. In the current study, we comprehensively analyzed the expression of SOX9 in normal tissues, tumor tissues and their matched healthy tissues in pan-cancers. The study examined the correlation between immunomodulators and immune cell infiltrations in normal and tumor tissues. Cordycepin (CD), an adenosine analog for SOX9 expression regulation, was also conducted on cancer cells. The results found that SOX9 protein is expressed in a variety of organs, including high expression in 13 organs and no expression in only two organs; in 44 tissues, there was high expression in 31 tissues, medium expression in four tissues, low expression in two tissues, and no expression in the other seven tissues. In pan-cancers with 33 cancer types, SOX9 expression was significantly increased in fifteen cancers, including CESC, COAD, ESCA, GBM, KIRP, LGG, LIHC, LUSC, OV, PAAD, READ, STAD, THYM, UCES, and UCS, but significantly decreased in only two cancers (SKCM and TGCT) compared with the matched healthy tissues. It suggests that SOX9 expression is upregulated in the most cancer types (15/33) as a proto-oncogene. The fact that the decrease of SOX9 expression in SKCM and the increase of SOX9 in the cell lines of melanoma inhibit tumorigenicity in both mouse and human ex vivo models demonstrates that SOX9 could also be a tumor suppressor. Further analyzing the prognostic values for SOX9 expression in cancer individuals revealed that OS is long in ACC and short in LGG, CESC, and THYM, suggesting that high SOX9 expression is positively correlated with the worst OS in LGG, CESC, and THYM, which could be used as a prognostic maker. In addition, CD inhibited both protein and mRNA expressions of SOX9 in a dose-dependent manner in 22RV1, PC3, and H1975 cells, indicating CD's anticancer roles likely via SOX9 inhibition. Moreover, SOX9 might play an important role in tumor genesis and development by participating in immune infiltration. Altogether, SOX9 could be a biomarker for diagnostics and prognostics for pan-cancers and an emerging target for the development of anticancer drugs.
Collapse
Affiliation(s)
- Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Lisha Yang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Ting Li
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Gynecology and Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
24
|
He J, Liu S, Tan Q, Liu Z, Fu J, Li T, Wei C, Liu X, Mei Z, Cheng J, Wang K, Fu J. Antiviral Potential of Small Molecules Cordycepin, Thymoquinone, and N6, N6-Dimethyladenosine Targeting SARS-CoV-2 Entry Protein ADAM17. Molecules 2022; 27:molecules27249044. [PMID: 36558177 PMCID: PMC9781528 DOI: 10.3390/molecules27249044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2 of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely relevant to highly expressed ADAM17. However, ADAM17 regulation in SARS-CoV-2 invasion and its role on small molecules are unclear. Here, we evaluated the ADAM17 inhibitory effects of cordycepin (CD), thymoquinone (TQ), and N6, N6-dimethyladenosine (m62A), on cancer cells and predicted the anti-COVID-19 potential of the three compounds and their underlying signaling pathways by network pharmacology. It was found that CD, TQ, and m62A repressed the ADAM17 expression upon different cancer cells remarkably. Moreover, CD inhibited GFP-positive syncytia formation significantly, suggesting its potential against SARS-CoV-2. Pharmacological analysis by constructing CD-, TQ-, and m62A-based drug-target COVID-19 networks further indicated that ADAM17 is a potential target for anti-COVID-19 therapy with these compounds, and the mechanism might be relevant to viral infection and transmembrane receptors-mediated signal transduction. These findings imply that ADAM17 is of potentially medical significance for cancer patients infected with SARS-CoV-2, which provides potential new targets and insights for developing innovative drugs against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kai Wang
- Correspondence: (J.C.); (K.W.); (J.F.)
| | | |
Collapse
|
25
|
Su CC, Lin JW, Chang KY, Wu CT, Liu SH, Chang KC, Liu JM, Lee KI, Fang KM, Chen YW. Involvement of AMPKα and MAPK-ERK/-JNK Signals in Docetaxel-Induced Human Tongue Squamous Cell Carcinoma Cell Apoptosis. Int J Mol Sci 2022; 23:ijms232213857. [PMID: 36430348 PMCID: PMC9696237 DOI: 10.3390/ijms232213857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Cancers of the oral cavity can develop in the anatomic area extending from the lip, gum, tongue, mouth, and to the palate. Histologically, about 85-90% of oral cavity cancers are of the type squamous cells carcinomas (SCCs). The incidence of oral tongue SCC is higher in the tongue than any other anatomic area of the oral cavity. Here, we investigated the therapeutic effects and molecular mechanisms of docetaxel, which is a paclitaxel antitumor agent, on the cell growth of a human tongue SCC-derived SAS cell line. The results showed that docetaxel (10-300 nM) induced cytotoxicity and caspase-3 activity in SAS cells. Moreover, docetaxel (100 nM) promoted the expression of apoptosis-related signaling molecules, including the cleavages of caspase-3, caspase-7, and poly (ADP-ribose) polymerase (PARP). In mitochondria, docetaxel (100 nM) decreased the mitochondrial membrane potential (MMP) and Bcl-2 mRNA and protein expression and increased cytosolic cytochrome c protein expression and Bax mRNA and protein expression. In terms of mitogen-activated protein kinase (MAPK) and adenosine monophosphate-activated protein kinase (AMPK) signaling, docetaxel increased the expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-c-Jun N-terminal kinase (JNK), and p-AMPKα protein expression but not p-p38 protein expression. Moreover, the increase in caspase-3/-7 activity and Bax protein expression and decreased Bcl-2 protein expression and MMP depolarization observed in docetaxel-treated SAS cells could be reversed by treatment with either SP600125 (a JNK inhibitor), PD98059 (an MEK1/2 (mitogen-activated protein kinase kinase 1/2) inhibitor), or compound c (an AMPK inhibitor). The docetaxel-induced increases in p-JNK, p-ERK, and p-AMPKα protein expression could also be reversed by treatment with either SP600125, PD98059, or compound c. These results indicate that docetaxel induces human tongue SCC cell apoptosis via interdependent MAPK-JNK, MAPK-ERK1/2, and AMPKα signaling pathways. Our results show that docetaxel could possibly exert a potent pharmacological effect on human oral tongue SCC cell growth.
