1
|
Zhang WY, Chang YJ, Shi RH. Artificial intelligence enhances the management of esophageal squamous cell carcinoma in the precision oncology era. World J Gastroenterol 2024; 30:4267-4280. [DOI: 10.3748/wjg.v30.i39.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer with a poor prognosis. Early diagnosis and prognosis assessment are crucial for improving the survival rate of ESCC patients. With the advancement of artificial intelligence (AI) technology and the proliferation of medical digital information, AI has demonstrated promising sensitivity and accuracy in assisting precise detection, treatment decision-making, and prognosis assessment of ESCC. It has become a unique opportunity to enhance comprehensive clinical management of ESCC in the era of precision oncology. This review examines how AI is applied to the diagnosis, treatment, and prognosis assessment of ESCC in the era of precision oncology, and analyzes the challenges and potential opportunities that AI faces in clinical translation. Through insights into future prospects, it is hoped that this review will contribute to the real-world application of AI in future clinical settings, ultimately alleviating the disease burden caused by ESCC.
Collapse
Affiliation(s)
- Wan-Yue Zhang
- School of Medicine, Southeast University, Nanjing 221000, Jiangsu Province, China
| | - Yong-Jian Chang
- School of Cyber Science and Engineering, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Rui-Hua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
2
|
Fang Y, Zhang Q, Guo C, Zheng R, Liu B, Zhang Y, Wu J. Mitochondrial-related genes as prognostic and metastatic markers in breast cancer: insights from comprehensive analysis and clinical models. Front Immunol 2024; 15:1461489. [PMID: 39380996 PMCID: PMC11458410 DOI: 10.3389/fimmu.2024.1461489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Background Breast cancer (BC) constitutes a significant peril to global women's health. Contemporary research progressively suggests that mitochondrial dysfunction plays a pivotal role in both the inception and advancement of BC. However, investigations delving into the correlation between mitochondrial-related genes (MRGs) and the prognosis and metastasis of BC are still infrequent. Methods Utilizing data from the TCGA database, we employed the "limma" R package for differential expression analysis. Subsequently, both univariate and multivariate Cox regression analyses were executed, alongside LASSO Cox regression analysis, to pinpoint prognostic MRGs and to further develop the prognostic model. External validation (GSE88770 merged GSE425680) and internal validation were further conducted. Our investigation delved into a broad spectrum of analyses that included functional enrichment, metabolic and immune characteristics, immunotherapy response prediction, intratumor heterogeneity (ITH), mutation, tumor mutational burden (TMB), microsatellite instability (MSI), cellular stemness, single-cell, and drug sensitivity analysis. We validated the protein and mRNA expressions of prognostic MRGs in tissues and cell lines through immunohistochemistry and qRT-PCR. Moreover, leveraging the GSE102484 dataset, we conducted differential gene expression analysis to identify MRGs related to metastasis, subsequently developing metastasis models via 10 distinct machine-learning algorithms and then selecting the best-performing model. The division between training and validation cohorts was set at 70% and 30%, respectively. Results A prognostic model was constructed by 9 prognostic MRGs, which were DCTPP1, FEZ1, KMO, NME3, CCR7, ISOC2, STAR, COMTD1, and ESR2. Patients within the high-risk group experienced more adverse outcomes than their counterparts in the low-risk group. The ROC curves and constructed nomogram showed that the model exhibited an excellent ability to predict overall survival (OS) for patients and the risk score was identified as an independent prognostic factor. The functional enrichment analysis showed a strong correlation between metabolic progression and MRGs. Additional research revealed that the discrepancies in outcomes between the two risk categories may be attributed to a variety of metabolic and immune characteristics, as well as differences in intratumor heterogeneity (ITH), tumor mutational burden (TMB), and cancer stemness indices. ITH, TIDE, and IPS analyses suggested that patients possessing a low-risk score may exhibit enhanced responsiveness to immunotherapy. Additionally, distant metastasis models were established by PDK4, NRF1, DCAF8, CHPT1, MARS2 and NAMPT. Among these, the XGBoost model showed the best predicting ability. Conclusion In conclusion, MRGs significantly influence the prognosis and metastasis of BC. The development of dual clinical prediction models offers crucial insights for tailored and precise therapeutic strategies, and paves the way for exploring new avenues in understanding the pathogenesis of BC.
