1
|
Gavioli E, Mantelli F, Cesta MC, Sacchetti M, Allegretti M. The History of Nerve Growth Factor: From Molecule to Drug. Biomolecules 2024; 14:635. [PMID: 38927039 PMCID: PMC11201509 DOI: 10.3390/biom14060635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Nerve growth factor (NGF), the first neurotrophin to be discovered, has a long and eventful research journey with a series of turning points, setbacks, and achievements. Since the groundbreaking investigations led by Nobel Prize winner Rita Levi-Montalcini, advancements in the comprehension of NGF's functions have revolutionized the field of neuroscience, offering new insights and opportunities for therapeutic innovation. However, the clinical application of NGF has historically been hindered by challenges in determining appropriate dosing, administration strategies, and complications related to the production process. Recent advances in the production and scientific knowledge of recombinant NGF have enabled its clinical development, and in 2018, the United States Food and Drug Administration approved cenegermin-bkbj, a recombinant human NGF, for the treatment of all stages of neurotrophic keratitis. This review traces the evolutionary path that transformed NGF from a biological molecule into a novel therapy with potential research applications beyond the eye. Special emphasis is put on the studies that advanced NGF from discovery to the first medicinal product approved to treat a human disease.
Collapse
Affiliation(s)
| | - Flavio Mantelli
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| | - Maria Candida Cesta
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| | - Marta Sacchetti
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| | - Marcello Allegretti
- Dompé farmaceutici S.p.A., Via Santa Lucia, 6, 20122 Milano, Italy; (F.M.); (M.C.C.); (M.S.)
| |
Collapse
|
2
|
Migliaccio AR. Erythropoietin: A Personal Alice in Wonderland Trip in the Shadow of the Giants. Biomolecules 2024; 14:408. [PMID: 38672425 PMCID: PMC11047939 DOI: 10.3390/biom14040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The identification of the hormone erythropoietin (EPO), which regulates red blood cell production, and its development into a pharmaceutical-grade product to treat anemia has been not only a herculean task but it has also been the first of its kind. As with all the successes, it had "winners" and "losers", but its history is mostly told by the winners who, over the years, have published excellent scientific and divulgate summaries on the subject, some of which are cited in this review. In addition, "success" is also due to the superb and dedicated work of numerous "crew" members, who often are under-represented and under-recognized when the story is told and often have several "dark sides" that are not told in the polished context of most reviews, but which raised the need for the development of the current legislation on biotherapeutics. Although I was marginally involved in the clinical development of erythropoietin, I have known on a personal basis most, if not all, the protagonists of the saga and had multiple opportunities to talk with them on the drive that supported their activities. Here, I will summarize the major steps in the development of erythropoietin as the first bioproduct to enter the clinic. Some of the "dark sides" will also be mentioned to emphasize what a beautiful achievement of humankind this process has been and how the various unforeseen challenges that emerged were progressively addressed in the interest of science and of the patient's wellbeing.
Collapse
|
3
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Tanaka T, Okuda H, Isonishi A, Terada Y, Kitabatake M, Shinjo T, Nishimura K, Takemura S, Furue H, Ito T, Tatsumi K, Wanaka A. Dermal macrophages set pain sensitivity by modulating the amount of tissue NGF through an SNX25-Nrf2 pathway. Nat Immunol 2023; 24:439-451. [PMID: 36703006 PMCID: PMC9977679 DOI: 10.1038/s41590-022-01418-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
Cross-talk between peripheral neurons and immune cells is important in pain sensation. We identified Snx25 as a pain-modulating gene in a transgenic mouse line with reduced pain sensitivity. Conditional deletion of Snx25 in monocytes and macrophages, but not in peripheral sensory neurons, in mice (Snx25cKO mice) reduced pain responses in both normal and neuropathic conditions. Bone marrow transplantation using Snx25cKO and wild-type mice indicated that macrophages modulated pain sensitivity. Expression of sorting nexin (SNX)25 in dermal macrophages enhanced expression of the neurotrophic factor NGF through the inhibition of ubiquitin-mediated degradation of Nrf2, a transcription factor that activates transcription of Ngf. As such, dermal macrophages set the threshold for pain sensitivity through the production and secretion of NGF into the dermis, and they may cooperate with dorsal root ganglion macrophages in pain perception.