Collapse
Affiliation(s)
- Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, Changhua County 500, Taiwan
| | - Jhe-Wei Lin
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Kai-Yao Chang
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Jui-Ming Liu
- Department of Urology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Correspondence: (K.-M.F.); (Y.-W.C.)
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (K.-M.F.); (Y.-W.C.)
| |
Collapse
|
26
|
The speckle-type POZ protein (SPOP) inhibits breast cancer malignancy by destabilizing TWIST1. Cell Death Dis 2022; 8:389. [PMID: 36115849 PMCID: PMC9482615 DOI: 10.1038/s41420-022-01182-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transition (EMT) inducing transcription factor TWIST1 plays a vital role in cancer metastasis. How the tumor-suppressive E3 ligase, speckle-type POZ protein (SPOP), regulates TWIST1 in breast cancer remains unknown. In this study, we report that SPOP physically interacts with, ubiquitinates, and destabilizes TWIST1. SPOP promotes K63-and K48-linked ubiquitination of TWIST1, predominantly at K73, thereby suppressing cancer cell migration and invasion. Silencing SPOP significantly enhances EMT, which accelerates breast cancer cell migration and invasiveness in vitro and lung metastasis in vivo. Clinically, SPOP is negatively correlated with the levels of TWIST1 in highly invasive breast carcinomas. Reduced SPOP expression, along with elevated TWIST1 levels, is associated with poor prognosis in advanced breast cancer patients, particularly those with metastatic triple-negative breast cancer (TNBC). Taken together, we have disclosed a new mechanism linking SPOP to TWIST1 degradation. Thus SPOP may serve as a prognostic marker and a potential therapeutic target for advanced TNBC patients.
Collapse
|
27
|
Ha NI, Mun SK, Im SB, Jang HY, Jeong HG, Kang KY, Park KW, Seo KS, Ban SE, Kim KJ, Yee ST. Changes in Functionality of Tenebrio molitor Larvae Fermented by Cordyceps militaris Mycelia. Foods 2022; 11:foods11162477. [PMID: 36010477 PMCID: PMC9407045 DOI: 10.3390/foods11162477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The Food and Agriculture Organization (FAO) has been estimating the potential of insects as human food since 2010, and for this reason, Tenebrio molitor larvae, also called mealworms, have been explored as an alternative protein source for various foods. In this study, in order to increase nutrient contents and improve preference as an alternative protein source, we fermented the T. molitor larvae by Cordyceps militaris mycelia. T. molitor larvae were prepared at optimal conditions for fermentation and fermented with C. militaris mycelia, and we analyzed T. molitor larvae change in functionality with proximate composition, β-glucan, cordycepin, adenosine, and free amino acids content. T. molitor larvae fermented by C. militaris mycelia showed higher total protein, total fiber, and β-glucan content than the unfermented larvae. In addition, the highest cordycepin content (13.75 mg/g) was observed in shaded dried T. molitor larvae fermented by C. militaris mycelia. Additionally, the isolated cordycepin from fermented T. molitor larvae showed similar cytotoxicity as standard cordycepin when treated with PC-9 cells. Therefore, we report that the optimized methods of T. molitor larvae fermented by C. militaris mycelia increase total protein, total fiber, β-glucan and produce the amount of cordycepin content, which can be contributed to healthy food and increase T. molitor larvae utilization.
Collapse
Affiliation(s)
- Neul-I Ha
- Department of Pharmacy, Sunchon National University, Jungang-Ro, Suncheon 549-742, Korea
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Seul-Ki Mun
- Department of Pharmacy, Sunchon National University, Jungang-Ro, Suncheon 549-742, Korea
| | - Seung-Bin Im
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Ho-Yeol Jang
- Suncheon Research Center for Bio Health Care, Jungang-Ro, Suncheon 57922, Korea
| | - Hee-Gyeong Jeong
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Kyung-Yun Kang
- Suncheon Research Center for Bio Health Care, Jungang-Ro, Suncheon 57922, Korea
| | - Kyung-Wuk Park
- Suncheon Research Center for Bio Health Care, Jungang-Ro, Suncheon 57922, Korea
| | - Kyoung-Sun Seo
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Seung-Eon Ban
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Kyung-Je Kim
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Korea
| | - Sung-Tae Yee
- Department of Pharmacy, Sunchon National University, Jungang-Ro, Suncheon 549-742, Korea
- Correspondence: ; Tel.: +82-61-750-3752; Fax: +82-61-750-3708
| |
Collapse
|
28
|
Anticancer Activities of Mushrooms: A Neglected Source for Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15020176. [PMID: 35215289 PMCID: PMC8876642 DOI: 10.3390/ph15020176] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
Approximately 270 species of mushrooms have been reported as potentially useful for human health. However, few mushrooms have been studied for bioactive compounds that can be helpful in treating various diseases. Like other natural regimens, the mushroom treatment appears safe, as could be expected from their long culinary and medicinal use. This review aims to provide a critical discussion on clinical trial evidence for mushrooms to treat patients with diverse types of cancer. In addition, the review also highlights the identified bioactive compounds and corresponding mechanisms of action among the explored mushrooms. Furthermore, it also discusses mushrooms with anticancer properties, demonstrated either in vitro and/or in vivo models, which have never been tested in clinical studies. Several mushrooms have been tested in phase I or II clinical trials, mostly for treating breast cancer (18.6%), followed by colorectal (14%) and prostate cancer (11.6%). The majority of clinical studies were carried out with just 3 species: Lentinula edodes (22.2%), Coriolus versicolor, and Ganoderma lucidum (both 13.9%); followed by two other species: Agaricus bisporus and Grifola frondosa (both 11.1%). Most in vitro cell studies use breast cancer cell lines (43.9%), followed by lung (14%) and colorectal cancer cell lines (13.1%), while most in vivo animal studies are performed in mice tumor models (58.7%). Although 32 species of mushrooms at least show some promise for the treatment of cancer, only 11 species have been tested clinically thus far. Moreover, most clinical studies have investigated fewer numbers of patients, and have been limited to phase III or IV. Therefore, despite the promising preclinical and clinical data publication, more solid scientific efforts are required to clarify the therapeutic value of mushrooms in oncology.
