1
|
Ren L, Xuan L, Li A, Yang Y, Zhang W, Zhang J, Zhang Y, An Z. Gamma-aminobutyric acid supplementation improves olanzapine-induced insulin resistance by inhibiting macrophage infiltration in mice subcutaneous adipose tissue. Diabetes Obes Metab 2024; 26:2695-2705. [PMID: 38660748 DOI: 10.1111/dom.15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
AIMS To investigate whether gamma-aminobutyric acid (GABA) supplementation improves insulin resistance during olanzapine treatment in mice and to explore the underlying mechanisms. MATERIALS AND METHODS Insulin resistance and body weight gain were induced in mice by 10 weeks of olanzapine treatment. Simultaneously, the mice were administered GABA after 4 weeks of olanzapine administration. RESULTS We found that mice treated with olanzapine had lower GABA levels in serum and subcutaneous white adipose tissue (sWAT). GABA supplementation restored GABA levels and improved olanzapine-induced lipid metabolism disorders and insulin resistance. Chronic inflammation in adipose tissue is one of the main contributors to insulin resistance. We found that GABA supplementation inhibited olanzapine-induced adipose tissue macrophage infiltration and M1-like polarization, especially in sWAT. In vitro studies showed that stromal vascular cells, rather than adipocytes, were sensitive to GABA. Furthermore, the results suggested that GABA improves olanzapine-induced insulin resistance at least in part through a GABAB receptor-dependent pathway. CONCLUSIONS These findings suggest that targeting GABA may be a potential therapeutic approach for olanzapine-induced metabolic disorders.
Collapse
Affiliation(s)
- Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anning Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China
- National Medical Center for Mental Disorders, Beijing, China
| | - Yaqi Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Pereira S, Castellani LN, Kowalchuk C, Alganem K, Zhang X, Ryan WG, Singh R, Wu S, Au E, Asgariroozbehani R, Agarwal SM, Giacca A, Mccullumsmith RE, Hahn MK. Olanzapine's effects on hypothalamic transcriptomics and kinase activity. Psychoneuroendocrinology 2024; 163:106987. [PMID: 38340539 PMCID: PMC10947847 DOI: 10.1016/j.psyneuen.2024.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Olanzapine is a second-generation antipsychotic that disrupts metabolism and is associated with an increased risk of type 2 diabetes. The hypothalamus is a key region in the control of whole-body metabolic homeostasis. The objective of the current study was to determine how acute peripheral olanzapine administration affects transcription and serine/threonine kinase activity in the hypothalamus. Hypothalamus samples from rats were collected following the pancreatic euglycemic clamp, thereby allowing us to study endpoints under steady state conditions for plasma glucose and insulin. Olanzapine stimulated pathways associated with inflammation, but diminished pathways associated with the capacity to combat endoplasmic reticulum stress and G protein-coupled receptor activity. These pathways represent potential targets to reduce the incidence of type 2 diabetes in patients taking antipsychotics.
Collapse
Affiliation(s)
- Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | | | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - William G Ryan
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Emily Au
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Roshanak Asgariroozbehani
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA; ProMedica, Neuroscience Institute, Toledo, OH, USA
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, Toronto, ON, Canada.
| |
Collapse
|
3
|
DeMambro VE, Tian L, Karthik V, Rosen CJ, Guntur AR. Effects of PTH on osteoblast bioenergetics in response to glucose. Bone Rep 2023; 19:101705. [PMID: 37576927 PMCID: PMC10412867 DOI: 10.1016/j.bonr.2023.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Parathyroid hormone acts through its receptor, PTHR1, expressed on osteoblasts, to control bone remodeling. Metabolic flexibility for energy generation has been demonstrated in several cell types dependent on substrate availability. Recent studies have identified a critical role for PTH in regulating glucose, fatty acid and amino acid metabolism thus stimulating both glycolysis and oxidative phosphorylation. Therefore, we postulated that PTH stimulates increased energetic output by osteoblasts either by increasing glycolysis or oxidative phosphorylation depending on substrate availability. To test this hypothesis, undifferentiated and differentiated MC3T3E1C4 calvarial pre-osteoblasts were treated with PTH to study osteoblast bioenergetics in the presence of exogenous glucose. Significant increases in glycolysis with acute ∼1 h PTH treatment with minimal effects on oxidative phosphorylation in undifferentiated MC3T3E1C4 in the presence of exogenous glucose were observed. In differentiated cells, the increased glycolysis observed with acute PTH was completely blocked by pretreatment with a Glut1 inhibitor (BAY-876) resulting in a compensatory increase in oxidative phosphorylation. We then tested the effect of PTH on the function of complexes I and II of the mitochondrial electron transport chain in the absence of glycolysis. Utilizing a novel cell plasma membrane permeability mitochondrial (PMP) assay, in combination with complex I and II specific substrates, slight but significant increases in basal and maximal oxygen consumption rates with 24 h PTH treatment in undifferentiated MC3T3E1C4 cells were noted. Taken together, our data demonstrate for the first time that PTH stimulates both increases in glycolysis and the function of the electron transport chain, particularly complexes I and II, during high energy demands in osteoblasts.