Collapse
Affiliation(s)
- Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan.
| | - Hiroaki Okuda
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Yuki Terada
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Takeaki Shinjo
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuya Nishimura
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Shoko Takemura
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiro Ito
- Department of Immunology, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan.
| |
Collapse
|
5
|
Reis C, Chambel S, Ferreira A, Cruz CD. Involvement of nerve growth factor (NGF) in chronic neuropathic pain - a systematic review. Rev Neurosci 2023; 34:75-84. [PMID: 35792932 DOI: 10.1515/revneuro-2022-0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 01/11/2023]
Abstract
Pain is a complex experience, encompassing physiological and psychological components. Amongst the different types of pain, neuropathic pain, resulting from injuries to the peripheral or central nervous system, still constitutes a challenge for researchers and clinicians. Nerve growth factor (NGF) is currently regarded as a key contributor and may serve as a therapeutic target in many types of pain, likely including neuropathic pain. Here, we reviewed the role of NGF in neuropathic pain of peripheral and central origin, also addressing its potential use as a pharmacological target to better help patients dealing with this condition that severely impacts the everyday life. For this, we conducted a search in the databases PubMed and Scopus. Our search resulted in 1103 articles (458 in PubMed and 645 in Scopus). Only articles related to the involvement of NGF in pain or articles that approached its potential use as a target in treatment of pain symptoms were included. Duplicates were eliminated and 274 articles were excluded. After careful analysis, 23 articles were selected for review. Original articles studying the role of NGF in pathology as well as its modulation as a possible therapeutic target were included. We found that NGF is widely regarded as a key player in neuropathic pain and seen as a putative therapeutic target. However, evidence obtained from years of clinical trials highlights the toxic adverse effects of anti-NGF therapeutics, precluding its use in clinical context. Further studies are, thus, needed to improve treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Catarina Reis
- Faculty of Medicine of Porto, University of Porto, Porto, Portugal
| | - Sílvia Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Translational Neurourology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Ana Ferreira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Translational Neurourology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Translational Neurourology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Pye C, Bruniges N, Peffers M, Comerford E. Advances in the pharmaceutical treatment options for canine osteoarthritis. J Small Anim Pract 2022; 63:721-738. [PMID: 35285032 PMCID: PMC9790257 DOI: 10.1111/jsap.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/25/2021] [Accepted: 02/05/2022] [Indexed: 12/30/2022]
Abstract
Canine osteoarthritis is a significant cause of pain in many dogs and can therefore compromise animal welfare. As the understanding of the biology and pain mechanisms underpinning osteoarthritis grows, so do the number of treatments available to manage it. Over the last decade, there have been a number of advances in the pharmaceutical treatment options available for dogs with osteoarthritis, as well as an increasing number of clinical trials investigating the efficacy of pre-existing treatments. This review aims to examine the current evidence behind pharmaceutical treatment options for canine osteoarthritis, including non-steroidal anti-inflammatory drugs, piprants, monoclonal antibodies, adjunctive analgesics, structure modifying osteoarthritis drugs and regenerative therapies.