Collapse
|
29
|
Li HB, Chen JK, Su ZX, Jin QL, Deng LW, Huang G, Shen JN. Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int 2021; 21:706. [PMID: 34953496 PMCID: PMC8709946 DOI: 10.1186/s12935-021-02411-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background Osteosarcoma is the most common primary bone tumor in children and adolescents. However, some patients with osteosarcoma develop resistance to chemotherapy, leading to a poor clinical prognosis. Hence, effective therapeutic agents that can improve the response to chemotherapy drugs to improve the prognosis of patients with osteosarcoma are urgently needed. Cordycepin has recently emerged as a promising antitumor drug candidate. This study aims to explore the effect of cordycepin in suppressing osteosarcoma in vivo and in vitro and the synergistic effect of cordycepin combined with cisplatin and to demonstrate the underlying molecular mechanism. Methods CCK-8 assay was performed to investigate the inhibition effect of cordycepin combined with cisplatin in osteosarcoma cell lines. The colony formation and invasion abilities were measured by colony formation assay and Transwell assay. Osteosarcoma cells apoptosis was detected by flow cytometry. Western blot analysis were used to detect the expression of cell apoptosis-related proteins and AMPK and AKT/mTOR signaling pathway-related proteins. Finally, we performed the in vivo animal model to further explore whether cordycepin and cisplatin exert synergistic antitumor effects. Results Notably, we found that treatment with cordycepin inhibited cell proliferation, invasion, and induced apoptosis in osteosarcoma cells in vitro and in vivo. Moreover, the combination of cordycepin and cisplatin led to marked inhibition of osteosarcoma cell proliferation and invasion and promoted osteosarcoma cell apoptosis in vitro and in vivo. Mechanistically, we demonstrated that cordycepin enhanced the sensitivity of osteosarcoma cells to cisplatin by activating AMPK and inhibiting the AKT/mTOR signaling pathway. Conclusions In brief, this study provides comprehensive evidence that cordycepin inhibits osteosarcoma cell growth and invasion and induces osteosarcoma cell apoptosis by activating AMPK and inhibiting the AKT/mTOR signaling pathway and enhances the sensitivity of osteosarcoma cells to cisplatin, suggesting that cordycepin is a promising treatment for osteosarcoma.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun-Kai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ze-Xin Su
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Lin Jin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Deng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing-Nan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
30
|
Cordycepin inhibits the proliferation and progression of NPC by targeting the MAPK/ERK and β-catenin pathways. Oncol Lett 2021; 23:20. [PMID: 34858524 PMCID: PMC8617562 DOI: 10.3892/ol.2021.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 12/09/2022] Open
Abstract
Cordycepin is an extract from the Cordyceps genus of ascomycete fungi. In the present study, the anticancer potential of cordycepin against nasopharyngeal carcinoma (NPC), and the potential underlying mechanisms, were investigated. Using Cell Counting Kit 8, wound-healing and Transwell assays, cordycepin was found to reduce the viability and inhibit the migration of C666-1 cells in a dose-dependent manner. In addition, in colony formation assays, co-treatment with cordycepin and cisplatin inhibited the proliferation of C666-1 cells. Furthermore, RNA sequencing analysis identified 72 significantly differentially expressed genes and different signaling pathways that may be regulated by cordycepin. After treatment with cordycepin, the expression levels of ERK1/2, phosphorylated ERK1/2 and β-catenin were significantly downregulated. Therefore, cordycepin may be a novel candidate for NPC treatment or a co-treatment candidate with cisplatin in chemotherapy.
Collapse
|
31
|
Zhang J, Zhang J, Liu Q, Fan XX, Leung ELH, Yao XJ, Liu L. Resistance looms for KRAS G12C inhibitors and rational tackling strategies. Pharmacol Ther 2021; 229:108050. [PMID: 34864132 DOI: 10.1016/j.pharmthera.2021.108050] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022]
Abstract
KRAS mutations are one of the most frequent activating alterations in carcinoma. Recent efforts have witnessed a revolutionary strategy for KRAS G12C inhibitors with exhibiting conspicuous clinical responses across multiple tumor types, providing new impetus for renewed drug development and culminating in sotorasib with approximately 6-month median progression-free survival in KRAS G12C-driven lung cancer. However, diverse genomic and histological mechanisms conferring resistance to KRAS G12C inhibitors may limit their clinical efficacy. Herein, we first briefly discuss the recent resistance looms for KRAS G12C inhibitors, focusing on their clinical trials. We then comprehensively interrogate and underscore our current understanding of resistance mechanisms and the necessity of incorporating genomic analyses into the clinical investigation to further decipher resistance mechanisms. Finally, we highlight the future role of novel treatment strategies especially rational identification of targeted combinatorial approaches in tackling drug resistance, and propose our views on including the application of robust biomarkers to precisely guide combination medication regimens.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), China; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), China; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), China.