Collapse
Affiliation(s)
- Victoria E. DeMambro
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Li Tian
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Vivin Karthik
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Clifford J. Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Tufts University School of Medicine, Tufts University, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anyonya R. Guntur
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Tufts University School of Medicine, Tufts University, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
4
|
Langlais AL, Mountain RV, Kunst RF, Barlow D, Houseknecht KL, Motyl KJ. Thermoneutral housing does not rescue olanzapine-induced trabecular bone loss in C57BL/6J female mice. Biochimie 2023; 210:50-60. [PMID: 37236340 PMCID: PMC10357956 DOI: 10.1016/j.biochi.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Antipsychotic drugs are prescribed to a wide range of individuals to treat mental health conditions including schizophrenia. However, antipsychotic drugs cause bone loss and increase fracture risk. We previously found that the atypical antipsychotic (AA) drug risperidone causes bone loss through multiple pharmacological mechanisms, including activation of the sympathetic nervous system in mice treated with clinically relevant doses. However, bone loss was dependent upon housing temperature, which modulates sympathetic activity. Another AA drug, olanzapine, has substantial metabolic side effects, including weight gain and insulin resistance, but it is unknown whether bone and metabolic outcomes of olanzapine are also dependent upon housing temperature in mice. We therefore treated eight week-old female mice with vehicle or olanzapine for four weeks, housed at either room temperature (23 °C) or thermoneutrality (28-30 °C), which has previously been shown to be positive for bone. Olanzapine caused significant trabecular bone loss (-13% BV/TV), likely through increased RANKL-dependent osteoclast resorption, which was not suppressed by thermoneutral housing. Additionally, olanzapine inhibited cortical bone expansion at thermoneutrality, but did not alter cortical bone expansion at room temperature. Olanzapine also increased markers of thermogenesis within brown and inguinal adipose depots independent of housing temperature. Overall, olanzapine causes trabecular bone loss and inhibits the positive effect of thermoneutral housing on bone. Understanding how housing temperature modulates the impact of AA drugs on bone is important for future pre-clinical studies, as well as for the prescription of AA drugs, particularly to older adults and adolescents who are most vulnerable to the effects on bone.