Collapse
Affiliation(s)
- C. Pye
- Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolWilliam Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXUK
| | - N. Bruniges
- University of Liverpool Small Animal Teaching HospitalUniversity of LiverpoolLeahurst Campus, Chester High RoadNestonCH64 7TEUK
| | - M. Peffers
- Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolWilliam Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXUK
| | - E. Comerford
- Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolWilliam Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXUK
| |
Collapse
|
7
|
Shoji S, Suzuki A, Gaitonde P, Cai CH, Marshall S. Population Pharmacokinetics of Tanezumab Following Intravenous or Subcutaneous Administration to Patients with Osteoarthritis or Chronic Low Back Pain. Br J Clin Pharmacol 2022; 88:3321-3334. [PMID: 35112378 DOI: 10.1111/bcp.15259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/04/2021] [Accepted: 11/07/2021] [Indexed: 11/27/2022] Open
Abstract
AIMS Describe population pharmacokinetics of intravenous (IV) and subcutaneous (SC) tanezumab across Phase 2b/3 studies of osteoarthritis (OA) and chronic low back pain (CLBP). Methods Data from 10 studies of IV or SC tanezumab (2.5-20 mg every 8 weeks for up to 56 weeks) were included in a multi-step analysis. In Step 1, a two-compartment model with linear and non-linear elimination (based on prior analysis of pre-2015 IV osteoarthritis studies) was expanded to include other pre-2015 studies. In Step 2, post-2015 SC studies were combined into the model. Steps 3 and 4 evaluated impact of baseline nerve growth factor (NGF) and treatment-emergent anti-drug antibodies (TE ADA). RESULTS SC bioavailability was estimated at 62-76%. The key disposition parameters CL, Vc , Vp , and KM were estimated to be 0.133 L·day-1 , 2.6 L, 1.77 L and 31.2 μg·L-1 . Plasma tanezumab concentration was predicted to reach Cmax at 8.9- 11.2 days following single and multiple SC administration in typical patients within the dose range of SC Phase 3 studies (2.5-10 mg every 8 weeks). Exposure of a typical patient was similar between IV and SC for the second part of the dosing interval (weeks 4-8). Covariates selected on the absorption parameters were WT, age, sex, and injection site. Baseline NGF had minimal effect on maximum elimination capacity and TE ADA status was associated with slightly higher tanezumab clearance (6-7%). CONCLUSION Our model adequately described plasma tanezumab concentration versus time following IV or SC administration. WT was the most influential covariate with respect to absorption of tanezumab in comparison to patient population (OA and CLBP) or other demographics. There was no clinically relevant effect of baseline NGF or TE ADA on tanezumab PK.
Collapse
Affiliation(s)
| | | | - Puneet Gaitonde
- Clinical Pharmacology, Global Product Development, Pfizer, Groton, CT, USA
| | - Chun-Hua Cai
- Clinical Pharmacology, Global Product Development, Pfizer, Groton, CT, USA
| | | |
Collapse
|
8
|
Kamel SR, Ibrahim RS, Moens HM, Mohammed RM. Neuropathic pain in primary knee osteoarthritis patients: correlation with physical function, quality of life, disease severity, and serum beta nerve growth factor levels. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2021. [DOI: 10.1186/s43166-021-00086-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Neuropathic mechanisms are thought to play a role in knee osteoarthritis (KOA) pain. Neuropathic pain questionnaires can promote diagnosis of a neuropathic component. Thus, we aimed to assess the frequency of neuropathic pain in primary KOA patients (using clinical questionnaires) and to investigate its correlation with socio-demographic factors, physical function, quality of life, disease severity, and serum beta nerve growth factor (β-NGF) levels.
Results
Seventy primary KOA patients were included. Neuropathic pain was detected in 52.9% of patients based on Douleur Neuropathique en 4 Questions (DN4) questionnaire and in 38.6% of patients based on Leeds assessment neuropathic pain symptoms and signs questionnaire (LANSS). Serum β-NGF levels were significantly higher in KOA patients than controls (P<0.0001), and in KOA patients with neuropathic pain compared with patients with non-neuropathic pain. DN4 score was positively correlated with Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain, stiffness, and physical function, and it was also negatively correlated with Osteoarthritis knee hip quality of life questionnaire (OAKHQOL) pain scores (rs=0.459, P<0.001; rs= 0.258, P= 0.031; rs= 0.307, P= 0.010; rs = −0.337, P= 0.004, respectively), while LANSS scale was positively correlated with symptom duration, WOMAC stiffness, Lequesne pain, and Lequesne index (rs= 0.260, P= 0.020; rs= 0.343, P= 0.004; rs= 0.344, P= 0.004; rs= 0.322, P= 0.007) and negatively correlated with OAKHQOL physical, OAKHQOL mental health, OAKHQOL social support, and total OAKHQOL scores (rs= −0.258, P= 0.031;rs= −0.254, P= 0.034; rs= −0.283, P= 0.018; rs= −0.261, P= 0.029 respectively).