Collapse
Affiliation(s)
- Yutong Fang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qunchen Zhang
- Department of Breast Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Cuiping Guo
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rongji Zheng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Liu
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yongqu Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jundong Wu
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
Zhang X, Wu L, Jia L, Hu X, Yao Y, Liu H, Ma J, Wang W, Li L, Chen K, Liu B. The implication of integrative multiple RNA modification-based subtypes in gastric cancer immunotherapy and prognosis. iScience 2024; 27:108897. [PMID: 38318382 PMCID: PMC10839690 DOI: 10.1016/j.isci.2024.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/28/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Previous studies have focused on the impact of individual RNA modifications on tumor development. This study comprehensively investigated the effects of multiple RNA modifications, including m6A, alternative polyadenylation, pseudouridine, adenosine-to-inosine editing, and uridylation, on gastric cancer (GC). By analyzing 1,946 GC samples from eleven independent cohorts, we identified distinct clusters of RNA modification genes with varying survival rates and immunological characteristics. We assessed the chromatin activity of these RNA modification clusters through regulon enrichment analysis. A prognostic model was developed using Stepwise Regression and Random Survival Forest algorithms and validated in ten independent datasets. Notably, the low-risk group showed a more favorable prognosis and positive response to immune checkpoint blockade therapy. Single-cell RNA sequencing confirmed the abundant expression of signature genes in B cells and plasma cells. Overall, our findings shed light on the potential significance of multiple RNA modifications in GC prognosis, stemness development, and chemotherapy resistance.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Liuxing Wu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liqing Jia
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Yanxin Yao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Huahuan Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Junfu Ma
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| |
Collapse
|
4
|
Wang C, Chen Y, Zhou R, Yang Y, Fang Y. Systematic Analysis of Tumor Stem Cell-related Gene Characteristics to Predict the PD-L1 Immunotherapy and Prognosis of Gastric Cancer. Curr Med Chem 2024; 31:2467-2482. [PMID: 37936456 DOI: 10.2174/0109298673278775231101064235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
AIMS We aimed to develop a prognostic model with stemness-correlated genes to evaluate prognosis and immunotherapy responsiveness in gastric cancer (GC). BACKGROUND Tumor stemness is related to intratumoral heterogeneity, immunosuppression, and anti-tumor resistance. We developed a prognostic model with stemness-correlated genes to evaluate prognosis and immunotherapy responsiveness in GC. OBJECTIVE We aimed to develop a prognostic model with stemness-correlated genes to evaluate prognosis and immunotherapy responsiveness in GC. METHODS We downloaded single-cell RNA sequencing (scRNA-seq) data of GC patients from the Gene-Expression Omnibus (GEO) database and screened GC stemness- related genes using CytoTRACE. We characterized the association of tumor stemness with immune checkpoint blockade (ICB) and immunity. Thereafter, a 9-stemness signature-based prognostic model was developed using weighted gene co-expression network analysis (WGCNA), univariate Cox regression analysis, and the least absolute shrinkage and selection operator (LASSO) regression analysis. The model predictive value was evaluated with a nomogram. RESULTS Early GC patients had significantly higher levels of stemness. The stemness score showed a negative relationship to tumor immune dysfunction and exclusion (TIDE) score and immune infiltration, especially T cells and B cells. A stemness-based signature based on 9 genes (ERCC6L, IQCC, NKAPD1, BLMH, SLC25A15, MRPL4, VPS35, SUMO3, and CINP) was constructed with good performance in prognosis prediction, and its robustness was validated in GSE26942 cohort. Additionally, nomogram and risk score exhibited the most powerful ability for prognosis prediction. High-risk patients exhibited a tendency to develop immune escape and low response to PD-L1 immunotherapy. CONCLUSION We developed a stemness-based gene signature for prognosis prediction with accuracy and reliability. This signature also helps clinical decision-making of immunotherapy for GC patients.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Ying Chen
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Ru Zhou
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, 200000, China
| | - Ya'nan Yang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Yantian Fang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200000, China
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| |
Collapse
|
5
|
Yuan Q, Lu X, Guo H, Sun J, Yang M, Liu Q, Tong M. Low-density lipoprotein receptor promotes crosstalk between cell stemness and tumor immune microenvironment in breast cancer: a large data-based multi-omics study. J Transl Med 2023; 21:871. [PMID: 38037058 PMCID: PMC10691045 DOI: 10.1186/s12967-023-04699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Tumor cells with stemness in breast cancer might facilitate the immune microenvironment's suppression process and led to anti-tumor immune effects. The primary objective of this study was to identify potential targets to disrupt the communication between cancer cell stemness and the immune microenvironment. METHODS In this study, we initially isolated tumor cells with varying degrees of stemness using a spheroid formation assay. Subsequently, we employed RNA-seq and proteomic analyses to identify genes associated with stemness through gene trend analysis. These stemness-related genes were then subjected to pan-cancer analysis to elucidate their functional roles in a broader spectrum of cancer types. RNA-seq data of 3132 patients with breast cancer with clinical data were obtained from public databases. Using the identified stemness genes, we constructed two distinct stemness subtypes, denoted as C1 and C2. We subsequently conducted a comprehensive analysis of the differences between these subtypes using pathway enrichment methodology and immune infiltration algorithms. Furthermore, we identified key immune-related stemness genes by employing lasso regression analysis and a Cox survival regression model. We conducted in vitro experiments to ascertain the regulatory impact of the key gene on cell stemness. Additionally, we utilized immune infiltration analysis and pan-cancer analysis to delineate the functions attributed to this key gene. Lastly, single-cell RNA sequencing (scRNA-seq) was employed to conduct a more comprehensive examination of the key gene's role within the microenvironment. RESULTS In our study, we initially identified a set of 65 stemness-related genes in breast cancer cells displaying varying stemness capabilities. Subsequently, through survival analysis, we pinpointed 41 of these stemness genes that held prognostic significance. We observed that the C2 subtype exhibited a higher stemness capacity compared to the C1 subtype and displayed a more aggressive malignancy profile. Further analysis using Lasso-Cox algorithm identified LDLR as a pivotal immune-related stemness gene. It became evident that LDLR played a crucial role in shaping the immune microenvironment. In vitro experiments demonstrated that LDLR regulated the cell stemness of breast cancer. Immune infiltration analysis and pan-cancer analysis determined that LDLR inhibited the proliferation of immune cells and might promote tumor cell progression. Lastly, in our scRNA-seq analysis, we discovered that LDLR exhibited associations with stemness marker genes within breast cancer tissues. Moreover, LDLR demonstrated higher expression levels in tumor cells compared to immune cells, further emphasizing its relevance in the context of breast cancer. CONCLUSION LDLR is an important immune stemness gene that regulates cell stemness and enhances the crosstalk between breast cancer cancer cell stemness and tumor immune microenvironment.