Collapse
Affiliation(s)
- Audrie L Langlais
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Rebecca V Mountain
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Roni F Kunst
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Deborah Barlow
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Karen L Houseknecht
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Katherine J Motyl
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Tufts University School of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
5
|
Sun L, Li N, Zhang L, Chen J. The Role of ElastPQ in Assessing Liver Stiffness for Non-Alcoholic Fatty Liver Disease in Patients Treated with Atypical Antipsychotic Drugs. Neuropsychiatr Dis Treat 2023; 19:1491-1502. [PMID: 37408709 PMCID: PMC10319346 DOI: 10.2147/ndt.s409210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Objective To evaluate the role of elastography point quantification (ElastPQ) for the quantitative assessment of stiffness in the fatty liver disease in mental disorder patients and to provide a noninvasive detection method for non-alcoholic fatty liver (NAFLD) caused by atypical antipsychotics drugs (AAPDs). Methods A total number of 168 mental disorder patients treated with AAPDs and 58 healthy volunteers were enrolled in this study. All the subjects underwent ultrasound and ElastPQ tests. The basic data of the patients were analyzed. Results BMI, liver function, and the value of ElastPQ were considerably higher in the patient group than that in the healthy volunteers. The values of liver stiffness obtained by ElastPQ were increased gradually from 3.48(3.14-3.81) kPa in the normal liver to 8.15(6.44-9.88) in the severe fatty liver. The receiver operating characteristic (ROC) for the diagnosis of fatty liver with ElastPQ were 0.85, 0.79, 0.80, and 0.87 for the diagnosis of normal, mild, moderate, and severe steatosis, respectively, with a sensitive/specificity of 79%/76.4%, 85.7%/78.3%, 86.2%/73%, and 81.3%/82.1%, correspondingly. Moreover, ElastPQ in the olanzapine group was higher than those in the risperidone and aripiprazole groups (5.11(3.83-5.61) kPa vs 4.35(3.63-4.98) kPa, P < 0.05; 5.11(3.83-5.61) kPa vs 4.79(4.18-5.24) kPa, P < 0.05). After one-year treatment, the value of ElastPQ was 4.43(3.85-5.22) kPa, but it was 5.81(5.09-7.33) kPa in patients treated for more than three years. This value increased with treatment prolongation (P < 0.05). Conclusion ElastPQ is a real-time, quantitative method for assessing the stiffness of NAFLD. The liver stiffness value could be varied in the different stages of fatty liver. Olanzapine has a considerable influence on liver stiffness. The long-term use of AAPDs can increase the stiffness value of fatty liver.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Ultrasound, Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, People’s Republic of China
| | - Nan Li
- Department of Ultrasound, Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, People’s Republic of China
| | - Ligang Zhang
- Department of Psychiatry, Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, People’s Republic of China
| | - Jingxu Chen
- Department of Psychiatry, Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Huang Y, Zhou B. Mitochondrial Dysfunction in Cardiac Diseases and Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11051500. [PMID: 37239170 DOI: 10.3390/biomedicines11051500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the context of the key roles of mitochondria in cardiac development and homeostasis. Finally, we discuss the main current therapeutic strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction, including pharmacological strategies, gene therapy, mitochondrial replacement therapy, and mitochondrial transplantation. It is hoped that this will provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
7
|
Oliva V, Fanelli G, Zamparini M, Zarbo C, Rocchetti M, Casiraghi L, Starace F, Martinelli A, Serretti A, de Girolamo G. Patterns of antipsychotic prescription and accelerometer-based physical activity levels in people with schizophrenia spectrum disorders: a multicenter, prospective study. Int Clin Psychopharmacol 2023; 38:28-39. [PMID: 36165505 PMCID: PMC9722380 DOI: 10.1097/yic.0000000000000433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antipsychotic polypharmacy (APP) in patients with schizophrenia spectrum disorders (SSDs) is usually not recommended, though it is very common in clinical practice. Both APP and SSDs have been linked to worse health outcomes and decreased levels of physical activity, which in turn is an important risk factor for cardiovascular diseases and premature mortality. This real-world, observational study aimed to investigate antipsychotic prescribing patterns and physical activity in residential patients and outpatients with SSDs. A total of 620 patients and 114 healthy controls were recruited in 37 centers across Italy. Each participant underwent a comprehensive sociodemographic and clinical evaluation. Physical activity was monitored for seven consecutive days through accelerometer-based biosensors. High rates of APP were found in all patients, with residential patients receiving more APP than outpatients, probably because of greater psychopathological severity. Physical activity was lower in patients compared to controls. However, patients on APP showed trends of reduced sedentariness and higher levels of light physical activity than those in monopharmacy. Rehabilitation efforts in psychiatric residential treatment facilities were likely to result in improved physical activity performances in residential patients. Our findings may have important public health implications, as they indicate the importance of reducing APP and encouraging physical activity.