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
32
|
Li D, Liu X, Zhang L, He J, Chen X, Liu S, Fu J, Fu S, Chen H, Fu J, Cheng J. COVID-19 disease and malignant cancers: The impact for the furin gene expression in susceptibility to SARS-CoV-2. Int J Biol Sci 2021; 17:3954-3967. [PMID: 34671211 PMCID: PMC8495395 DOI: 10.7150/ijbs.63072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Furin is a proprotein convertase that activates different kinds of regulatory proteins, including SARS-CoV-2 spike protein which contains an additional furin-specific cleavage site. It is essential in predicting cancer patients' susceptibility to SARS-CoV-2 and the disease outcomes due to varying furin expressions in tumor tissues. In this study, we analyzed furin's expression, methylation, mutation rate, functional enrichment, survival rate and COVID-19 outcomes in normal and cancer tissues using online databases, and our IHC. As a result, furin presented with biased expression profiles in normal tissues, showing 12.25-fold higher than ACE2 in the lungs. The furin expression in tumors were significantly increased in ESCA and TGCT, and decreased in DLBC and THYM, indicating furin may play critical mechanistic functions in COVID-19 viral entry into cells in these cancer patients. Line with furin over/downexpression, furin promoter hypo-/hyper-methylation may be the regulatory cause of disease and lead to pathogenesis of ESCA and THYM. Furthermore, presence of FURIN-201 isoform with functional domains (P_proprotein, Peptidase_S8 and S8_pro-domain) is highest in all cancer types in comparison to other isoforms, demonstrating its use in tumorigenesis and SARS-Cov-2 entry into tumor tissues. Furin mutation frequency was highest in UCES, and its mutation might elevate ACE2 expression in LUAD and UCEC, reduce ACE2 expression in COAD, elevate HSPA5 expression in PAAD, and elevate TMPRSS2 expression in BRCA. These results showed that furin mutations mostly increased expression of ACE2, HSPA5, and TMPRSS2 in certain cancers, indicating furin mutations might facilitate COVID-19 cell entry in cancer patients. In addition, high expression of furin was significantly inversely correlated with long overall survival (OS) in LGG and correlated with long OS in COAD and KIRC, indicating that it could be used as a favorable prognostic marker for cancer patients' survival. GO and KEGG demonstrated that furin was mostly enriched in genes for metabolic and biosynthetic processes, retinal dehydrogenase activity, tRNA methyltransferase activity, and genes involving COVID-19, further supporting its role in COVID-19 and cancer metabolism. Moreover, Cordycepin (CD) inhibited furin expression in a dosage dependent manner. Altogether, furin's high expression might not only implies increased susceptibility to SARS-CoV-2 and higher severity of COVID-19 symptoms in cancer patients, but also it highlights the need for cancer treatment and therapy during the COVID-19 pandemic. CD might have a potential to develop an anti-SARS-CoV-2 drug through inhibiting furin expression.
Collapse
Affiliation(s)
- Dabing Li
- Basic Medical School, Southwest Medical University, Luzhou 646000, Sichuan Province, China.,Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lianmei Zhang
- Department of Pathology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xianmao Chen
- Basic Medical School, Southwest Medical University, Luzhou 646000, Sichuan Province, China.,Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Shangyi Fu
- School of Medicine, Baylor College of Medicine, Houston 77030, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston 77030, Texas, USA
| | - Hanchun Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China.,Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
33
|
Traditional Chinese medicine reverses cancer multidrug resistance and its mechanism. Clin Transl Oncol 2021; 24:471-482. [PMID: 34643878 DOI: 10.1007/s12094-021-02716-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023]
Abstract
Chemotherapy is one of the most commonly used clinical treatments among the currently available cancer therapies. However, the phenomenon of Multidrug resistance (MDR) has become a challenge in the treatment process, weakening the impact of chemotherapy. Extensive research on elucidating the development of cancer MDR has identified the following mechanisms that play a critical role in the development of several MDR reversal agents: abnormal expression of cell membrane transporters, adaptation of cancer cells to the microenvironment, regulation of hypoxia, repair of DNA damage and reduction of apoptosis, the enhancement of the EMT process, the existence of cancer stem cells (CSCs), and the abnormal activation of key signaling pathways. However, they failed to demonstrate significant efficacy due to severe side effects during their clinical trials. Traditional Chinese medicines (TCMs) are known to play an important anti-cancer role since they have low toxicity, high efficacy, and safety and can reverse MDR. TCMs reversal agents can be divided into Chinese medicine monomers, synthetic monomers, analogs, or derivatives. Several studies have shown that TCMs can effectively overcome cancer MDR and can be effectively used for treating cancer patients.
Collapse
|
34
|
Wei C, Zou H, Xiao T, Liu X, Wang Q, Cheng J, Fu S, Peng J, Xie X, Fu J. TQFL12, a novel synthetic derivative of TQ, inhibits triple-negative breast cancer metastasis and invasion through activating AMPK/ACC pathway. J Cell Mol Med 2021; 25:10101-10110. [PMID: 34609056 PMCID: PMC8572774 DOI: 10.1111/jcmm.16945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/26/2021] [Accepted: 09/19/2021] [Indexed: 12/23/2022] Open
Abstract
Thymoquinone (TQ) has been reported as an anti‐tumour drug widely studied in various tumours, and its mechanism and effect of which has become a focus of current research. However, previous studies from our laboratory and other groups found that TQ showed weak anti‐tumour effects in many cancer cell lines and animal models. Therefore, it is necessary to modify and optimize the structure of TQ to obtain new chemical entities with high efficiency and low toxicity as candidates for development of new drugs in treating cancer. Therefore, we designed and synthesized several TQ derivatives. Systematic analysis, including in vitro and in vivo, was conducted on a panel of triple‐negative breast cancer (TNBC) cells and mouse model to demonstrate whether TQFL12, a new TQ derivative, is more efficient than TQ. We found that the anti‐proliferative effect of TQFL12 against TNBC cells is significantly stronger than TQ. We also demonstrated TQFL12 affects different aspects in breast cancer development including cell proliferation, migration, invasion and apoptosis. Moreover, TQFL12 inhibited tumour growth and metastasis in cancer cell–derived xenograft mouse model, with less toxicity compared with TQ. Finally, mechanism research indicated that TQFL12 increased AMPK/ACC activity by stabilizing AMPKα, while molecular docking supported the direct interaction between TQFL12 and AMPKα. Taken together, our findings suggest that TQFL12, as a novel chemical entity, possesses a better inhibitory effect on TNBC cells and less toxicity in both in vitro and in vivo studies. As such, TQFL12 could serve as a potential therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Hui Zou
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Ting Xiao
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jiangzhou Peng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xin Xie
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
35
|
Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A Systematic Review of the Biological Effects of Cordycepin. Molecules 2021; 26:5886. [PMID: 34641429 PMCID: PMC8510467 DOI: 10.3390/molecules26195886] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
We conducted a systematic review of the literature on the effects of cordycepin on cell survival and proliferation, inflammation, signal transduction and animal models. A total of 1204 publications on cordycepin were found by the cut-off date of 1 February 2021. After application of the exclusion criteria, 791 papers remained. These were read and data on the chosen subjects were extracted. We found 192 papers on the effects of cordycepin on cell survival and proliferation and calculated a median inhibitory concentration (IC50) of 135 µM. Cordycepin consistently repressed cell migration (26 papers) and cellular inflammation (53 papers). Evaluation of 76 papers on signal transduction indicated consistently reduced PI3K/mTOR/AKT and ERK signalling and activation of AMPK. In contrast, the effects of cordycepin on the p38 and Jun kinases were variable, as were the effects on cell cycle arrest (53 papers), suggesting these are cell-specific responses. The examination of 150 animal studies indicated that purified cordycepin has many potential therapeutic effects, including the reduction of tumour growth (37 papers), repression of pain and inflammation (9 papers), protecting brain function (11 papers), improvement of respiratory and cardiac conditions (8 and 19 papers) and amelioration of metabolic disorders (8 papers). Nearly all these data are consistent with cordycepin mediating its therapeutic effects through activating AMPK, inhibiting PI3K/mTOR/AKT and repressing the inflammatory response. We conclude that cordycepin has excellent potential as a lead for drug development, especially for age-related diseases. In addition, we discuss the remaining issues around the mechanism of action, toxicity and biodistribution of cordycepin.
