1
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Arzuk E, Armağan G. Genistein and daidzein induce ferroptosis in MDA-MB-231 cells. J Pharm Pharmacol 2024:rgae106. [PMID: 39245043 DOI: 10.1093/jpp/rgae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES In recent years, there has been a growing interest in targeting ferroptosis for the treatment and prevention of multiple cancers. This study aimed to assess the contribution of ferroptosis to the antiproliferative effects of genistein (GN) and daidzein (DZ) in breast cancer cell lines. METHODS MDA-MB-231 and MCF-7 cells were employed as an in vitro model. The antiproliferative effects of GN and DZ were determined by WST-1 assay in the presence of specific inhibitors of different cell death pathways. The mRNA expressions of Gpx4 and Fsp-1, the levels of lipid peroxidation, glutathione (GSH)/glutathione disulfide (GSSG) ratio, and intracellular iron ion content were assessed in GN- or DZ-treated cells. RESULTS GN and DZ were found to cause ferroptotic cell death in MDA-MB-231, as confirmed by the reversal of viability when cells were pretreated with ferrostatin-1. Furthermore, both phytochemicals induced biochemical markers of ferroptosis, including lipid peroxidation and iron ions levels, and decreased GSH/GSSG levels. The mRNA expression levels of the main anti-ferroptotic genes, Gpx4 and Fsp-1, were diminished by the treatment of both phytochemicals. Surprisingly, ferroptosis did not play a role in GN- or DZ-induced cell death in MCF-7 cells. CONCLUSION Our findings highlight the potential of GN and DZ as ferroptosis inducers in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35080, İzmir, Turkey
| | - Güliz Armağan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35080, İzmir, Turkey
| |
Collapse
|
3
|
Xue Q, Wang B, Feng J, Li C, Yu M, Zhao Y, Qi Z. Lycorine (Lycoris radiata)-a unique natural medicine on breast cancer. J Cell Mol Med 2024; 28:e70032. [PMID: 39175104 PMCID: PMC11341274 DOI: 10.1111/jcmm.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Breast cancer (BC) is one of the most common types of cancer among women worldwide. Lycorine (Lycoris radiata), a small molecule derived from the traditional Chinese herb Amaryllidaceae plants, has appeared potential effect on inhibiting the growth of cancer cells and inducing apoptosis in various types of cancer with minor side effects. To discuss the therapeutic effects and molecular mechanisms of lycorine on BC established by lycorine-treated S180 tumour-bearing mice in vivo. Furthermore, both the mitotic and microtubule assembly dynamics genes were performed by qPCR assays, and the protein expression associated with mitotic arrest was investigated by western blot. Lycorine was demonstrated to reduce sarcoma growth of S180 tumour-bearing mice and inhibit the proliferation of MCF-7 cells in concentration-dependent manner. Moreover, lycorine induced M phase cell cycle arrest via interfering with the mitotic apparatus regulated the expression of 20 genes and 15 proteins in cell cycle progression. Furthermore, this study confirmed that the potential effect of lycorine on BC might be mediated by cell cycle arrest in M phase for the first time. These results would be the consequence of exploitation of lycorine as a potential drug for BC therapy, however further preclinical and clinical studies are still needed.