Collapse
Affiliation(s)
- Vincenzo Oliva
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Manuel Zamparini
- Unit of Epidemiological and Evaluation Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Cristina Zarbo
- Unit of Epidemiological and Evaluation Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Matteo Rocchetti
- Department of Mental Health and Dependence, ASST of Pavia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia
| | - Letizia Casiraghi
- Department of Mental Health and Dependence, ASST of Pavia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia
| | - Fabrizio Starace
- Department of Mental Health and Dependence, AUSL of Modena, Modena
| | - Alessandra Martinelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona
- Unit of Clinical Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni de Girolamo
- Unit of Epidemiological and Evaluation Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - the DiAPASon Consortium
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
- Unit of Epidemiological and Evaluation Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
- Department of Mental Health and Dependence, ASST of Pavia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia
- Department of Mental Health and Dependence, AUSL of Modena, Modena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona
- Unit of Clinical Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
8
|
Rogowska M, Thornton M, Creese B, Velayudhan L, Aarsland D, Ballard C, Tsamakis K, Stewart R, Mueller C. Implications of Adverse Outcomes Associated with Antipsychotics in Older Patients with Dementia: A 2011-2022 Update. Drugs Aging 2023; 40:21-32. [PMID: 36513918 PMCID: PMC9747539 DOI: 10.1007/s40266-022-00992-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Neuropsychiatric symptoms affect most patients with dementia over the course of the disease. They include a wide variety of symptoms from apathy and depression to psychosis, irritability, impulsivity and agitation. These symptoms are associated with significant distress to the patient and caregivers, as well as more rapid progression of dementia, institutionalisation and higher mortality. The first-line management of the neuropsychiatric symptoms of dementia should be non-pharmacological. If medications are required, antipsychotics are commonly chosen. Second-generation antipsychotics such as risperidone, olanzapine, quetiapine and aripiprazole are prescribed more often than first-generation antipsychotics, such as haloperidol. The aim of this review is to provide an update on findings on adverse outcomes and clinical implications of antipsychotic use in dementia. These medications may increase mortality and can be associated with adverse events including pneumonia, cerebrovascular events, parkinsonian symptoms or higher rates of venous thromboembolism. Risks related to antipsychotic use in dementia are moderated by a number of modifiable and non-modifiable factors such as co-prescribing of other medications, medical and psychiatric co-morbidities, and demographics such as age and sex, making individualised treatment decisions challenging. Antipsychotics have further been associated with an increased risk of reliance on long-term care and institutionalisation, and they might not be cost-effective for healthcare systems. Many of these risks can potentially be mitigated by close physical health monitoring of antipsychotic treatment, as well as early withdrawal of pharmacotherapy when clinically possible.
Collapse
Affiliation(s)
- Marianna Rogowska
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, London, UK.
| | - Mary Thornton
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, London, UK
| | - Byron Creese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- University of Exeter Medical School, Exeter, UK
| | - Latha Velayudhan
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, London, UK
- Stavanger University Hospital, Stavanger, Norway
| | - Clive Ballard
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Stavanger University Hospital, Stavanger, Norway
| | - Konstantinos Tsamakis
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, London, UK
- Second Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital 'ATTIKON', Athens, Greece
| | - Robert Stewart
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christoph Mueller
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
10
|
May M, Barlow D, Ibrahim R, Houseknecht KL. Mechanisms Underlying Antipsychotic-Induced NAFLD and Iron Dysregulation: A Multi-Omic Approach. Biomedicines 2022; 10:biomedicines10061225. [PMID: 35740245 PMCID: PMC9220331 DOI: 10.3390/biomedicines10061225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Atypical antipsychotic (AA) medications are widely prescribed for the treatment of psychiatric disorders, including schizophrenia, bipolar disorder and treatment-resistant depression. AA are associated with myriad metabolic and endocrine side effects, including systemic inflammation, weight gain, dyslipidemia and insulin resistance, all of which are associated with increased incidence of non-alcoholic fatty liver disease (NAFLD). NAFLD is highly prevalent in patients with mental illness, and AA have been shown to increase incidence of NAFLD pre-clinically and clinically. However, the underlying mechanisms have not been described. We mined multi-omic datasets from preclinical murine models of sub-chronic risperidone or olanzapine treatment, in vitro exposure of human cells to risperidone and psychiatric patients following onset of aripiprazole therapy focused on pathways associated with the pathophysiology of NAFLD, including iron accumulation, systemic inflammation and dyslipidemia. We identified numerous differentially expressed traits affecting these pathways conserved across study systems and AA medications. We used these findings to propose mechanisms for AA-associated development of NAFLD and dysregulated iron homeostasis.