Conclusions
Neuropathic pain symptoms are frequent in primary KOA patients. KOA patients with neuropathic pain have worse quality of life, extreme disability, and higher serum β-NGF levels. Nerve growth factor inhibitors could have a potential role for not only relieving pain in KOA patients but also improving functional disability and quality of life in these patients.
Collapse
|
9
|
Sarzi-Puttini P, Giorgi V, Di Lascio S, Fornasari D. Acetyl-L-carnitine in chronic pain: A narrative review. Pharmacol Res 2021; 173:105874. [PMID: 34500063 DOI: 10.1016/j.phrs.2021.105874] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Acetyl-L-carnitine (ALC) is an endogenous molecule that not only plays a role in energy metabolism, but also has antioxidant properties, protects from oxidative stress, modulates brain neurotransmitters such as acetylcholine, serotonin and dopamine, and acts on neurotrophic factors such as nerve growth factor (NGF) and metabotropic glutamate (mGlu) receptors by means of epigenetic mechanisms. Importantly, it induces mGlu2 expression at nerve terminals, thus giving rise to analgesia and preventing spinal sensitisation. It has also been found to have even long-term neurotrophic and analgesic activity in experimental models of chronic inflammatory and neuropathic pain. The aim of this narrative review is to summarise the current evidence regarding the use of ALC in patients with chronic pain, and cognitive and mood disorders, and investigate the rationale underlying its use in patients with fibromyalgia syndrome, which is characterised by nociplastic changes that increase the sensitivity of the nervous system to pain.
Collapse
Affiliation(s)
| | - Valeria Giorgi
- Rheumatology Unit, ASST Fatebenefratelli Luigi Sacco University Hospital, Milan, Italy.
| | - Simona Di Lascio
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Abstract
Schwann cells are components of the peripheral nerve myelin sheath, which supports and nourishes axons. Upon injury of the trigeminal nerve, Schwann cells are activated and cause trigeminal neuralgia by engulfing the myelin sheath and secreting various neurotrophic factors. Further, Schwann cells can repair the damaged nerve and thus alleviate trigeminal neuralgia. Here, we briefly describe the development and activation of Schwann cells after nerve injury. Moreover, we expound on the occurrence, regulation, and treatment of trigeminal neuralgia; further, we point out the current research deficiencies and future research directions.
Collapse
Affiliation(s)
- Jia-Yi Liao
- Stomatology College of Nanchang University, Nanchang, China
| | - Tian-Hua Zhou
- Basic Medical School, Nanchang University, Nanchang, China
| | - Bao-Kang Chen
- First Clinical Medical College of Nanchang University, Nanchang, China
| | - Zeng-Xu Liu
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone. Cell Rep 2021; 31:107696. [PMID: 32460020 PMCID: PMC7335423 DOI: 10.1016/j.celrep.2020.107696] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 11/21/2022] Open
Abstract
The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich domain, in which sensory nerves transit. Experimental calvarial injury upregulates Ngf in an IL-1β/TNF-α-rich defect niche, with consequent axonal ingrowth. In calvarial osteoblasts, IL-1β and TNF-α stimulate Ngf and downstream NF-κB signaling. Locoregional deletion of Ngf delays defect site re-innervation and blunted repair. Genetic disruption of Ngf among LysM-expressing macrophages phenocopies these observations, whereas conditional knockout of Ngf among Pdgfra-expressing cells does not. Finally, inhibition of TrkA catalytic activity similarly delays re-innervation and repair. These results demonstrate an essential role of NGF-TrkA signaling in bone healing and implicate macrophage-derived NGF-induced ingrowth of skeletal sensory nerves as an important mediator of this repair.