Collapse
Affiliation(s)
- Qinbing Xue
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Bing Wang
- School of Food EngineeringHarbin University of CommerceHarbinChina
| | - Jie Feng
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Chaoyu Li
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Yan Zhao
- Department of Medical ImagingThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zheng Qi
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| |
Collapse
|
4
|
Oncu S, Becit-Kizilkaya M, Sen S, Ugur-Kaplan AB, Cetin M, Celik S. Daidzein nanosuspension in combination with cisplatin to enhance therapeutic efficacy against A549 non-small lung cancer cells: an in vitro evaluation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4871-4881. [PMID: 38159158 DOI: 10.1007/s00210-023-02924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Lung cancer is the most common cause of cancer-related mortality, chemo-resistance, and toxicity limit treatment. The focus is on innovative combined phytotherapy to improve treatment outcomes. Our aim was to investigate the potential effects of daidzein nanosuspension (DZ-NS) and its combination with cisplatin (CIS) on A549 non-small lung cancer cells. Cytotoxicity was investigated using MTT and Chou-Talalay methods. Oxidative, apoptotic, and inflammatory markers were analyzed by ELISA and qRT-PCR. The IC50 value for DZ-NS was 25.23 µM for 24 h and was lower than pure DZ (IC50 = 835 µM for pure DZ). DZ-NS (at IC50x2 and IC50 values) showed synergistic cytotoxicity with CIS. The cells treated with DZ-NS had low TOS and OSI levels. However, DZ-NS failed to regulate Cas3 and TGF-β1 activation in A549 cells. MMP-9 gene expression was significantly suppressed in DZ-NS-treated cells, especially in combination therapy. DZ represents a potential combination option for the treatment of lung cancer, and its poor toxicokinetic properties limit its clinical use. To overcome these limitations, the effects of the nanosuspension formulation were tested. DZ-NS showed a cytotoxic effect on A549 cells and optimized the therapeutic effect of CIS. This in vitro synergistic effect was mediated by suppression of MMP-9 and not by oxidative stress or Cas3-activated apoptosis. This study provides the basis for an in vivo and clinical trial of DZ-NS with concurrent chemotherapy.
Collapse
Affiliation(s)
- Seyma Oncu
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Merve Becit-Kizilkaya
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, 03030, Turkey.
| | - Serkan Sen
- Department of Medical Laboratory Techniques, Ataturk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Afife Busra Ugur-Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Meltem Cetin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Sefa Celik
- Department of Medical Biochemistry, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Huang W, Wen F, Yang P, Li Y, Li Q, Shu P. Yi-qi-hua-yu-jie-du decoction induces ferroptosis in cisplatin-resistant gastric cancer via the AKT/GSK3β/NRF2/GPX4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155220. [PMID: 38056149 DOI: 10.1016/j.phymed.2023.155220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Resistance to chemotherapy in gastric cancer (GC) is a ubiquitous challenge for its treatment. Yi-qi-hua-yu-jie-du decoction (YJD), an empirical formula in Traditional Chinese Medicine (TCM), demonstrated survival-prolonging functions in patients with GC. Previous research has shown that YJD could also inhibit drug resistance in GC. However, the precise mechanisms for how YJD accomplishes this remain incompletely explained. PURPOSE The research aimed to identify differential metabolic characteristics in cisplatin-resistant GC and investigate whether YJD can target these differences to suppress GC drug resistance. METHODS Metabolomic analysis was conducted to identify metabolic disparities between cisplatin-resistant and parental GC cells, as well as metabolic modifications resulting from YJD intervention in cisplatin-resistant GC cells. The effect of YJD on ferroptosis stimulation was assessed by measuring the levels of reactive oxygen species (ROS), malondialdehyde (MDA), iron ions, the reduced glutathione (GSH) to oxidised glutathione (GSSG) ratio, and alterations in mitochondrial morphology. Western blotting and quantitative real-time polymerase chain reaction (Q-PCR) were employed to verity the mechanisms of YJD-triggered ferroptosis through GPX4 and NRF2 overexpression models, alongside the AKT activator SC79. In vivo validation was conducted using nude mouse xenograft models. RESULTS Cisplatin-resistant GC exhibited altered GSH/GPX4 metabolism, and ferroptosis was a significantly enriched cell death pattern with YJD treatment in cisplatin-resistant GC cells. Ferroptosis biomarkers, including ROS, MDA, iron ions, the GSH/GSSG ratio, and mitochondrial morphology, were remarkably changed with the YJD intervention. Mechanistic experiments demonstrated that YJD inhibited the phosphorylation cascade activity of the AKT/GSK3β pathway, thereby reducing NRF2 expression. The level of GPX4, a crucial enzyme involved in glutathione metabolism, was attenuated, facilitating ferroptosis induction in cisplatin-resistant GC. CONCLUSION The research reveals, for the first time, changes in GSH/GPX4 metabolism in cisplatin-resistant GC cells based on metabolomic analysis. YJD induced ferroptosis in cisplatin-resistant GC by inhibiting GPX4 through the AKT/GSK3β/NRF2 pathway, thus attenuating the cisplatin drug resistance in GC. Our findings identify metabolic changes in cisplatin-resistant GC and establish a theoretical framework for YJD on tackling drug resistance in GC through ferroptosis.