Collapse
Affiliation(s)
- Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaona Lu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Hui Guo
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaao Sun
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Mengying Tong
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
- Department of Ultrasound, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
6
|
Xie Z, Huang J, Li Y, Zhu Q, Huang X, Chen J, Wei C, Luo S, Yang S, Gao J. Single-cell RNA sequencing revealed potential targets for immunotherapy studies in hepatocellular carcinoma. Sci Rep 2023; 13:18799. [PMID: 37914817 PMCID: PMC10620237 DOI: 10.1038/s41598-023-46132-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a solid tumor prone to chemotherapy resistance, and combined immunotherapy is expected to bring a breakthrough in HCC treatment. However, the tumor and tumor microenvironment (TME) of HCC is highly complex and heterogeneous, and there are still many unknowns regarding tumor cell stemness and metabolic reprogramming in HCC. In this study, we combined single-cell RNA sequencing data from 27 HCC tumor tissues and 4 adjacent non-tumor tissues, and bulk RNA sequencing data from 374 of the Cancer Genome Atlas (TCGA)-liver hepatocellular carcinoma (LIHC) samples to construct a global single-cell landscape atlas of HCC. We analyzed the enrichment of signaling pathways of different cells in HCC, and identified the developmental trajectories of cell subpopulations in the TME using pseudotime analysis. Subsequently, we performed transcription factors regulating different subpopulations and gene regulatory network analysis, respectively. In addition, we estimated the stemness index of tumor cells and analyzed the intercellular communication between tumors and key TME cell clusters. We identified novel HCC cell clusters that specifically express HP (HCC_HP), which may lead to higher tumor differentiation and tumor heterogeneity. In addition, we found that the HP gene expression-positive neutrophil cluster (Neu_AIF1) had extensive and strong intercellular communication with HCC cells, tumor endothelial cells (TEC) and cancer-associated fibroblasts (CAF), suggesting that clearance of this new cluster may inhibit HCC progression. Furthermore, ErbB signaling pathway and GnRH signaling pathway were found to be upregulated in almost all HCC tumor-associated stromal cells and immune cells, except NKT cells. Moreover, the high intercellular communication between HCC and HSPA1-positive TME cells suggests that the immune microenvironment may be reprogrammed. In summary, our present study depicted the single-cell landscape heterogeneity of human HCC, identified new cell clusters in tumor cells and neutrophils with potential implications for immunotherapy research, discovered complex intercellular communication between tumor cells and TME cells.
Collapse
Affiliation(s)
- Zhouhua Xie
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
- Department of Tuberculosis, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Jinping Huang
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Yanjun Li
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Qingdong Zhu
- Department of Tuberculosis, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Xianzhen Huang
- Department of Tuberculosis, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Jieling Chen
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Cailing Wei
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Shunda Luo
- Department of Clinical Laboratory, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Shixiong Yang
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China.
- Administrative Office, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China.
| | - Jiamin Gao
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China.
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China.
| |
Collapse
|
7
|
Wan Q, Ren X, Tang J, Ma K, Deng YP. Cross talk between tumor stemness and microenvironment for prognosis and immunotherapy of uveal melanoma. J Cancer Res Clin Oncol 2023; 149:11951-11968. [PMID: 37420017 DOI: 10.1007/s00432-023-05061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE Tumor stem cells have emerged as a crucial focus of investigation and a therapeutic target in the context of cancer metastasis and drug resistance. They represent a promising novel approach to address the treatment of uveal melanoma (UVM). METHODS According to the one-class logistic regression (OCLR) approach, we first estimated two stemness indices (mDNAsi and mRNAsi) in a cohort of UVM (n = 80). The prognostic value of stemness indices among four subtypes of UVM (subtype A-D) was investigated. Moreover, univariate Cox regression and Lasso-penalized algorithms were conducted to identify a stemness-associated signature and verify in several independent cohorts. Besides, UVM patients classified into subgroups based on the stemness-associated signature. The differences in clinical outcomes, tumor microenvironment, and probability of immunotherapeutic response were investigated further. RESULTS We observed that mDNAsi was significantly linked with overall survival (OS) time of UVM, but no association was discovered between mRNAsi and OS. Stratification analysis indicated that the prognostic value of mDNAsi was only limited in subtype D of UVM. Besides, we established and verified a prognostic stemness-associated gene signature which can classify UVM patients into subgroups with distinct clinical outcomes, tumor mutation, immune microenvironment, and molecular pathways. The high risk of UVM is more sensitive to immunotherapy. Finally, a well-performed nomogram was constructed to predict the mortality of UVM patients. CONCLUSIONS This study offers a comprehensive examination of UVM stemness characteristics. We discovered mDNAsi-associated signatures improved the prediction capacity of individualized UVM prognosis and indicated prospective targets for stemness-regulated immunotherapy. Analysis of the interaction between stemness and tumor microenvironment may shed light on combinational treatment that targets both stem cell and the tumor microenvironment.