Collapse
Affiliation(s)
- Meghan May
- Correspondence: (M.M.); (K.L.H.); Tel.: +1-207-602-2872 (K.L.H.)
| | | | | | | |
Collapse
|
11
|
Edinoff AN, Ellis ED, Nussdorf LM, Hill TW, Cornett EM, Kaye AM, Kaye AD. Antipsychotic Polypharmacy-Related Cardiovascular Morbidity and Mortality: A Comprehensive Review. Neurol Int 2022; 14:294-309. [PMID: 35324580 PMCID: PMC8954521 DOI: 10.3390/neurolint14010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a psychotic disorder that exists at the more extreme end of a spectrum of diseases, and significantly affects daily functioning. Cardiovascular adverse effects of antipsychotic medications are well known, and include changes in blood pressure and arrhythmias. Sudden cardiac death is the leading cause of death worldwide, and antipsychotic medications are associated with numerous cardiac side effects. A possible link exists between antipsychotic medications and sudden cardiac death. Common prescribing patterns that may influence cardiovascular events include the use of multiple antipsychotics and/or additional drugs commonly prescribed to patients on antipsychotics. The results of this review reflect an association between antipsychotic drugs and increased risk of ventricular arrhythmias and sudden cardiac death by iatrogenic prolongation of the QTc interval. QTc prolongation and sudden cardiac death exist in patients taking antipsychotic monotherapy. The risk increases for the concomitant use of specific drugs that prolong the QTc interval, such as opioids, antibiotics, and illicit drugs. However, evidence suggests that QTc intervals may not adequately predict sudden cardiac death. In considering the findings of this narrative review, we conclude that it is unclear whether there is a precise association between antipsychotic polypharmacy and sudden cardiac death with QTc interval changes. The present narrative review warrants further research on this important potential association.
Collapse
Affiliation(s)
- Amber N. Edinoff
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center Shreveport, 1501 Kings Hwy, Shreveport, LA 71103, USA
- Correspondence: ; Tel.: +1-(318)-675-8969
| | - Emily D. Ellis
- School of Medicine, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (E.D.E.); (L.M.N.); (T.W.H.)
| | - Laura M. Nussdorf
- School of Medicine, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (E.D.E.); (L.M.N.); (T.W.H.)
| | - Taylor W. Hill
- School of Medicine, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (E.D.E.); (L.M.N.); (T.W.H.)
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (E.M.C.); (A.D.K.)
| | - Adam M. Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Alan D. Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (E.M.C.); (A.D.K.)
| |
Collapse
|
12
|
The Extracellular Matrix Environment of Clear Cell Renal Cell Carcinoma Determines Cancer Associated Fibroblast Growth. Cancers (Basel) 2021; 13:cancers13235873. [PMID: 34884982 PMCID: PMC8657052 DOI: 10.3390/cancers13235873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/30/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and is often caused by mutations in the oxygen-sensing machinery of kidney epithelial cells. Due to its pseudo-hypoxic state, ccRCC recruits extensive vasculature and other stromal components. Conventional cell culture methods provide poor representation of stromal cell types in primary cultures of ccRCC, and we hypothesized that mimicking the extracellular environment of the tumor would promote growth of both tumor and stromal cells. We employed proteomics to identify the components of ccRCC extracellular matrix (ECM) and found that in contrast to healthy kidney cortex, laminin, collagen IV, and entactin/nidogen are minor contributors. Instead, the ccRCC ECM is composed largely of collagen VI, fibronectin, and tenascin C. Analysis of single cell expression data indicates that cancer-associated fibroblasts are a major source of tumor ECM production. Tumor cells as well as stromal cells bind efficiently to a nine-component ECM blend characteristic of ccRCC. Primary patient-derived tumor cells bind the nine-component blend efficiently, allowing to us to establish mixed primary cultures of tumor cells and stromal cells. These miniature patient-specific replicas are conducive to microscopy and can be used to analyze interactions between cells in a model tumor microenvironment.