Collapse
Affiliation(s)
- Wenjie Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Fang Wen
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Peipei Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ye Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qiurong Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
6
|
Zhang J, Chen M, Liu J, Peng D, Dai Z, Zou X, Li Z. A Knowledge-Graph-Based Multimodal Deep Learning Framework for Identifying Drug-Drug Interactions. Molecules 2023; 28:molecules28031490. [PMID: 36771157 PMCID: PMC9919258 DOI: 10.3390/molecules28031490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The identification of drug-drug interactions (DDIs) plays a crucial role in various areas of drug development. In this study, a deep learning framework (KGCN_NFM) is presented to recognize DDIs using coupling knowledge graph convolutional networks (KGCNs) with neural factorization machines (NFMs). A KGCN is used to learn the embedding representation containing high-order structural information and semantic information in the knowledge graph (KG). The embedding and the Morgan molecular fingerprint of drugs are then used as input of NFMs to predict DDIs. The performance and effectiveness of the current method have been evaluated and confirmed based on the two real-world datasets with different sizes, and the results demonstrate that KGCN_NFM outperforms the state-of-the-art algorithms. Moreover, the identified interactions between topotecan and dantron by KGCN_NFM were validated through MTT assays, apoptosis experiments, cell cycle analysis, and molecular docking. Our study shows that the combination therapy of the two drugs exerts a synergistic anticancer effect, which provides an effective treatment strategy against lung carcinoma. These results reveal that KGCN_NFM is a valuable tool for integrating heterogeneous information to identify potential DDIs.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meng Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dongdong Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (X.Z.); (Z.L.)
| | - Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Correspondence: (X.Z.); (Z.L.)
| |
Collapse
|
7
|
Tuli HS, Kumar A, Sak K, Aggarwal D, Gupta DS, Kaur G, Vashishth K, Dhama K, Kaur J, Saini AK, Varol M, Capanoglu E, Haque S. Gut Microbiota-Assisted Synthesis, Cellular Interactions and Synergistic Perspectives of Equol as a Potent Anticancer Isoflavone. Pharmaceuticals (Basel) 2022; 15:ph15111418. [PMID: 36422548 PMCID: PMC9697248 DOI: 10.3390/ph15111418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
It is well known that, historically, plants have been an important resource of anticancer agents, providing several clinically approved drugs. Numerous preclinical studies have shown a strong anticancer potential of structurally different phytochemicals, including polyphenolic constituents of plants, flavonoids. In this review article, suppressing effects of equol in different carcinogenesis models are unraveled, highlighting the mechanisms involved in these anticancer activities. Among flavonoids, daidzein is a well-known isoflavone occurring in soybeans and soy products. In a certain part of population, this soy isoflavone is decomposed to equol under the action of gut microflora. Somewhat surprisingly, this degradation product has been shown to be more bioactive than its precursor daidzein, revealing a strong and multifaceted anticancer potential. In this way, it is important to bear in mind that the metabolic conversion of plant flavonoids might lead to products that are even more efficient than the parent compounds themselves, definitely deserving further studies.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali 160071, India
| | - Katrin Sak
- NGO Praeventio, 50407 Tartu, Estonia
- Correspondence:
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s, NMIMS, Mumbai 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s, NMIMS, Mumbai 400056, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh 160012, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Adesh K. Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Qiu J, Zhang Z, Hu A, Zhao P, Wei X, Song H, Yang J, Li Y. Integrating UPLC-HR-MS/MS, Network Pharmacology, and Experimental Validation to Uncover the Mechanisms of Jin'gan Capsules against Breast Cancer. ACS OMEGA 2022; 7:28003-28015. [PMID: 35990498 PMCID: PMC9386888 DOI: 10.1021/acsomega.2c01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In the theory of traditional Chinese medicine (TCM), "liver-qi" stagnation and heat-induced toxicity represent the main etiologies of breast cancer. Recently, several TCMs with heat-clearing and detoxification efficacy have shown inhibitory effects on breast cancer. Jin'gan capsules (JGCs), initially approved to treat colds in China, are a heat-clearing and detoxification TCM formula. However, the anticancer activity of JGCs against breast cancer and its underlying mechanisms remain unclear. First, we assessed the antiproliferative activity of JGCs in breast cancer cell lines and evaluated their effects on cell apoptosis and the cell cycle by flow cytometry. Furthermore, we identified the potential bioactive components of JGCs and their corresponding target genes and constructed a bioactive compound-target interaction network by ultra-performance liquid chromatography-high-resolution tandem mass spectrometry (UPLC-HR-MS/MS) and network pharmacology analysis. Finally, the underlying mechanism was investigated through gene function enrichment analysis and experimental validation. We found that JGCs significantly inhibited breast cancer cell growth with IC50 values of 0.56 ± 0.03, 0.16 ± 0.03, and 0.94 ± 0.09 mg/mL for MDA-MB-231, MDA-MB-468, and MCF-7, respectively. In addition, JGC treatment dramatically induced apoptosis and S phase cell cycle arrest in breast cancer cells. Western blot analysis confirmed that JGCs could regulate the protein levels of apoptosis- and cell cycle-related genes. Utilizing UPLC-HR-MS/MS analysis and network pharmacology, we identified 7 potential bioactive ingredients in JGCs and 116 antibreast cancer targets. Functional enrichment analysis indicated that the antitumor effects of JGCs were strongly associated with apoptosis and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. Western blot analysis validated that JGC treatment markedly decreased the expression levels of p-JAK2, p-STAT3, and STAT3. Our findings suggest that JGCs suppress breast cancer cell proliferation and induce cell cycle arrest and apoptosis partly by inhibiting the JAK2/STAT3 signaling pathway, highlighting JGCs as a potential therapeutic candidate against breast cancer.
Collapse
Affiliation(s)
- Jianfei Qiu
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Zhiyin Zhang
- Guiyang
Hospital of Guizhou Aviation Industry Group, Guiyang 550025, China
| | - Anling Hu
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Peng Zhao
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Xuenai Wei
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Hui Song
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Jue Yang
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Yanmei Li
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| |
Collapse
|
9
|