Collapse
Affiliation(s)
- Masar Radhi
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Sadaf Ashraf
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK;
| | - Steven Lawrence
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Asta Arendt Tranholm
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Peter Arthur David Wellham
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Abdul Hafeez
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Ammar Sabah Khamis
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Robert Thomas
- The Primrose Oncology Unit, Bedford Hospital NHS Trust, Bedford MK42 9DJ, UK;
- Department of Oncology, Addenbrooke’s Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Daniel McWilliams
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham NG5 1PB, UK
| | - Cornelia Huiberdina de Moor
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| |
Collapse
|
36
|
Jo E, Jang HJ, Shen L, Yang KE, Jang MS, Huh YH, Yoo HS, Park J, Jang IS, Park SJ. Cordyceps militaris Exerts Anticancer Effect on Non-Small Cell Lung Cancer by Inhibiting Hedgehog Signaling via Suppression of TCTN3. Integr Cancer Ther 2021; 19:1534735420923756. [PMID: 32456485 PMCID: PMC7265736 DOI: 10.1177/1534735420923756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the effect of Cordyceps
militaris extract on the proliferation and apoptosis of non–small
cell lung cancer (NSCLC) cells and determine the underlying mechanisms. We
performed a CCK-8 assay to detect cell proliferation, detection of morphological
changes through transmission electron microscopy (TEM), annexin V–FITC/PI double
staining to analyze apoptosis, and immunoblotting to measure the protein
expression of apoptosis and hedgehog signaling–related proteins, with C
militaris treated NSCLC cells. In this study, we first found that
C militaris reduced the viability and induced morphological
disruption in NSCLC cells. The gene expression profiles indicated a
reprogramming pattern of genes and transcription factors associated with the
action of TCTN3 on NSCLC cells. We also confirmed that the C
militaris–induced inhibition of TCTN3 expression affected the
hedgehog signaling pathway. Immunoblotting indicated that C
militaris–mediated TCTN3 downregulation induced apoptosis in NSCLC
cells, involved in the serial activation of caspases. Moreover, we demonstrated
that the C militaris negatively modulated GLI1 transcriptional
activity by suppressing SMO/PTCH1 signaling, which affects the intrinsic
apoptotic pathway. When hedgehog binds to the PTCH1, SMO dissociates from PTCH1
inhibition at cilia. As a result, the active GLI1 translocates to the nucleus.
C militaris clearly suppressed GLI1 nuclear translocation,
leading to Bcl-2 and Bcl-xL down-regulation. These results suggested that
C militaris induced NSCLC cell apoptosis, possibly through
the downregulation of SMO/PTCH1 signaling and GLI1 activation via inhibition of
TCTN3. Taken together, our findings provide new insights into the treatment of
NSCLC using C militaris.
Collapse
Affiliation(s)
- Eunbi Jo
- Korea Basic Science Institute, Daejeon,
Republic of Korea
- Hanyang University, Seoul, Republic of
Korea
| | - Hyun-Jin Jang
- Korea Basic Science Institute, Daejeon,
Republic of Korea
- Sungkyunkwan University, Suwon, Republic
of Korea
| | - Lei Shen
- Wonkwang University, Iksan, Republic of
Korea
| | | | | | - Yang Hoon Huh
- Korea Basic Science Institute, Cheongju,
Republic of Korea
| | | | | | - Ik Soon Jang
- Korea Basic Science Institute, Daejeon,
Republic of Korea
- University of Science and Technology,
Daejeon, Republic of Korea
- Ik Soon Jang, Division of Bioconvergence
Analysis, Korea Basic Science Institute, Gwahangno 113, Yuseong-gu, Daejeon
305-333, Republic of Korea.
| | | |
Collapse
|
37
|
Chen C, Wang H, Geng X, Zhang D, Zhu Z, Zhang G, Hou J. Metformin exerts anti-AR-negative prostate cancer activity via AMPK/autophagy signaling pathway. Cancer Cell Int 2021; 21:404. [PMID: 34399755 PMCID: PMC8369631 DOI: 10.1186/s12935-021-02043-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Encouraged by the goal of developing an effective treatment strategy for prostate cancer, this study explored the mechanism involved in metformin-mediated inhibition of AR-negative prostate cancer. METHODS Cell behaviors of DU145 and PC3 cells were determined by CCK8 test, colony formation experiment and scratch test. Flow cytometry was used to detect cell cycle distribution. Cell autophagy was induced with metformin, and an autophagy inhibitor, 3-MA, was used to assess the level of autophagy. Detection of LC3B by immunofluorescence was conducted to determine autophagy level. Cell proliferation, autophagy and cell cycle were examined by performing Western blot. DU145 and PC3 cell lines were transfected with AMPK siRNA targeting AMPK-α1 and AMPK-α2. Tumor formation experiment was carried out to evaluate the anti-prostate cancer effect of metformin in vivo. RESULTS The inhibitory effect of metformin on the proliferation of prostate cancer cell lines was confirmed in this study, and the mechanism of such an effect was related to autophagy and the block of cell cycle at G0/G1 phase. Metformin also induced the activation of AMPK, markedly promoted expression of LC3II, and down-regulated the expression of p62/SQSTM1. Animal experiments showed that the tumor volume of metformin group was smaller, meanwhile, the levels of p-AMPK (Thr172) and LC3B were up-regulated and the Ki-67 level was down-regulated, without abnormalities in biochemical indicators. CONCLUSION This study found that autophagy induction might be the mechanism through which metformin suppressed the growth of AR-negative prostate cancer. Moreover, the activation of AMPK/autophagy pathway might be a therapeutically effective for treating AR-negative prostate cancer in the future.