Collapse
|
12
|
Tanezumab for chronic low back pain: a randomized, double-blind, placebo- and active-controlled, phase 3 study of efficacy and safety. Pain 2021; 161:2068-2078. [PMID: 32453139 PMCID: PMC7431140 DOI: 10.1097/j.pain.0000000000001928] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/30/2020] [Indexed: 01/27/2023]
Abstract
Supplemental Digital Content is Available in the Text. Placebo and tramadol-controlled study assessing long-term safety and efficacy of tanezumab in patients with chronic low back pain and inadequate response to standard analgesics. This randomized, double-blind, phase 3 study (56-week treatment; 24-week follow-up) assessed tanezumab in patients with chronic low back pain and history of inadequate response to standard-of-care analgesics (NCT02528253). Patients received placebo, subcutaneous tanezumab (5 or 10 mg every 8 weeks), or oral tramadol prolonged-release (100-300 mg/day). Primary endpoint was change in low back pain intensity (LBPI) at week 16 for tanezumab vs placebo. Key secondary endpoints were proportion of patients with ≥50% decrease in LBPI at week 16, change in Roland Morris Disability Questionnaire at week 16, and change in LBPI at week 2 for tanezumab vs placebo. Adverse events and joint safety were assessed through weeks 56 and 80, respectively. Tanezumab 10 mg met the primary endpoint by significantly improving LBPI at week 16 vs placebo; least squares (LS) mean (95% CI) difference = −0.40 (−0.76 to −0.04; P = 0.0281). Tanezumab 10 mg significantly improved all key secondary endpoints. Tanezumab 5 mg did not meet the primary endpoint (LS mean [95% CI] treatment difference vs placebo = −0.30 [−0.66 to 0.07; P = 0.1117]), preventing formal testing of key secondary endpoints for this dose. The proportion of patients with ≥50% improvement in LBPI at week 16 was 37.4% in the placebo group, 43.3% in the tanezumab 5 mg group (Odds ratio [95% CI] vs placebo = 1.28 [0.97 to 1.70; P = 0.0846]), and 46.3% in the tanezumab 10 mg group (Odds ratio [95% CI] vs placebo = 1.45 [1.09 to 1.91; P = 0.0101]). Prespecified joint safety events were more frequent with tanezumab 10 mg (2.6%) than tanezumab 5 mg (1.0%), tramadol (0.2%), or placebo (0%). Seven patients, all in the tanezumab 10 mg group (1.4%), underwent total joint replacement. In conclusion, tanezumab 10 mg significantly improved pain and function vs placebo in patients with difficult-to-treat chronic low back pain. Tanezumab was associated with a low rate of joint safety events, some requiring joint replacement.
Collapse
|
13
|
Berenbaum F, Schnitzer TJ, Kivitz AJ, Viktrup L, Hickman A, Pixton G, Brown MT, Davignon I, West CR. General Safety and Tolerability of Subcutaneous Tanezumab for Osteoarthritis: A Pooled Analysis of 3 Randomized, Placebo-Controlled Trials. Arthritis Care Res (Hoboken) 2021; 74:918-928. [PMID: 33973384 PMCID: PMC9310640 DOI: 10.1002/acr.24637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 11/08/2022]
Abstract
Objective This pooled analysis of 3 randomized, placebo‐controlled trials (16–24 week treatment and 8–24 week follow‐up) assessed safety of subcutaneous tanezumab (2.5–10 mg every 8 weeks) in 1,840 patients with hip or knee osteoarthritis. Methods Overall treatment‐emergent adverse events (TEAEs) and TEAEs of abnormal peripheral sensation (APS) were prospectively assessed in 3 trials. Joint safety events (primary osteonecrosis, rapidly progressive osteoarthritis [RPOA], subchondral insufficiency fracture, and pathologic fracture; adjudicated by an independent expert committee) and TEAEs potentially associated with sympathetic neuropathy were prospectively assessed in 2 trials. Results During the treatment period, overall TEAE rates were 51.7% for placebo and 39.5–54.8% for tanezumab 2.5–10 mg; treatment discontinuation rates were 2.0% for placebo and 0–1.3% for tanezumab. Rates of composite joint safety events (predominantly RPOA type 1) over the treatment plus follow‐up period were 0% for placebo and 0.5–3.2% for tanezumab 2.5–5 mg (5 mg was statistically greater than placebo); total joint replacement rates with tanezumab (5.9–7.0%) were not significantly different from placebo (4.5%). Rates of TEAEs of APS (predominantly paresthesia and hypoesthesia) were 2.2% for placebo and 3.2–12.8% for tanezumab 2.5–10 mg. Rates of TEAEs potentially associated with sympathetic neuropathy (predominantly bradycardia and orthostatic hypotension) were 0.8% for placebo and 0.5–2.8% for tanezumab 2.5–5 mg (exposure‐adjusted rates were not significantly different from placebo). Conclusion Tanezumab was generally well tolerated. TEAEs of APS (mostly mild and transient) and joint safety events were infrequent but more common with tanezumab than placebo. A tanezumab dose of 2.5 mg demonstrated a more favorable safety profile than higher doses.