Collapse
|
13
|
Kunst RF, Langlais AL, Barlow D, Houseknecht KL, Motyl KJ. Housing Temperature Influences Atypical Antipsychotic Drug-Induced Bone Loss in Female C57BL/6J Mice. JBMR Plus 2021; 5:e10541. [PMID: 34693191 PMCID: PMC8520062 DOI: 10.1002/jbm4.10541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotic (AA) drugs, such as risperidone, are associated with endocrine and metabolic side effects, including impaired bone mineral density (BMD) acquisition and increased fracture risk. We have previously shown that risperidone causes bone loss through the sympathetic nervous system and that bone loss is associated with elevated markers of thermogenesis in brown and white adipose tissue. Because rodents are normally housed in sub‐thermoneutral conditions, we wanted to test whether increasing housing temperature would protect against bone loss from risperidone. Four weeks of risperidone treatment in female C57BL/6J mice at thermoneutral (28°C) housing attenuated risperidone‐induced trabecular bone loss and led to a low‐turnover bone phenotype, with indices of both bone formation and resorption suppressed in mice with risperidone treatment at thermoneutrality, whereas indices of bone resorption were elevated by risperidone at room temperature. Protection against trabecular bone loss was not absolute, however, and additional evidence of cortical bone loss emerged in risperidone‐treated mice at thermoneutrality. Taken together, these findings suggest thermal challenge may be in part responsible for bone loss with risperidone treatment and that housing temperature should be considered when assessing bone outcomes of treatments that impact thermogenic pathways. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Roni F Kunst
- Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME USA
| | - Audrie L Langlais
- Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine Orono ME USA
| | - Deborah Barlow
- College of Osteopathic Medicine, University of New England Biddeford ME USA
| | | | - Katherine J Motyl
- Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine Orono ME USA.,Tufts University School of Medicine, Tufts University Boston MA USA
| |
Collapse
|
14
|
Li XQ, Tang XR, Li LL. Antipsychotics cardiotoxicity: What's known and what's next. World J Psychiatry 2021; 11:736-753. [PMID: 34733639 PMCID: PMC8546771 DOI: 10.5498/wjp.v11.i10.736] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic use of antipsychotic medications entails a dilemma between the benefit of alleviating psychotic symptoms and the risk of troubling, sometimes life-shortening adverse effects. Antipsychotic-induced cardiotoxicity is one of the most life-threatening adverse effects that raises widespread concerns. These cardiotoxic effects range from arrhythmia to heart failure in the clinic, with myocarditis/cardiomyopathy, ischemic injuries, and unexplained cardiac lesions as the pathological bases. Multiple mechanisms have been proposed to underlie antipsychotic cardiotoxicity. This review aims to summarize the clinical signs and pathological changes of antipsychotic cardiotoxicity and introduce recent progress in understanding the underlying mechanisms at both the subcellular organelle level and the molecular level. We also provide an up-to-date perspective on future clinical monitoring and therapeutic strategies for antipsychotic cardiotoxicity. We propose that third-generation antipsychotics or drug adjuvant therapy, such as cannabinoid receptor modulators that confer dual benefits — i.e., alleviating cardiotoxicity and improving metabolic disorders — deserve further clinical evaluation and marketing.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xin-Ru Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li-Liang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Wang J, Li X, Liu Z, Lin X, Zhong F, Li S, Tang X, Zhang Y, Li L. Second-generation antipsychotics induce cardiotoxicity by disrupting spliceosome signaling: Implications from proteomic and transcriptomic analyses. Pharmacol Res 2021; 170:105714. [PMID: 34098070 DOI: 10.1016/j.phrs.2021.105714] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Second-generation antipsychotics (SGAs) are first-line drugs that are prescribed for mental disorders in clinic. Severe cardiotoxicity has been widely reported and thus limits their clinical application. This study aimed to identify the common mechanism underlying SGAs-induced cardiotoxicity using dual-omics analyses. Balb/C mice were intraperitoneally injected with two representative SGAs, olanzapine (2.5 mg/kg) and clozapine (25 mg/kg), at clinically comparable doses for 0, 7, 14 and 21 days. Our results showed that both SGAs induced cardiomyocyte degeneration, inflammation infiltration, and cardiac fibrosis, all of which worsened with time. Proteomic analysis revelaed that 22 differentially expressed (DE) proteins overlapped in olanzapine and clozapine-treated hearts. These proteins were significantly enriched in muscle contraction, amino acid metabolism and spliceosomal assembly by GO term analysis and spliceosome signaling was among the top enriched pathways by KEGG analysis. Among the 22 DE proteins, three spliceosome signal proteins were validated in a dynamic detection, and their expression significantly correlated with the extent of SGAs-induced cardiac fibrosis. Following the spliceosome signaling dysregulation, RNA sequencing revealed that alternative splicing events in the mouse hearts were markedly enhanced by SGAs treatments, and the production of vast transcript variants resulted in dysregulation of multiple pathways that are critical for cardiomyocytes adaptation and cardiac remodeling. Pladienolide B, a specific inhibitor of mRNA splicing, successfully corrected SGAs-induced alternative splicing and significantly attenuated the secretion of pro-inflammatory factors and cell deaths induced by SGAs exposure. Our study concluded that the spliceosome signaling was a common pathway driving SGAs cardiotoxicity. Pharmacological inhibition of the spliceosome signaling represents a novel therapeutic strategy against SGAs cardiotoxicity.