Mahmoud M, Abdollah MRA, Elsesy ME, Abou El Ella DA, Zada SK, Tolba MF. The natural isoflavone Biochanin-A synergizes 5-fluorouracil anticancer activity in vitro and in vivo in Ehrlich solid-phase carcinoma model. Phytother Res 2022; 36:1310-1325. [PMID: 35112408 DOI: 10.1002/ptr.7388] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Isoflavones are considered one of the most extensively studied plant-derived phytoestrogenic compounds. Of these, Biochanin A (Bio-A), a natural isoflavone abundant in cabbage, alfalfa, and red clover, has drawn a lot of attention. As reported in multiple studies, Bio-A possesses a promising anticancer activity against estrogen receptor-positive (ER+) breast cancer. The current study investigated the working hypothesis that Bio-A could synergistically enhance the potency of 5-fluorouracil (5-FU) in ER+ breast cancer. The hypothesis was tested both in vitro on hormone receptor-positive (MCF-7) and triple-negative breast cancer cells (MDA-MB231). Additionally, in vivo studies were performed in the Ehrlich solid-phase carcinoma mouse model. The in vitro cytotoxicity studies revealed that Bio-A synergistically increased the potency of 5-FU in both MCF-7 and MDA-MB231 cell lines. The synergistic effect of 5-FU/Bio-A combination was verified in vivo. The combination therapy (where 5-FU was used at one fourth its full dose) led to a significant 75% reduction in tumor volume after two treatment cycles. This was in addition to producing a significant 2.1-fold increase in tumor necrosis area% compared to mock-treated control. In conclusion, the current study presents the first preclinical evidence for the potential merit of 5-FU/Bio-A combination for the treatment of ER+ breast cancer. The synergistic antitumor effect of Bio-A/ 5-FU combination can be, at least partly, attributed to Bio-A-mediated suppression of ER-α/Akt axis and the augmentation of 5-FU-mediated proapoptotic effects. © 2022 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha R A Abdollah
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt.,The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, Egypt
| | - Mohamed E Elsesy
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dalal A Abou El Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Suher K Zada
- Biology Department, School of Sciences and Engineering, the American University in Cairo (AUC), New Cairo, Egypt
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.,School of Life and Medical Sciences, The University of Hertfordshire-hosted by Global Academic Foundation, New Administrative Capital, Egypt
| |
Collapse
|
10
|
Urbina-Jara LK, Martinez-Ledesma E, Rojas-Martinez A, Rodriguez-Recio FR, Ortiz-Lopez R. DNA Repair Genes as Drug Candidates for Early Breast Cancer Onset in Latin America: A Systematic Review. Int J Mol Sci 2021; 22:13030. [PMID: 34884835 PMCID: PMC8657579 DOI: 10.3390/ijms222313030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
The prevalence of breast cancer in young women (YWBC) has increased alarmingly. Significant efforts are being made to elucidate the biological mechanisms concerning the development, prognosis, and pathological response in early-onset breast cancer (BC) patients. Dysfunctional DNA repair proteins are implied in BC predisposition, progression, and therapy response, underscoring the need for further analyses on DNA repair genes. Public databases of large patient datasets such as METABRIC, TCGA, COSMIC, and cancer cell lines allow the identification of variants in DNA repair genes and possible precision drug candidates. This study aimed at identifying variants and drug candidates that may benefit Latin American (LA) YWBC. We analyzed pathogenic variants in 90 genes involved in DNA repair in public BC datasets from METABRIC, TCGA, COSMIC, CCLE, and COSMIC Cell Lines Project. Results showed that reported DNA repair germline variants in the LA dataset are underrepresented in large databases, in contrast to other populations. Additionally, only six gene repair variants in women under 50 years old from the study population were reported in BC cell lines. Therefore, there is a need for new approaches to study DNA repair variants reported in young women from LA.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico; (L.K.U.-J.); (E.M.-L.); (A.R.-M.); (F.R.R.-R.)