Collapse
Affiliation(s)
- Francis Berenbaum
- Sorbonne Université, INSERM, AP-HP Hospital Saint Antoine, Paris, France
| | - Thomas J Schnitzer
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alan J Kivitz
- Altoona Center for Clinical Research, Duncansville, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Silverman DA, Martinez VK, Dougherty PM, Myers JN, Calin GA, Amit M. Cancer-Associated Neurogenesis and Nerve-Cancer Cross-talk. Cancer Res 2021; 81:1431-1440. [PMID: 33334813 PMCID: PMC7969424 DOI: 10.1158/0008-5472.can-20-2793] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
In this review, we highlight recent discoveries regarding mechanisms contributing to nerve-cancer cross-talk and the effects of nerve-cancer cross-talk on tumor progression and dissemination. High intratumoral nerve density correlates with poor prognosis and high recurrence across multiple solid tumor types. Recent research has shown that cancer cells express neurotrophic markers such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor and release axon-guidance molecules such as ephrin B1 to promote axonogenesis. Tumor cells recruit new neural progenitors to the tumor milieu and facilitate their maturation into adrenergic infiltrating nerves. Tumors also rewire established nerves to adrenergic phenotypes via exosome-induced neural reprogramming by p53-deficient tumors. In turn, infiltrating sympathetic nerves facilitate cancer progression. Intratumoral adrenergic nerves release noradrenaline to stimulate angiogenesis via VEGF signaling and enhance the rate of tumor growth. Intratumoral parasympathetic nerves may have a dichotomous role in cancer progression and may induce Wnt-β-catenin signals that expand cancer stem cells. Importantly, infiltrating nerves not only influence the tumor cells themselves but also impact other cells of the tumor stroma. This leads to enhanced sympathetic signaling and glucocorticoid production, which influences neutrophil and macrophage differentiation, lymphocyte phenotype, and potentially lymphocyte function. Although much remains unexplored within this field, fundamental discoveries underscore the importance of nerve-cancer cross-talk to tumor progression and may provide the foundation for developing effective targets for the inhibition of tumor-induced neurogenesis and tumor progression.