Collapse
Affiliation(s)
- Jing Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Xiaoqing Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Xinyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Fan Zhong
- Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Shuhao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Xinru Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Orayj K. Cardiovascular Events Associated with Antipsychotics in Newly Diagnosed Parkinson's Disease Patients: A Propensity Score Matched Cohort Study. Int J Gen Med 2021; 14:2975-2987. [PMID: 34234527 PMCID: PMC8254603 DOI: 10.2147/ijgm.s319600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Observational studies have examined the association between antipsychotics and ischemic heart disease (IHD) in general populations, but results did not take into account other comorbid diseases, such as Parkinson's disease (PD). This study investigates the one-year risk of IHD, all cardiovascular events, and all-cause mortality among newly diagnosed PD patients who used antipsychotics compared to non-users. MATERIALS AND METHODS This study included individuals aged 40 years or older with a first definitive PD diagnosis Read Code in the Secure Anonymised Information Linkage (SAIL) databank who had been initiated on any PD medication between 2000 and 2016. Antipsychotic users were matched 1:1 with non-users by a propensity score model to control the confounding effects of patients' demographics, social deprivation status, comorbidities, and medication history. Cox regression was performed to calculate the hazard ratios (HR) and 95% CIs for the association between antipsychotics and study outcomes. RESULTS A total of 1837 participants were included in the analysis. Users of first-generation antipsychotics (FGA) were significantly more likely to develop IHD compared to non-users, with an HR of 2.60 (95% CI 1.103-6.167). Among the FGAs, haloperidol had the highest likelihood of IHD developing, with an HR of 3.01 (95% CI 1.038-8.729). Any use of antipsychotics, regardless of whether they were FGA or second-generation antipsychotics (SGA), was linked to all-cause mortality, with an HR of 4.201 (95% CI 3.272-5.394). When subdividing antipsychotics into FGAs and SGAs, mortality was more likely in FGA users, with an HR of 7.557 (95% CI 5.633-10.139). Mortality also occurred in SGA users, but with a lower HR of 3.278 (95% CI 2.509-4.282). CONCLUSION FGAs were associated with an increased risk of IHD and all-cause mortality in newly diagnosed PD patients with psychosis. This finding emphasizes the need to use antipsychotics with caution in PD patients with psychosis.
Collapse
Affiliation(s)
- Khalid Orayj
- School of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Mohammadpour F, Kamali H, Hadizadeh F, Bagheri M, Shiadeh SNR, Nazari A, Oroojalian F, Khodaverdi E. The PLGA Microspheres Synthesized by a Thermosensitive Hydrogel Emulsifier for Sustained Release of Risperidone. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09544-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Risperidone Exacerbates Glucose Intolerance, Nonalcoholic Fatty Liver Disease, and Renal Impairment in Obese Mice. Int J Mol Sci 2021; 22:ijms22010409. [PMID: 33401717 PMCID: PMC7795724 DOI: 10.3390/ijms22010409] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Risperidone, a second-generation antipsychotic drug used for schizophrenia treatment with less-severe side effects, has recently been applied in major depressive disorder treatment. The mechanism underlying risperidone-associated metabolic disturbances and liver and renal adverse effects warrants further exploration. This research explores how risperidone influences weight, glucose homeostasis, fatty liver scores, liver damage, and renal impairment in high-fat diet (HFD)-administered C57BL6/J mice. Compared with HFD control mice, risperidone-treated obese mice exhibited increases in body, liver, kidney, and retroperitoneal and epididymal fat pad weights, daily food efficiency, serum triglyceride, blood urea nitrogen, creatinine, hepatic triglyceride, and aspartate aminotransferase, and alanine aminotransferase levels, and hepatic fatty acid regulation marker expression. They also exhibited increased insulin resistance and glucose intolerance but decreased serum insulin levels, Akt phosphorylation, and glucose transporter 4 expression. Moreover, their fatty liver score and liver damage demonstrated considerable increases, corresponding to increases in sterol regulatory element-binding protein 1 mRNA, fatty acid-binding protein 4 mRNA, and patatin-like phospholipid domain containing protein 3 expression. Finally, these mice demonstrated renal impairment, associated with decreases in glutathione peroxidase, superoxide dismutase, and catalase levels. In conclusion, long-term administration of risperidone may exacerbate diabetes syndrome, nonalcoholic fatty liver disease, and kidney injury.