Collapse
Affiliation(s)
- Qi Wan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Ke Ma
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China.
| | - Ying-Ping Deng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China.
| |
Collapse
|
8
|
Jiang C, Fan F, Xu W, Jiang X. POLD4 Promotes Glioma Cell Proliferation and Suppressive Immune Microenvironment: A Pan-Cancer Analysis Integrated with Experimental Validation. Int J Mol Sci 2023; 24:13919. [PMID: 37762224 PMCID: PMC10530695 DOI: 10.3390/ijms241813919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
POLD4 plays a crucial part in the complex machinery of DNA replication and repair as a vital component of the DNA polymerase delta complex. In this research, we obtained original information from various publicly available databases. Using a blend of R programming and internet resources, we initiated an extensive examination into the correlation between POLD4 expression and the various elements of cancers. In addition, we performed knockdown experiments in glioma cell lines to authenticate its significant impact. We discovered that POLD4 is upregulated in various malignant tumors, demonstrating a significant correlation with poor patient survival prognosis. Using function analysis, it was uncovered that POLD4 exhibited intricate associations with signaling pathways spanning multiple tumor types. Subsequent investigations unveiled the close association of POLD4 with the immune microenvironment and the effectiveness of immunotherapy. Drugs like trametinib, saracatinib, and dasatinib may be used in patients with high POLD4. Using experimental analysis, we further confirmed the overexpression of POLD4 in gliomas, as well as its correlation with glioma recurrence, proliferation, and the suppressive immune microenvironment. Our research findings indicate that the expression pattern of POLD4 not only serves as a robust indicator of prognosis in cancer patients but also holds promising potential as a new focus for treatment.
Collapse
Affiliation(s)
| | | | | | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China (W.X.)
| |
Collapse
|
9
|
Ngule CM, Hemati H, Ren X, Obaleye O, Akinyemi AO, Oyelami FF, Xiong X, Song J, Liu X, Yang JM. Identification of a NACC1-Regulated Gene Signature Implicated in the Features of Triple-Negative Breast Cancer. Biomedicines 2023; 11:1223. [PMID: 37189841 PMCID: PMC10136325 DOI: 10.3390/biomedicines11041223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by a deficiency in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor2 (HER2), is among the most lethal subtypes of breast cancer (BC). Nevertheless, the molecular determinants that contribute to its malignant phenotypes such as tumor heterogeneity and therapy resistance, remain elusive. In this study, we sought to identify the stemness-associated genes involved in TNBC progression. Using bioinformatics approaches, we found 55 up- and 9 downregulated genes in TNBC. Out of the 55 upregulated genes, a 5 gene-signature (CDK1, EZH2, CCNB1, CCNA2, and AURKA) involved in cell regeneration was positively correlated with the status of tumor hypoxia and clustered with stemness-associated genes, as recognized by Parametric Gene Set Enrichment Analysis (PGSEA). Enhanced infiltration of immunosuppressive cells was also positively correlated with the expression of these five genes. Moreover, our experiments showed that depletion of the transcriptional co-factor nucleus accumbens-associated protein 1 (NAC1), which is highly expressed in TNBC, reduced the expression of these genes. Thus, the five genes signature identified by this study warrants further exploration as a potential new biomarker of TNBC heterogeneity/stemness characterized by high hypoxia, stemness enrichment, and immune-suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Chrispus M. Ngule
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Oluwafunminiyi Obaleye
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Amos O. Akinyemi
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Felix F. Oyelami
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xia Liu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Science, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Huang Q, Peng X, Li Q, Zhu J, Xue J, Jiang H. Construction and comprehensive analysis of a novel prognostic signature associated with pyroptosis molecular subtypes in patients with pancreatic adenocarcinoma. Front Immunol 2023; 14:1111494. [PMID: 36817451 PMCID: PMC9935619 DOI: 10.3389/fimmu.2023.1111494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Treatment of cancer with pyroptosis is an emerging strategy. Molecular subtypes based on pyroptosis-related genes(PRGs) seem to be considered more conducive to individualized therapy. It is meaningful to construct a pyroptosis molecular subtypes-related prognostic signature (PMSRPS) to predict the overall survival (OS) of patients with pancreatic adenocarcinoma(PAAD) and guide treatment. Methods Based on the transcriptome data of 23 PRGs, consensus clustering was applied to divide the TCGA and GSE102238 combined cohort into three PRGclusters. Prognosis-related differentially expressed genes(DEGs) among PRGclusters were subjected to LASSO Cox regression analysis to determine a PMSRPS. External cohort and in vitro experiments were conducted to verify this PMSRPS. The CIBERSORT algorithm, the ESTIMATE algorithm and the Immunophenoscore (IPS) were used to analyze the infiltrating abundance of immune cells, the tumor microenvironment (TME), and the response to immunotherapy, respectively. Wilcoxon analysis was used to compare tumor mutational burden (TMB) and RNA stemness scores (RNAss) between groups. RT-qPCR and in vitro functional experiments were used for evaluating the expression and function of SFTA2. Results Based on three PRGclusters, 828 DEGs were obtained and a PMSRPS was subsequently constructed. In internal and external validation, patients in the high-risk group had significantly lower OS than those in the low-risk group and PMSRPS was confirmed to be an independent prognostic risk factor for patients with PAAD with good predictive performance. Immune cell infiltration abundance and TME scores indicate patients in the high-risk group have typical immunosuppressive microenvironment characteristics. Analysis of IPS suggests patients in the high-risk group responded better to novel immune checkpoint inhibitors (ICIs) than PD1/CTLA4. The high-risk group had higher TMB and RNAss. In addition, 10 potential small-molecule compounds were screened out. Finally, we found that the mRNA expression of SFTA2 gene with the highest risk coefficient in PMSRPS was significantly higher in PAAD than in paracancerous tissues, and knockdown of it significantly delayed the progression of PAAD. Conclusions PMSRPS can well predict the prognosis, TME and immunotherapy response of patients with PAAD, identify potential drugs, and provide treatment guidance based on individual needs.