Collapse
Affiliation(s)
- Chunyang Chen
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, People's Republic of China
| | - He Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xinyu Geng
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215006, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Zhengyu Zhu
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215006, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Jianquan Hou
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, 9 Chongwen Road, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
The Role of Autophagy in Anti-Cancer and Health Promoting Effects of Cordycepin. Molecules 2021; 26:molecules26164954. [PMID: 34443541 PMCID: PMC8400201 DOI: 10.3390/molecules26164954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Cordycepin is an adenosine derivative isolated from Cordyceps sinensis, which has been used as an herbal complementary and alternative medicine with various biological activities. The general anti-cancer mechanisms of cordycepin are regulated by the adenosine A3 receptor, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), and glycogen synthase kinase (GSK)-3β, leading to cell cycle arrest or apoptosis. Notably, cordycepin also induces autophagy to trigger cell death, inhibits tumor metastasis, and modulates the immune system. Since the dysregulation of autophagy is associated with cancers and neuron, immune, and kidney diseases, cordycepin is considered an alternative treatment because of the involvement of cordycepin in autophagic signaling. However, the profound mechanism of autophagy induction by cordycepin has never been reviewed in detail. Therefore, in this article, we reviewed the anti-cancer and health-promoting effects of cordycepin in the neurons, kidneys, and the immune system through diverse mechanisms, including autophagy induction. We also suggest that formulation changes for cordycepin could enhance its bioactivity and bioavailability and lower its toxicity for future applications. A comprehensive understanding of the autophagy mechanism would provide novel mechanistic insight into the anti-cancer and health-promoting effects of cordycepin.
Collapse
|
39
|
Zhong ZH, Yi ZL, Zhao YD, Wang J, Jiang ZB, Xu C, Xie YJ, He QD, Tong ZY, Yao XJ, Leung ELH, Coghi PS, Fan XX, Chen M. Pyronaridine induces apoptosis in non-small cell lung cancer cells by upregulating death receptor 5 expression and inhibiting epidermal growth factor receptor. Chem Biol Drug Des 2021; 99:83-91. [PMID: 34288496 DOI: 10.1111/cbdd.13926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/09/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer death. Pyronaridine, a synthetic drug of artemisinin, has been used in China for over 30 years for the treatment of malaria, but its effect on non-small cell lung cancer (NSCLC) cells is rarely reported. In this study, we determined the efficacy of pyronaridine in four different NSCLC cell lines and explored its mechanism in H1975. The data showed that pyronaridine could upregulate the expression of TNF-related apoptosis-inducing ligand (TRAIL)-mediated death receptor 5 to promote cellular apoptosis. Meanwhile, the JNK (c-Jun N-terminal kinase) level was detected to be significantly increased after treating with pyronaridine. We used JNK inhibitor and found that it could partially inhibit cell apoptosis. The results showed that epidermal growth factor receptor (EGFR), PI3K, and AKT were downregulated after the treatment of pyronaridine. In summary, pyronaridine can selectively kill NSCLC by regulating TRAIL-mediated apoptosis and downregulating the protein level of EGFR. It is a promising anticancer drug for NSCLC.
Collapse
Affiliation(s)
- Zheng-Hong Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.,Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Ze-Lin Yi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yi-Dan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Ze-Bo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Ya-Jia Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Qi-Da He
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Zi-Yan Tong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Paolo Saul Coghi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Min Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.,Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
40
|
Wang Y, Guo M, Lin D, Liang D, Zhao L, Zhao R, Wang Y. Docetaxel-loaded exosomes for targeting non-small cell lung cancer: preparation and evaluation in vitro and in vivo. Drug Deliv 2021; 28:1510-1523. [PMID: 34263685 PMCID: PMC8284156 DOI: 10.1080/10717544.2021.1951894] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a highly lethal disease and the majority of NSCLC patients are desperate for therapies that can effectively target their cancer and ultimately improve their overall survival. Docetaxel (DTX) represents the first-line of the antitumor agent that is used to treat NSCLC; however, it has poor solubility in water and unsatisfactory encapsulation efficiency. In our study, exosomes were isolated from A549 cancer cells by ultracentrifugation and then characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot (WB). The particle size changes of EXO and EXO-DTX were measured daily for seven days to test the stability. DTX was selected payload by electroporation (EXO-DTX). For the in vitro evaluation, cell proliferation, cell cycle, cell apoptosis, reactive oxygen species (ROS) assay and cellular uptake were evaluated in the A549 cells. Also, this study evaluated the target and therapeutic effect of DTX as an antitumor agent in vivo. As a result, EXO-DTX with a particle size of 149.5 nm were successfully prepared and the cytotoxicity of the EXO-DTX was much greater than that of DTX monomers. Exosomes significantly increased the cellular uptake in vitro evaluation and showed better targeting to tumor tissue compared to the free DTX in the mice. We also explored the potential of tumor cell-derived exosomes as a drug delivery agent to target the parent cancer. Hence, we conclude that exosomes might be used as a potential antitumor drug delivery system (DDS).