Collapse
|
19
|
Understanding Mechanisms Underlying Non-Alcoholic Fatty Liver Disease (NAFLD) in Mental Illness: Risperidone and Olanzapine Alter the Hepatic Proteomic Signature in Mice. Int J Mol Sci 2020; 21:ijms21249362. [PMID: 33302598 PMCID: PMC7763698 DOI: 10.3390/ijms21249362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with severe mental illness have increased mortality, often linked to cardio-metabolic disease. Non-alcoholic fatty liver disease (NAFLD) incidence is higher in patients with schizophrenia and is exacerbated with antipsychotic treatment. NAFLD is associated with obesity and insulin resistance, both of which are induced by several antipsychotic medications. NAFLD is considered an independent risk factor for cardiovascular disease, the leading cause of death for patients with severe mental illness. Although the clinical literature clearly defines increased risk of NAFLD with antipsychotic therapy, the underlying mechanisms are not understood. Given the complexity of the disorder as well as the complex pharmacology associated with atypical antipsychotic (AA) medications, we chose to use a proteomic approach in healthy mice treated with a low dose of risperidone (RIS) or olanzapine (OLAN) for 28 days to determine effects on development of NAFLD and to identify pathways impacted by AA medications, while removing confounding intrinsic effects of mental illness. Both AA drugs caused development of steatosis in comparison with vehicle controls (p < 0.01) and affected multiple pathways relating to energy metabolism, NAFLD, and immune function. AA-associated alteration in autonomic function appears to be a unifying theme in the regulation of hepatic pathology.
Collapse
|
20
|
May M, Slitzky M, Rostama B, Barlow D, Houseknecht KL. Antipsychotic-induced immune dysfunction: A consideration for COVID-19 risk. Brain Behav Immun Health 2020; 6:100097. [PMID: 32835296 PMCID: PMC7308744 DOI: 10.1016/j.bbih.2020.100097] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023] Open
Abstract
Patients with severe mental illness are more susceptible to infections for a variety of reasons, some associated with the underlying disease and some due to environmental factors including housing insecurity, smoking, poor access to healthcare, and medications used to treat these disorders. This increased susceptibility to respiratory infections may contribute to risk of COVID-19 infection in patients with severe mental illness or those in inpatient settings. Atypical antipsychotic (AA) medications are FDA approved to treat symptoms associated with schizophrenia, bipolar disorder, depression and irritability associated with autism. Our team and others have shown that AA may have anti-inflammatory properties that may contribute to their efficacy in the treatment of mental health disorders. Additionally, AA are widely prescribed off-label for diverse indications to non-psychotic patients including older adults, who are also at increased risk for COVID-19 complications and mortality. The aim of this study was to determine if AA medications such as risperidone (RIS) alter the ability to mount an appropriate response to an acute inflammatory or adaptive immune challenge using a preclinical model. Short-term treatment of healthy mice with a dose of RIS that achieves plasma concentrations within the low clinical range resulted in disrupted response to an inflammatory (LPS) challenge compared to vehicle controls. Furthermore, RIS also prevented treated animals from mounting an antibody response following vaccination with Pneumovax23®. These data indicate that short-to intermediate-term exposure to clinically relevant levels of RIS dysregulate innate and adaptive immune responses, which may affect susceptibility to respiratory infections, including COVID-19.
Collapse
Affiliation(s)
- Meghan May
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Matthew Slitzky
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Bahman Rostama
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Deborah Barlow
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Karen L Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| |
Collapse
|