Collapse
Affiliation(s)
- Qian Huang
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingqing Li
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ju Xue
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hua Jiang
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Hua Jiang,
| |
Collapse
|
11
|
Hu F, Li H, Li L, Gale RP, Song Y, Chen S, Liang Y. Degree of stemness predicts micro-environmental response and clinical outcomes of diffuse large B-cell lymphoma and identifies a potential targeted therapy. Front Immunol 2022; 13:1012242. [PMID: 36426371 PMCID: PMC9678919 DOI: 10.3389/fimmu.2022.1012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Some cells within a diffuse large B-cell lymphoma (DLBCL) have the genotype of a stem cell, the proportion of which is termed degree of stemness. We interrogated correlations between the degree of stemness with immune and stromal cell scores and clinical outcomes in persons with DLBCL. We evaluated gene expression data on 1,398 subjects from Gene Expression Omnibus to calculate the degree of stemness. Subjects were classified into low- and high-stemness cohorts based on restricted cubic spline plots. Weighted gene co-expression network analysis (WGCNA) was used to screen for stemness-related genes. Immune and stromal scores correlated with the degree of stemness (both P < 0.001). A high degree of stemness correlated with a shorter progression-free survival (PFS; Hazard Ratio [HR; 95% Confidence Interval [CI] =1.90 (1.37, 2.64; P < 0.001) and a shorter survival (HR = 2.29 (1.53, 3.44; P < 0.001). CDC7 expression correlated with the degree of stemness, and CDC7-inhibitors significantly increased apoptosis (P < 0.01), the proportion of cells in G1 phase (P < 0.01), and inhibited lymphoma growth in a mice xenograft model (P = 0.04). Our data indicate correlations between the degree of stemness, immune and stromal scores, PFS, and survival. These data will improve the prediction of therapy outcomes in DLBCL and suggest potential new therapies.
Collapse
|
12
|
Liu M, Yan W, Chen D, Luo J, Dai L, Chen H, Chen KN. IGFBP1 hiWNT3A lo Subtype in Esophageal Cancer Predicts Response and Prolonged Survival with PD-(L)1 Inhibitor. BIOLOGY 2022; 11:biology11111575. [PMID: 36358276 PMCID: PMC9687176 DOI: 10.3390/biology11111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023]
Abstract
PD-(L)1 inhibitor could improve the survival of locally advanced esophageal cancer (ESCA) patients, but we cannot tailor the treatment to common biomarkers. WNT signaling activation was associated with primary resistance to immunotherapy. In this study, we used our two clinical cohorts (BJCH n = 95, BJIM n = 21) and three public cohorts to evaluate and verify a new immunotherapeutic biomarker based on WNT signaling in ESCA patients. Our findings showed that WNT signaling-related genes stratified TCGA patients into Cluster 1, 2, and 3, among which, Cluster 3 had the worst prognosis. The most up- and down-regulated genes in Cluster 3 were IGFBP1 and WNT3A. Further analysis validated that IGFBP1hiWNT3Alo ESCA patients had significantly poor RFS and OS in the TCGA and BJCH cohorts. Interestingly, IGFBP1hiWNT3Alo patients had a good response and prognosis with immunotherapy in three independent cohorts, exhibiting better predictive value than PD-L1 expression (signature AUC = 0.750; PD-L1 AUC = 0.571). Moreover, IGFBP1hiWNT3Alo patients may benefit more from immunotherapy than standard treatment (p = 0.026). Immune cell infiltration analysis revealed a significant increase in DC infiltration in IGFBP1hiWNT3Alo patients post-immunotherapy (p = 0.022), which may enhance immune response. The IGFBP1hiWNT3Alo signature could predict patients who benefited from PD-(L)1 inhibitor treatment and may serve as a biomarker in ESCA.
Collapse
Affiliation(s)
- Meichen Liu
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
| | - Wanpu Yan
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
| | - Dongbo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jiancheng Luo
- Aiyi Technology Co., Ltd., Room 1004, Building 3, Greenland Qihang, Biomedical Industry Base, Daxing District, Beijing 102629, China
| | - Liang Dai
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Correspondence: (H.C.); (K.-N.C.)
| | - Ke-Neng Chen
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
- Correspondence: (H.C.); (K.-N.C.)