Collapse
Affiliation(s)
- Ying Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mimi Guo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dingmei Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dajun Liang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ling Zhao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruizhi Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
41
|
Lee HYJ, Meng M, Liu Y, Su T, Kwan HY. Medicinal herbs and bioactive compounds overcome the drug resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer. Oncol Lett 2021; 22:646. [PMID: 34386068 DOI: 10.3892/ol.2021.12907] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Patients harboring epidermal growth factor receptor (EGFR) mutations usually develop resistance to treatment with frontline EGFR-tyrosine kinase inhibitors (EGFR-TKIs). The present review summarizes the current findings and delineates the molecular mechanism of action for the therapeutic effects of herbal extracts and phytochemicals in overcoming EGFR-TKI resistance in NSCLC. Novel molecular targets underlying EGFR-TKI resistance in NSCLC are also discussed. This review provides valuable information for the development of herbal bioactive compounds as alternative treatments for EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Hiu Yan Jennifer Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yulong Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| |
Collapse
|
42
|
Albuquerque C, Manguinhas R, Costa JG, Gil N, Codony-Servat J, Castro M, Miranda JP, Fernandes AS, Rosell R, Oliveira NG. A narrative review of the migration and invasion features of non-small cell lung cancer cells upon xenobiotic exposure: insights from in vitro studies. Transl Lung Cancer Res 2021; 10:2698-2714. [PMID: 34295671 PMCID: PMC8264350 DOI: 10.21037/tlcr-21-121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer deaths worldwide, being non-small lung cancer (NSCLC) sub-types the most prevalent. Since most LC cases are only detected during the last stage of the disease the high mortality rate is strongly associated with metastases. For this reason, the migratory and invasive capacity of these cancer cells as well as the mechanisms involved have long been studied to uncover novel strategies to prevent metastases and improve the patients’ prognosis. This narrative review provides an overview of the main in vitro migration and invasion assays employed in NSCLC research. While several methods have been developed, experiments using conventional cell culture models prevailed, specifically the wound-healing and the transwell migration and invasion assays. Moreover, it is provided herewith a summary of the available information concerning chemical contaminants that may promote the migratory/invasive properties of NSCLC cells in vitro, shedding some light on possible LC risk factors. Most of the reported agents with pro-migration/invasion effects derive from cigarette smoking [e.g., Benzo(a)pyrene and cadmium] and air pollution. This review further presents several studies in which different dietary/plant-derived compounds demonstrated to impair migration/invasion processes in NSCLC cells in vitro. These chemicals that have been proposed as anti-migratory consisted mainly of natural bioactive substances, including polyphenols non-flavonoids, flavonoids, bibenzyls, terpenes, alkaloids, and steroids. Some of these compounds may eventually represent novel therapeutic strategies to be considered in the future to prevent metastasis formation in LC, which highlights the need for additional in vitro methodologies that more closely resemble the in vivo tumor microenvironment and cancer cell interactions. These studies along with adequate in vivo models should be further explored as proof of concept for the most promising compounds.
Collapse
Affiliation(s)
- Catarina Albuquerque
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - João G Costa
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Nuno Gil
- Lung Cancer Unit, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Jordi Codony-Servat
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Rafael Rosell
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain.,Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias i Pujol (IGTP), Campus Can Ruti, Barcelona, Spain.,Internal Medicine Department, Universitat Autónoma de Barcelona, Campus de la UAB, Barcelona, Spain
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
43
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|
44
|
AMPK activation by ASP4132 inhibits non-small cell lung cancer cell growth. Cell Death Dis 2021; 12:365. [PMID: 33824293 PMCID: PMC8024326 DOI: 10.1038/s41419-021-03655-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022]
Abstract
Activation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.
Collapse
|
45
|
Li Z, Feiyue Z, Gaofeng L. Traditional Chinese medicine and lung cancer--From theory to practice. Biomed Pharmacother 2021; 137:111381. [PMID: 33601147 DOI: 10.1016/j.biopha.2021.111381] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
With the continuous breakthroughs in molecular biology and biochemistry, we have constantly made great progress in the treatment of lung cancer. There is no doubt that standard treatment (such as surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy) has greatly improved the prognosis of lung cancer populations. In particular, the immunotherapy has brought more and more good news to countless lung cancer patients. In contrast to these standard treatments, traditional Chinese medicine (TCM) rarely has a profound and comprehensive overview in the field of lung cancer. This article will summarize the latest progress of TCM in lung cancer which is mainly non-small cell lung cancer (NSCLC) from theory to clinical practice, which would carry forward the sophisticated TCM and promote the development of modern medicine.
Collapse
Affiliation(s)
- Zhang Li
- Kunming Medical University, Kunming 650500, China; Department of Thoracic Tumor Surgery, Yunnan Cancer Center, Kunming 650118, China
| | - Zhang Feiyue
- Kunming Medical University, Kunming 650500, China; Department of Thoracic Tumor Surgery, Yunnan Cancer Center, Kunming 650118, China
| | - Li Gaofeng
- Department of Thoracic Tumor Surgery, Yunnan Cancer Center, Kunming 650118, China.
| |
Collapse
|
46
|
Özenver N, Boulos JC, Efferth T. Activity of Cordycepin From Cordyceps sinensis Against Drug-Resistant Tumor Cells as Determined by Gene Expression and Drug Sensitivity Profiling. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21993350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cordycepin is one of the substantial components of the parasitic fungus Cordyceps sinensis as well as other Cordyceps species. It exerts various effects such as antimetastatic, antiinflammatory, antioxidant, and neuroprotective activities. Assorted studies revealed in vitro and in vivo anticancer influence of cordycepin and put forward its potential for cancer therapy. However, the role of multidrug resistance-associated mechanisms for the antitumor effect of cordycepin has not been investigated in great detail thus far. Therefore, we searched cordycepin’s cytotoxicity with regard to well-known anticancer drug resistance mechanisms, including ABCB1, ABCB5, ABCC1, ABCG2, EGFR, and TP53, and identified putative molecular determinants related to the cellular responsiveness of cordycepin. Bioinformatic analyses of NCI microarray data and gene promoter transcription factor binding motif analyses were performed to specify the mechanisms of cordycepin towards cancer cells. COMPARE and hierarchical analyses led to the detection of the genes involved in cordycepin’s cytotoxicity and sensitivity and resistance of cell lines towards cordycepin. Tumor-type dependent response and cross-resistance profiles were further unravelled. We found transcription factors potentially involved in the common transcriptional regulation of the genes identified by COMPARE analyses. Cordycepin bypassed resistance mediated by the expression of ATP-binding cassete (ABC) transporters (P-gp, ABCB5, ABCC1 and BCRP) and mutant epidermal growth factor receptor (EGFR). The drug sensitivity profiles of several DNA Topo I and II inhibitors were significantly correlated with those of cordycepin’s activity. Among eight different tumor types, prostate cancer was the most sensitive, whereas renal carcinoma was the most resistant to cordycepin. NF-κB was discovered as a common transcription factor. The potential of cordycepin is set forth as a potential new drug lead by bioinformatic evaluations. Further experimental studies are warranted for better understanding of cordycepin’s activity against cancer.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Joelle C. Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