Collapse
Affiliation(s)
- Deborah A Silverman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vena K Martinez
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
15
|
Forouzanfar F, Shojapour M, Aghili ZS, Asgharzade S. Growth Factors as Tools in Photoreceptor Cell Regeneration and Vision Recovery. Curr Drug Targets 2021; 21:573-581. [PMID: 31755378 DOI: 10.2174/1389450120666191121103831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Photoreceptor loss is a major cause of blindness around the world. Stem cell therapy offers a new strategy in retina degenerative disease. Retinal progenitors can be derived from embryonic stem cells (ESC) in vitro, but cannot be processed to a mature state. In addition, the adult recipient retina presents a very different environment than the photoreceptor precursor donor. It seems that modulation of the recipient environment by ectopic development regulated growth factors for transplanted cells could generate efficient putative photoreceptors. The purpose of this review article was to investigate the signaling pathway of growth factors including: insulin-like growth factors (IGFs), fibroblast growth factors (FGF), Nerve growth factor (NGF), Brain-derived neurotrophic factor (BDNF), Taurin and Retinoic acid (RA) involved in the differentiation of neuroretina cell, like; photoreceptor and retinal progenitor cells. Given the results available in the related literature, the differentiation efficacy of ESCs toward the photoreceptor and retinal neurons and the important role of growth factors in activating signaling pathways such as Akt, Ras/Raf1/ and ERKs also inhibit the ASK1/JNK apoptosis pathway. Manipulating differentiated culture, growth factors can influence photoreceptor transplantation efficiency in retinal degenerative disease.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mana Shojapour
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Sadat Aghili
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
16
|
Filippov MA, Tatarnikova OG, Pozdnyakova NV, Vorobyov VV. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls. Neural Regen Res 2021; 16:223-233. [PMID: 32859768 PMCID: PMC7896239 DOI: 10.4103/1673-5374.290878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Various inflammatory stimuli are able to modify or even "re-program" the mitochondrial metabolism that results in generation of reactive oxygen species. In noncommunicable chronic diseases such as atherosclerosis and other cardiovascular pathologies, type 2 diabetes and metabolic syndrome, these modifications become systemic and are characterized by chronic inflammation and, in particular, "neuroinflammation" in the central nervous system. The processes associated with chronic inflammation are frequently grouped into "vicious circles" which are able to stimulate each other constantly amplifying the pathological events. These circles are evidently observed in Alzheimer's disease, atherosclerosis, type 2 diabetes, metabolic syndrome and, possibly, other associated pathologies. Furthermore, chronic inflammation in peripheral tissues is frequently concomitant to Alzheimer's disease. This is supposedly associated with some common genetic polymorphisms, for example, Apolipoprotein-E ε4 allele carriers with Alzheimer's disease can also develop atherosclerosis. Notably, in the transgenic mice expressing the recombinant mitochondria targeted catalase, that removes hydrogen peroxide from mitochondria, demonstrates the significant pathology amelioration and health improvements. In addition, the beneficial effects of some natural products from the xanthophyll family, astaxanthin and fucoxanthin, which are able to target the reactive oxygen species at cellular or mitochondrial membranes, have been demonstrated in both animal and human studies. We propose that the normalization of mitochondrial functions could play a key role in the treatment of neurodegenerative disorders and other noncommunicable diseases associated with chronic inflammation in ageing. Furthermore, some prospective drugs based on mitochondria targeted catalase or xanthophylls could be used as an effective treatment of these pathologies, especially at early stages of their development.
Collapse
Affiliation(s)
| | | | | | - Vasily V. Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
17
|
The Somatosensory World of the African Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:197-220. [PMID: 34424517 DOI: 10.1007/978-3-030-65943-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain-insensitivity as a trait shared by several closely related African mole-rat species. In this chapter we will show how African mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.
Collapse
|
18
|
Qin L, Li J. Nerve growth factor in muscle afferent neurons of peripheral artery disease and autonomic function. Neural Regen Res 2021; 16:694-699. [PMID: 33063730 PMCID: PMC8067946 DOI: 10.4103/1673-5374.293132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In peripheral artery disease patients, the blood supply directed to the lower limbs is reduced. This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs. The painful perception is induced and exaggerate during walking, and is relieved by rest. This symptom is termed by intermittent claudication. The limb ischemia also amplifies autonomic responses during exercise. In the process of pain and autonomic responses originating exercising muscle, a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses. This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle. For the sensory nerve receptors, we emphasize the role played by transient receptor potential vanilloid type 1, purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.