| |
Collapse
|
13
|
Wang C, Cui G, Wang D, Wang M, Chen Q, Wang Y, Lu M, Tang X, Yang B. Crosstalk of Oxidative Phosphorylation-Related Subtypes, Establishment of a Prognostic Signature and Immune Infiltration Characteristics in Colorectal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14184503. [PMID: 36139663 PMCID: PMC9496738 DOI: 10.3390/cancers14184503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Oxidative phosphorylation (OXPHOS) plays an important role in the progression of colorectal adenocarcinoma (COAD). The aim of our study was to investigate the expression pattern of OXPHOS-related genes (ORGs), and an OXPHOS-related prognostic signature was constructed to classify COAD patients into high-risk and low-risk groups. Then, we analyzed the relationship between risk scores and tumor microenvironment, somatic mutation, and efficacy of immunotherapy and chemotherapy. Additionally, a nomogram was established by combining clinical features and risk scores, and its predictive ability was verified by receiver operating characteristics and calibration curves. Overall, the OXPHOS-related signature can be used as a reliable prognostic predictor of COAD patients. Abstract Oxidative phosphorylation (OXPHOS) is an emerging target in cancer therapy. However, the prognostic signature of OXPHOS in colorectal adenocarcinoma (COAD) remains non-existent. We comprehensively investigated the expression pattern of OXPHOS-related genes (ORGs) in COAD from public databases. Based on four ORGs, an OXPHOS-related prognostic signature was established in which COAD patients were assigned different risk scores and classified into two different risk groups. It was observed that the low-risk group had a better prognosis but lower immune activities including immune cells and immune-related function in the tumor microenvironment. Combining with relevant clinical features, a nomogram for clinical application was also established. Receiver operating characteristic (ROC) and calibration curves were constructed to demonstrate the predictive ability of this risk signature. Moreover, a higher risk score was significantly positively correlated with higher tumor mutation burden (TMB) and generally higher gene expression of immune checkpoint, N6-methyladenosine (m6A) RNA methylation regulators and mismatch repair (MMR) related proteins. The results also indicated that the high-risk group was more sensitive to immunotherapy and certain chemotherapy drugs. In conclusion, OXPHOS-related prognostic signature can be utilized to better understand the roles of ORGs and offer new perspectives for clinical prognosis and personalized treatment.
Collapse
Affiliation(s)
- Can Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Dan Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Min Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Qi Chen
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Yunshan Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Mengjie Lu
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Xinyi Tang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Bolin Yang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
- Correspondence:
| |
Collapse
|
14
|
Chen L, Zhang D, Zheng S, Li X, Gao P. Stemness analysis in hepatocellular carcinoma identifies an extracellular matrix gene–related signature associated with prognosis and therapy response. Front Genet 2022; 13:959834. [PMID: 36110210 PMCID: PMC9468756 DOI: 10.3389/fgene.2022.959834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Tumor stemness is the stem-like phenotype of cancer cells, as a hallmark for multiple processes in the development of hepatocellular carcinoma (HCC). However, comprehensive functions of the regulators of tumor cell’s stemness in HCC remain unclear.Methods: Gene expression data and clinical information of HCC samples were downloaded from The Cancer Genome Atlas (TCGA) dataset as the training set, and three validation datasets were derived from Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC). Patients were dichotomized according to median mRNA expression–based stemness index (mRNAsi) scores, and differentially expressed genes were further screened out. Functional enrichment analysis of these DEGs was performed to identify candidate extracellular matrix (ECM)–related genes in key pathways. A prognostic signature was constructed by applying least absolute shrinkage and selection operator (LASSO) to the candidate ECM genes. The Kaplan–Meier curve and receiver operating characteristic (ROC) curve were used to evaluate the prognostic value of the signature. Correlations between signatures and genomic profiles, tumor immune microenvironment, and treatment response were also explored using multiple bioinformatic methods.Results: A prognostic prediction signature was established based on 10 ECM genes, including TRAPPC4, RSU1, ILK, LAMA1, LAMB1, FLNC, ITGAV, AGRN, ARHGEF6, and LIMS2, which could effectively distinguish patients with different outcomes in the training and validation sets, showing a good prognostic prediction ability. Across different clinicopathological parameter stratifications, the ECMs signature still retains its robust efficacy in discriminating patient with different outcomes. Based on the risk score, vascular invasion, α-fetoprotein (AFP), T stage, and N stage, we further constructed a nomogram (C-index = 0.70; AUCs at 1-, 3-, and 5-year survival = 0.71, 0.75, and 0.78), which is more practical for clinical prognostic risk stratification. The infiltration abundance of macrophages M0, mast cells, and Treg cells was significantly higher in the high-risk group, which also had upregulated levels of immune checkpoints PD-1 and CTLA-4. More importantly, the ECMs signature was able to distinguish patients with superior responses to immunotherapy, transarterial chemoembolization, and sorafenib.Conclusion: In this study, we constructed an ECM signature, which is an independent prognostic biomarker for HCC patients and has a potential guiding role in treatment selection.
Collapse
Affiliation(s)
- Lei Chen
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Dafang Zhang
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Shengmin Zheng
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Xinyu Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Pengji Gao
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Pengji Gao,
| |
Collapse
|
15
|
Weng M, Li T, Zhao J, Guo M, Zhao W, Gu W, Sun C, Yue Y, Zhong Z, Nan K, Liao Q, Sun M, Zhou D, Miao C. mRNAsi-related metabolic risk score model identifies poor prognosis, immunoevasive contexture, and low chemotherapy response in colorectal cancer patients through machine learning. Front Immunol 2022; 13:950782. [PMID: 36081499 PMCID: PMC9445443 DOI: 10.3389/fimmu.2022.950782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most fatal cancers of the digestive system. Although cancer stem cells and metabolic reprogramming have an important effect on tumor progression and drug resistance, their combined effect on CRC prognosis remains unclear. Therefore, we generated a 21-gene mRNA stemness index-related metabolic risk score model, which was examined in The Cancer Genome Atlas and Gene Expression Omnibus databases (1323 patients) and validated using the Zhongshan Hospital cohort (200 patients). The high-risk group showed more immune infiltrations; higher levels of immunosuppressive checkpoints, such as CD274, tumor mutation burden, and resistance to chemotherapeutics; potentially better response to immune therapy; worse prognosis; and advanced stage of tumor node metastasis than the low-risk group. The combination of risk score and clinical characteristics was effective in predicting overall survival. Zhongshan cohort validated that high-risk score group correlated with malignant progression, worse prognosis, inferior adjuvant chemotherapy responsiveness of CRC, and shaped an immunoevasive contexture. This tool may provide a more accurate risk stratification in CRC and screening of patients with CRC responsive to immunotherapy.