| |
Collapse
|
11
|
Zhu Y, Yang Z, Xie Y, Yang M, Zhang Y, Deng Z, Cai L. Investigation of inhibition effect of daidzein on osteosarcoma cells based on experimental validation and systematic pharmacology analysis. PeerJ 2021; 9:e12072. [PMID: 34540371 PMCID: PMC8415282 DOI: 10.7717/peerj.12072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objective This study aims to explore the effect of daidzein, which is a natural isoflavone compound mainly extracted from soybeans, on osteosarcoma and the potential molecular mechanism. Material and Methods 143B and U2OS osteosarcoma cells were treated with gradient concentrations of daidzein, and MTT assay was used to determine the cell proliferation capacity and IC50. Hoechst 33342 staining and Annexin V-FITC/PI detection were used to determine apoptosis. Cell cycle was analyzed by flow cytometry, and migration ability were detected by transwell assays and scratch wound assay. An osteosarcoma xenograft mice model was applied to investigate the effect of daidzein on osteosarcoma in vivo. Systematic pharmacology and molecular modeling analysis were applied to predict the target of daidzein to osteosarcoma, and the target Src was verified by western blotting. We also observed the effect of daidzein on cell proliferation and apoptosis of Src-overexpressing osteosarcoma cells. Results In vitro, daidzein significantly inhibited 143B and U2OS osteosarcoma cell proliferation and migration, and induced cell cycle arrest. In vivo, daidzein exerts antitumor effects in osteosarcoma xenograft mice. After systematic screening and analysis, Src-MAPK signaling pathway was predicted as the highest-ranked pathway. Western blot demonstrated that daidzein inhibited phosphorylation of the Src-ERK pathway in osteosarcoma cells. Also, overexpression of Src could partially reverse the inhibitory effects of daidzein on osteosarcoma cell proliferation. Conclusion Daidzein exerts an antitumor effect on osteosarcoma, and the mechanism may be through the Src-ERK pathway.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhiqiang Yang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuanlong Xie
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Min Yang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yufeng Zhang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhouming Deng
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Cai
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
12
|
Privatti RT, Rodrigues CEDC. An Overview of the Composition, Applications, and Recovery Techniques of the Components of Okara Aimed at the Biovalorization of This Soybean Processing Residue. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rafaela Torrezan Privatti
- Laboratório De Engenharia De Separações (LES), Departamento De Engenharia De Alimentos (ZEA), Faculdade De Zootecnia E Engenharia De Alimentos (FZEA), Universidade De Sao Paulo (USP), Pirassununga, Brazil
| | - Christianne Elisabete da Costa Rodrigues
- Laboratório De Engenharia De Separações (LES), Departamento De Engenharia De Alimentos (ZEA), Faculdade De Zootecnia E Engenharia De Alimentos (FZEA), Universidade De Sao Paulo (USP), Pirassununga, Brazil
| |
Collapse
|
13
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
14
|
Torrens-Mas M, Roca P. Phytoestrogens for Cancer Prevention and Treatment. BIOLOGY 2020; 9:E427. [PMID: 33261116 PMCID: PMC7759898 DOI: 10.3390/biology9120427] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Phytoestrogens are a large group of natural compounds found in more than 300 plants. They have a close structural similarity to estrogens, which allow them to bind to both estrogen receptors (ER), ERα and ERβ, presenting a weak estrogenic activity. Phytoestrogens have been described as antioxidant, anti-inflammatory, anti-thrombotic, anti-allergic, and anti-tumoral agents. Their role in cancer prevention has been well documented, although their impact on treatment efficiency is controversial. Several reports suggest that phytoestrogens may interfere with the effect of anti-cancer drugs through the regulation of oxidative stress and other mechanisms. Furthermore, some phytoestrogens could exert a protective effect on healthy cells, thus reducing the secondary effects of cancer treatment. In this review, we have studied the recent research in this area to find evidence for the role of phytoestrogens in cancer prevention and therapy efficacy.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Jiang B, Yang W, Chen L, Wang S, Chen S, Bao Y, Chen Q, Wang Q, Asakawa T. In vitro effects of Pueraria extract on ethanol-exposed microglia and neurons. Biomed Pharmacother 2020; 127:110163. [PMID: 32380388 DOI: 10.1016/j.biopha.2020.110163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022] Open
Abstract
Predominant health impacts from alcoholism are chronic neurologic deficits and hepatic dysfunction. Pueraria extract (PE) is a solution obtained from the dried root of Pueraria lobate and can reverse alcohol-induced hepatic damage. The present study aimed to elucidate the effects of PE on ethanol-induced injury in microglia and neurons. To confirm the reliability of the experimental approach, an in vivo demonstration of PE activity was used to verify its impact on hepatic damage in mice exposed to ethanol (ETOH). Subsequently, an in vitro assay was used to verify the effects of PE on ETOH-exposed microglia and neurons.PE reversed fibrosis and hyperplasia, adipocyte infiltration, hepatomegaly, hepatic function, lipid metabolism, indicators of oxidative stress, and morphological changes in hepatic cells, induced by ETOH exposure. The reliability of the experimental approach was thus confirmed. PE also reversed the activation of microglia and inflammatory-related cytokines and proteins induced by ETOH exposure. PE showed protective effects on neurons via inhibition of mitochondrial fission. in vivo and in vitro evidence indicated that PE might be useful in the treatment of both hepatic injury and neurologic deficits commonly observed in chronic alcoholism.