Collapse
Affiliation(s)
- Lu Qin
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianhua Li
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
19
|
Dowgray N, Comerford E. Feline musculoskeletal ageing: How are we diagnosing and treating musculoskeletal impairment? J Feline Med Surg 2020; 22:1069-1083. [PMID: 33100170 PMCID: PMC10814220 DOI: 10.1177/1098612x20965832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PRACTICAL RELEVANCE An understanding of the process of musculoskeletal ageing - which all senior and geriatric cats will experience - is vital to maintaining the health and welfare of our ageing cat population. CLINICAL CHALLENGES Assessment of the feline musculoskeletal system is not always straightforward. Diagnosis of impairment relies on input from owners and veterinarians in terms of visual observation, and clinical and orthopaedic examination, in addition to diagnostic imaging. AUDIENCE This review is written for the primary care veterinary team. AIMS The goals are to raise awareness and improve clinical diagnosis of musculoskeletal impairment as a result of ageing. The article also reviews therapeutic options and considers the evidence available for the prevention/deceleration of musculoskeletal ageing and impairment. EVIDENCE BASE There is good evidence of a high prevalence of osteoarthritis (OA) and degenerative joint disease (DJD) in older cats. There is also good evidence to indicate that functional impairment and chronic pain are sequelae of musculoskeletal disease. However, there is a paucity of information for what is best practice for the management and treatment of musculoskeletal impairment in a clinical situation. There is also a lack of evidence on how prevention of central stimulation of the nervous system caused by musculoskeletal impairment and, in turn the development of chronic pain, can be avoided.
Collapse
Affiliation(s)
| | - Eithne Comerford
- Institute of Life Course and Medical Sciences and School of Veterinary Science, University of Liverpool, UK
| |
Collapse
|
20
|
Kaur A, Singh L, Garg S, Kaur H, Singh N, Bhatti R. Involvement of Oxidative Stress and Nerve Growth Factor in Behavioral and Biochemical Deficits of Experimentally Induced Musculoskeletal Pain in Mice: Ameliorative Effects of Heraclin. J Mol Neurosci 2020; 71:347-357. [PMID: 32676972 DOI: 10.1007/s12031-020-01656-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/01/2020] [Indexed: 01/11/2023]
Abstract
Musculoskeletal pain is a widespread complex regional pain syndrome associated with altered emotional and cognitive functioning along with heightened physical disability that has become a global health concern. Effective management of this disorder and associated disabilities includes accurate diagnosis of its biomarkers and instituting mechanism-based therapeutic interventions. Herein, we explored the role of heraclin, a plant-derived molecule, in musculoskeletal pain and its underlying mechanistic approaches in an experimental mouse model. Reserpine (0.5 mg/kg) for 3 consecutive days evoked hyperalgesia, motor incoordination, lack of exploratory behavior, anxiety, and cognition lapse in mice. Reserpine-challenged mice displayed higher serum cytokine level, altered brain neurotransmitter content, elevated brain and muscle oxidative stress, and upregulated brain nerve growth factor receptor expression. Treatment with heraclin (10 mg/kg for 5 consecutive days) exerted analgesic effect and improved motor coordination and memory deficits in mice. Heraclin arrested serum cytokine rise, normalized brain neurotransmitter content, reduced tissue oxidative stress, and downregulated the nerve growth factor receptor expression. Therefore, it may be suggested that heraclin exerts beneficial effects against reserpine-induced musculoskeletal pain disorder possibly through the attenuation of NGFR-mediated pain and inflammatory signaling. Graphical Abstract.
Collapse
Affiliation(s)
- Anudeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Harmanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
21
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
22
|
Smith ESJ, Park TJ, Lewin GR. Independent evolution of pain insensitivity in African mole-rats: origins and mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:313-325. [PMID: 32206859 PMCID: PMC7192887 DOI: 10.1007/s00359-020-01414-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain insensitivity as a trait shared by several closely related African mole-rat species. One of these African mole-rats, the Highveld mole-rat (Cryptomys hottentotus pretoriae), is uniquely completely impervious and pain free when confronted with electrophilic compounds that activate the TRPA1 ion channel. The Highveld mole-rat has evolved a biophysical mechanism to shut down the activation of sensory neurons that drive pain. In this review, we will show how mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| |
Collapse
|