Collapse
Affiliation(s)
- Meilin Weng
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Ting Li
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Miaomiao Guo
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Wenling Zhao
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Caihong Sun
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Qingwu Liao
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
| | - Minli Sun
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
- *Correspondence: Changhong Miao, ; Di Zhou, ; Minli Sun,
| | - Di Zhou
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
- *Correspondence: Changhong Miao, ; Di Zhou, ; Minli Sun,
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, China
- *Correspondence: Changhong Miao, ; Di Zhou, ; Minli Sun,
| |
Collapse
|
16
|
Zheng Y, Yuan D, Zhang F, Tang R. A systematic pan-cancer analysis of the gasdermin (GSDM) family of genes and their correlation with prognosis, the tumor microenvironment, and drug sensitivity. Front Genet 2022; 13:926796. [PMID: 36003332 PMCID: PMC9393220 DOI: 10.3389/fgene.2022.926796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Pyroptosis is a programmed cell death process mediated by the gasdermin (GSDM) protein. However, limited research has been conducted to comprehensively analyze the contribution of the GSDM family in a pan-cancer setting. Methods: We systematically evaluated the gene expression, genetic variations, and prognostic values of the GSDM family members. Furthermore, we investigated the association between the expression of GSDM genes and immune subtypes, the tumor microenvironment (TME), the stemness index, and cancer drug sensitivities by means of a pan-cancer analysis. Results: GSDM genes were highly upregulated in most of the tested cancers. Low-level mutation frequencies within GSDM genes were common across the examined types of cancer, and their expression levels were associated with prognosis, clinical characteristics, TME features, and stemness scores in several cancer types, particularly those of the urinary system. Importantly, we found that the expressions of GSDMB, GSDMC, and GSDMD were higher in kidney carcinomas, and specifically kidney renal clear cell carcinoma (KIRC); which adversely impacted the patient outcome. We showed that GSDMD was potentially the most useful biomarker for KIRC. The drug sensitivity analysis demonstrated that the expressions of GSDM genes were correlated with the sensitivity of tumor cells to treatment with chemotherapy drugs nelarabine, fluphenazine, dexrazoxane, bortezomib, midostaurin, and vincristine. Conclusion: GSDM genes were associated with tumor behaviors and may participate in carcinogenesis. The results of this study may therefore provide new directions for further investigating the role of GSDM genes as therapeutic targets in a pan-cancer setting.
Collapse
|
17
|
Identification and Validation of a Potential Stemness-Associated Biomarker in Hepatocellular Carcinoma. Stem Cells Int 2022; 2022:1534593. [PMID: 35859724 PMCID: PMC9293570 DOI: 10.1155/2022/1534593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cancer stem cells (CSCs) are typically related to metastasis, recurrence, and drug resistance in malignant tumors. However, the biomarker and mechanism of CSCs need further exploration. This study is aimed at comprehensively depicting the stemness characteristics and identify a potential stemness-associated biomarker in hepatocellular carcinoma (HCC). Methods The data of HCC patients from The Cancer Genome Atlas (TCGA) were collected and divided based on the mRNA expression-based stemness index (mRNAsi) in this study. Weighted gene coexpression network analysis (WGCNA) and the protein-protein interaction (PPI) network were performed, and the genes were screened through the Cytoscape software. Then, we constructed a prognostic expression signature using the multivariable Cox analysis and verified using the GEO and ICGC databases. Even more importantly, we used the three-dimensional (3D) fibrin gel to enrich the tumor-repopulating cells (TRCs) to validate the expression of the signature in CSCs by quantitative RT-PCR. Results mRNAsi was significantly elevated in tumor and high-mRNAsi score was associated with poor overall survival in HCC. The positive stemness-associated (blue) module with 737 genes were screened based on WGCNA, and Budding uninhibited by benzimidazoles 1 (BUB1) was identified as the hub gene highly related to stemness in HCC. Then, the prognostic value and stemness characteristics were well validated in the ICGC and GSE14520 cohorts. Further analysis showed the expression of BUB1 was elevated in TRCs. Conclusion BUB1, as a potential stemness-associated biomarker, could serve as a therapeutic CSCs-target and predicted the clinical outcomes of patients with HCC.
Collapse
|
18
|
Gu H, Song J, Chen Y, Wang Y, Tan X, Zhao H. Inflammation-Related LncRNAs Signature for Prognosis and Immune Response Evaluation in Uterine Corpus Endometrial Carcinoma. Front Oncol 2022; 12:923641. [PMID: 35719911 PMCID: PMC9201290 DOI: 10.3389/fonc.2022.923641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Backgrounds Uterine corpus endometrial carcinoma (UCEC) is one of the greatest threats on the female reproductive system. The aim of this study is to explore the inflammation-related LncRNA (IRLs) signature predicting the clinical outcomes and response of UCEC patients to immunotherapy and chemotherapy. Methods Consensus clustering analysis was employed to determine inflammation-related subtype. Cox regression methods were used to unearth potential prognostic IRLs and set up a risk model. The prognostic value of the prognostic model was calculated by the Kaplan-Meier method, receiver operating characteristic (ROC) curves, and univariate and multivariate analyses. Differential abundance of immune cell infiltration, expression levels of immunomodulators, the status of tumor mutation burden (TMB), the response to immune checkpoint inhibitors (ICIs), drug sensitivity, and functional enrichment in different risk groups were also explored. Finally, we used quantitative real-time PCR (qRT-PCR) to confirm the expression patterns of model IRLs in clinical specimens. Results All UCEC cases were divided into two clusters (C1 = 454) and (C2 = 57) which had significant differences in prognosis and immune status. Five hub IRLs were selected to develop an IRL prognostic signature (IRLPS) which had value in forecasting the clinical outcome of UCEC patients. Biological processes related to tumor and immune response were screened. Function enrichment algorithm showed tumor signaling pathways (ERBB signaling, TGF-β signaling, and Wnt signaling) were remarkably activated in high-risk group scores. In addition, the high-risk group had a higher infiltration level of M2 macrophages and lower TMB value, suggesting patients with high risk were prone to a immunosuppressive status. Furthermore, we determined several potential molecular drugs for UCEC. Conclusion We successfully identified a novel molecular subtype and inflammation-related prognostic model for UCEC. Our constructed risk signature can be employed to assess the survival of UCEC patients and offer a valuable reference for clinical treatment regimens.