Collapse
Affiliation(s)
- Bo Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, China.
| | - Wenhui Yang
- School of Life Science and Biotechnology, Dalian University of Technology, China
| | - Lei Chen
- Radiology department, the Affiliated Third hospital of Xiamen, Fujian University of Traditional Chinese Medicine, China
| | - Shushen Wang
- School of Life Science and Biotechnology, Dalian University of Technology, China
| | - Shujun Chen
- School of Life Science and Biotechnology, Dalian University of Technology, China
| | - Yongming Bao
- School of Life Science and Biotechnology, Dalian University of Technology, China
| | - Qiliang Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qiong Wang
- Hangzhou Changgentang Clinic of TCM, Hangzhou 310009, China
| | - Tetsuya Asakawa
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, Hamamatsu-city, Shizuoka, Japan.
| |
Collapse
|
16
|
Wang B, Xu H, Hu X, Ma W, Zhang J, Li Y, Yu M, Zhang Y, Li X, Ye X. Synergetic inhibition of daidzein and regular exercise on breast cancer in bearing-4T1 mice by regulating NK cells and apoptosis pathway. Life Sci 2020; 245:117387. [PMID: 32007575 DOI: 10.1016/j.lfs.2020.117387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
The aim of this study was to investigate the inhibition of daidzein or/and regular exercise on breast cancer and to reveal the potential biological mechanisms. BALB/c mice pretreated with regular exercise training for 20 days (15 m/min, 60 min/d) were orthotopically transplanted with mouse breast cancer cells (4T1), and then treated with daidzein (145 mg/kg) by gavage for another 22 days. Results showed that exercise or daidzein inhibited tumor growth in mice to a different degree. Particularly, co-treatment with exercise and daidzein showed an obviously synergistic inhibition on the tumor growth (P < 0.01), compared with the tumor control. Further researches indicated that the combination of exercise and daidzein synergistically mobilized and redistributed natural killer cells through upregulating the level of epinephrine and interleukin-6. Moreover, exercise combined with daidzein induces apoptosis in cancer cells via Fas/FasL-initiated mitochondrial apoptosis signaling pathway. These results suggested that regular exercise combined with daidzein may explore a candidate way to prevent and treat the breast cancer.
Collapse
Affiliation(s)
- Bin Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Heshan Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyin Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenyu Ma
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuanfeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Min Yu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yaru Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Ma T, Liang Y, Li Y, Song X, Zhang N, Li X, Chen B, Zhao W, Wang L, Yang Q. LncRNA LINP1 confers tamoxifen resistance and negatively regulated by ER signaling in breast cancer. Cell Signal 2020; 68:109536. [PMID: 31927036 DOI: 10.1016/j.cellsig.2020.109536] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/28/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Tamoxifen (TAM) is frequently used to treat patients with estrogen receptor-positive (ER+) breast cancer; however, the development of endocrine resistance represents a major impediment for successful treatment. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) may serve critical roles in regulating endocrine resistance in breast cancer. In the present study, it was determined that the expression of lncRNA in nonhomologous end joining pathway 1 (LINP1) was increased in tamoxifen-resistant breast cancer cells, and that LINP1 knockdown significantly attenuated the tamoxifen resistance and viability of tamoxifen-resistant breast cancer cells in vitro and in vivo. LINP1 knockdown increased apoptosis in cells following treatment with tamoxifen. Furthermore, LINP1 overexpression resulted in increased cell mobility by regulating the EMT process. Mechanistically, LINP1 is a direct target of ER-mediated transcriptional repression, and both tamoxifen treatment and hormone deprivation increased the expression of LINP1. LINP1 overexpression was associated with downregulation of the levels of ER protein and attenuated the estrogen response, which is a pivotal contributing factor to anti-estrogen resistance. Taken together, the present study highlights the pivotal role of LINP1 in tamoxifen resistance, which may serve as a potential target to improve the effectiveness and efficacy of tamoxifen treatment in breast cancer.