47
|
Liao XZ, Gao Y, Zhao HW, Zhou M, Chen DL, Tao LT, Guo W, Sun LL, Gu CY, Chen HR, Xiao ZW, Zhang JX, He MF, Lin LZ. Cordycepin Reverses Cisplatin Resistance in Non-small Cell Lung Cancer by Activating AMPK and Inhibiting AKT Signaling Pathway. Front Cell Dev Biol 2021; 8:609285. [PMID: 33520990 PMCID: PMC7843937 DOI: 10.3389/fcell.2020.609285] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Cisplatin (DDP) is the first-line chemotherapeutic agent against lung cancer. However, the therapeutic effect of DDP loses over time due to the acquired drug resistance in non-small cell lung cancer (NSCLC) cells. In recent years, the role of the traditional Chinese medicine (TCM) cordycepin (Cor) in cancer treatment has been attracting attention. However, the effects of Cor on DDP resistance in NSCLC are unclear. In the present study, we aimed to investigate the effects of Cor in combination with DDP on cell proliferation and apoptosis in NSCLC and explore possible underlying mechanisms. The cell proliferation and apoptosis were analyzed in NSCLC parental (A549) and DDP-resistant (A549DDP) cells treated with DDP alone or in combination with Cor both in vitro and in vivo. Different genes and signaling pathways were investigated between DDP-sensitive and DDP-resistant A549 cells by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The perturbations of the MAPK and PI3K-AKT signaling pathways were evaluated by Western blot analysis. Our data showed that Cor markedly enhanced DDP inhibition on cell proliferation and promotion of apoptosis compared to the DDP-alone group in both A549 and A549DDP cells. The synergic actions were associated with activation of AMPK; inhibition of AKT, mTOR, and downstream P709S6K; and S6 phosphorylation in the AKT pathway compared with DDP alone. Collectively, combination of Cor and DDP has a synergistic effect in inhibiting proliferation and promoting apoptosis of NSCLC cells in the presence or absence of DDP resistance. The antitumor activity is associated with activation of AMPK and inhibition of the AKT pathway to enhance DDP inhibition on NSCLC. Our results suggested that Cor in combination with DDP could be an additional therapeutic option for the treatment of DDP-resistant NSCLC.
Collapse
Affiliation(s)
- Xiao-Zhong Liao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Gao
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Wei Zhao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mi Zhou
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan-Lei Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan-Ting Tao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Ling Sun
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chu-Ying Gu
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han-Rui Chen
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Wei Xiao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Xing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei-Fang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
48
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
49
|
Liu C, Qi M, Li L, Yuan Y, Wu X, Fu J. Natural cordycepin induces apoptosis and suppresses metastasis in breast cancer cells by inhibiting the Hedgehog pathway. Food Funct 2020; 11:2107-2116. [PMID: 32163051 DOI: 10.1039/c9fo02879j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the study, we investigated the role of the hedgehog (Hh) pathway in cordycepin's effects on human breast cancer cells, with respect to cell growth, apoptosis and metastasis. We found cordycepin to have low toxicity but significant anticancer effects. Cordycepin-induced apoptosis led to increased PUMA, CYTO-C, FAS, DR4/5, and cleaved caspase-3; and decreased BCL-2, XIAP and PDGFR-α. Cordycepin inhibited metastasis, which was associated with up-regulated E-cadherin, and down-regulated N-cadherin, SNAIL, SLUG and ZEB1. Cordycepin also inhibited expression of Hh pathway components and GLI transcriptional activity. Inversely, knockout of GLI blocked cordycepin-mediated effects on the apoptotic, epithelial-mesenchymal transition (EMT) and Notch pathways, which indicates that GLI is crucial for cordycepin's effects against breast cancer. Inhibition of GLI enhanced cordycepin's effect on breast cancer cell growth. To our knowledge, this is the first study of cordycepin's effect on the Hh pathway in breast cancer, and provides preliminary data for the in vivo study, and possible therapeutic use, of cordycepin.
Collapse
Affiliation(s)
- Chengyi Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Meng Qi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuan Yuan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoping Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
50
|
Zhou L, Liu R, Liang X, Zhang S, Bi W, Yang M, He Y, Jin J, Li S, Yang X, Fu J, Zhang P. lncRNA RP11-624L4.1 Is Associated with Unfavorable Prognosis and Promotes Proliferation via the CDK4/6-Cyclin D1-Rb-E2F1 Pathway in NPC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1025-1039. [PMID: 33078086 PMCID: PMC7558227 DOI: 10.1016/j.omtn.2020.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in southern China and southeast Asia. Emerging evidence revealed that long noncoding RNAs (lncRNAs) might play important roles in the development and progression of many cancers, including NPC. The functions and mechanisms of the vast majority of lncRNAs involved in NPC remain unknown. In this study, a novel lncRNA RP11-624L4.1 was identified in NPC tissues using next-generation sequencing. In situ hybridization (ISH) was used to analyze the correlation between RP11-624L4.1 expression and the clinicopathological features or prognosis in NPC patients. RNA-Protein Interaction Prediction (RPISeq) predictions and RNA-binding protein immunoprecipitation (RIP) assays were used to identify RP11-624L4.1's interactions with cyclin-dependent kinase 4 (CDK4). As a result, we found that RP11-624L4.1 is hyper-expressed in NPC tissues, which was associated with unfavorable prognosis and clinicopathological features in NPC. By knocking down and overexpressing RP11-624L4.1, we also found that it promotes the proliferation ability of NPC in vitro and in vivo through the CDK4/6-Cyclin D1-Rb-E2F1 pathway. Overexpression of CDK4 in knocking down RP11-624L4.1 cells can partially rescue NPC promotion, indicating its role in the RP11-624L4.1-CDK4/6-Cyclin D1-Rb-E2F1 pathway. Taken together, RP11-624L4.1 is required for NPC unfavorable prognosis and proliferation through the CDK4/6-Cyclin D1-Rb-E2F1 pathway, which may be a novel therapeutic target and prognostic in patients with NPC.
Collapse
Affiliation(s)
- Liuying Zhou
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ruijie Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wu Bi
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei Yang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi He
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jin Jin
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shisheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Corresponding author: Junjiang Fu, Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Corresponding author: Pengfei Zhang, NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
| |
Collapse
|