Collapse
Affiliation(s)
- Tingting Ma
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yiran Liang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaojin Song
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
18
|
Montalesi E, Cipolletti M, Cracco P, Fiocchetti M, Marino M. Divergent Effects of Daidzein and its Metabolites on Estrogen-Induced Survival of Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12010167. [PMID: 31936631 PMCID: PMC7017042 DOI: 10.3390/cancers12010167] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023] Open
Abstract
Although soy consumption is associated with breast cancer prevention, the low bioavailability and the extensive metabolism of soy-active components limit their clinical application. Here, the impact of daidzein (D) and its metabolites on estrogen-dependent anti-apoptotic pathway has been evaluated in breast cancer cells. In estrogen receptor α-positive breast cancer cells treated with D and its metabolites, single or in mixture, ERα activation and Neuroglobin (NGB) levels, an anti-apoptotic estrogen/ERα-inducible protein, were evaluated. Moreover, the apoptotic cascade activation, as well as the cell number after stimulation was assessed in the absence/presence of paclitaxel to determine the compound effects on cell susceptibility to a chemotherapeutic agent. Among the metabolites, only D-4'-sulfate maintains the anti-estrogenic effect of D, reducing the NGB levels and rendering breast cancer cells more prone to the paclitaxel treatment, whereas other metabolites showed estrogen mimetic effects, or even estrogen independent effects. Intriguingly, the co-stimulation of D and gut metabolites strongly reduced D effects. The results highlight the important and complex influence of metabolic transformation on isoflavones physiological effects and demonstrate the need to take biotransformation into account when assessing the potential health benefits of consumption of soy isoflavones in cancer.
Collapse
|
19
|
Le B, Ngoc APT, Yang SH. Synbiotic fermented soymilk with Weissella cibaria FB069 and xylooligosaccharides prevents proliferation in human colon cancer cells. J Appl Microbiol 2019; 128:1486-1496. [PMID: 31834648 DOI: 10.1111/jam.14551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 01/17/2023]
Abstract
AIM Studies on the anticancer effects of synbiotic fermented soymilk are rare. The aim of the present study was to evaluate the effect of synbiotic fermented soymilk supplemented with xylooligosaccharides and inoculated with Weissella cibaria FB069 (FSMXW) in the proliferation of colon cancer cell and compare it with the effect of soymilk inoculated with Lactobacillus rhamnosus GG (LGG). METHODS AND RESULTS Both FB069 and LGG were able to grow in soy-based products and rapidly reduce their pH as a result of fermentation. The addition of XOS significantly enhanced the acidification rate, viscosity and total cell concentration in fermented soymilk inoculated with W. cibaria FB069. However, the same effect was not observed following inoculation with LGG. Moreover, the synbiotic FSMXW showed higher dextran, folate, GABA and aglycone content. FSMXW inhibited the proliferation of Caco-2 and HCT116 cell lines, by reducing the transcription of MD2, TLR4, MyD88, and NF-κb. CONCLUSIONS The synbiotic soymilk containing XOS and W. cibaria FB069 increase nutrient and functional compounds through fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY Our finding suggests that W. cibaria and XOS can be potentially employed in developing functional foods and health-related products.
Collapse
Affiliation(s)
- B Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Republic of Korea
| | - A P T Ngoc
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Republic of Korea
| | - S H Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Republic of Korea
| |
Collapse
|