Collapse
Affiliation(s)
- Hongmei Gu
- Department of Radiotherapy Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahang Song
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofang Tan
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Hongyu Zhao
- Department of Radiotherapy Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
Ran Q, Xu D, Wang Q, Wang D. Hypermethylation of the Promoter Region of miR-23 Enhances the Metastasis and Proliferation of Multiple Myeloma Cells via the Aberrant Expression of uPA. Front Oncol 2022; 12:835299. [PMID: 35707350 PMCID: PMC9189361 DOI: 10.3389/fonc.2022.835299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple myeloma has a long course, with no obvious symptoms in the early stages. However, advanced stages are characterized by injury to the bone system and represent a severe threat to human health. The results of the present work indicate that the hypermethylation of miR-23 promoter mediates the aberrant expression of uPA/PLAU (urokinase plasminogen activator, uPA) in multiple myeloma cells. miR-23, a microRNA that potentially targets uPA’s 3’UTR, was predicted by the online tool miRDB. The endogenous expressions of uPA and miR-23 are related to disease severity in human patients, and the expression of miR-23 is negatively related to uPA expression. The hypermethylation of the promoter region of miR-23 is a promising mechanism to explain the low level of miR-23 or aberrant uPA expression associated with disease severity. Overexpression of miR-23 inhibited the expression of uPA by targeting the 3’UTR of uPA, not only in MM cell lines, but also in patient-derived cell lines. Overexpression of miR-23 also inhibited in vitro and in vivo invasion of MM cells in a nude mouse model. The results therefore extend our knowledge about uPA in MM and may assist in the development of more effective therapeutic strategies for MM treatment.
Collapse
Affiliation(s)
- Qijie Ran
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| | - Dehong Xu
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Qi Wang
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Fifth People’s Hospital of Dalian, Dalian, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian City, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| |
Collapse
|
20
|
Liu J, Cui G, Ye J, Wang Y, Wang C, Bai J. Comprehensive Analysis of the Prognostic Signature of Mutation-Derived Genome Instability-Related lncRNAs for Patients With Endometrial Cancer. Front Cell Dev Biol 2022; 10:753957. [PMID: 35433686 PMCID: PMC9012522 DOI: 10.3389/fcell.2022.753957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/21/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Emerging evidence shows that genome instability-related long non-coding RNAs (lncRNAs) contribute to tumor–cell proliferation, differentiation, and metastasis. However, the biological functions and molecular mechanisms of genome instability-related lncRNAs in endometrial cancer (EC) are underexplored.Methods: EC RNA sequencing and corresponding clinical data obtained from The Cancer Genome Atlas (TCGA) database were used to screen prognostic lncRNAs associated with genomic instability via univariate and multivariate Cox regression analysis. The genomic instability-related lncRNA signature (GILncSig) was developed to assess the prognostic risk of high- and low-risk groups. The prediction performance was analyzed using receiver operating characteristic (ROC) curves. The immune status and mutational loading of different risk groups were compared. The Genomics of Drug Sensitivity in Cancer (GDSC) and the CellMiner database were used to elucidate the relationship between the correlation of prognostic lncRNAs and drug sensitivity. Finally, we used quantitative real-time PCR (qRT-PCR) to detect the expression levels of genomic instability-related lncRNAs in clinical samples.Results: GILncSig was built using five lncRNAs (AC007389.3, PIK3CD-AS2, LINC01224, AC129507.4, and GLIS3-AS1) associated with genomic instability, and their expression levels were verified using qRT-PCR. Further analysis revealed that risk score was negatively correlated with prognosis, and the ROC curve demonstrated the higher accuracy of GILncSig. Patients with a lower risk score had higher immune cell infiltration, a higher immune score, lower tumor purity, higher immunophenoscores (IPSs), lower mismatch repair protein expression, higher microsatellite instability (MSI), and a higher tumor mutation burden (TMB). Furthermore, the level of expression of prognostic lncRNAs was significantly related to the sensitivity of cancer cells to anti-tumor drugs.Conclusion: A novel signature composed of five prognostic lncRNAs associated with genome instability can be used to predict prognosis, influence immune status, and chemotherapeutic drug sensitivity in EC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Ye
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yutong Wang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Can Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
- *Correspondence: Jianling Bai,
| |
Collapse
|
21
|
Liu J, Cui G, Shen S, Gao F, Zhu H, Xu Y. Establishing a Prognostic Signature Based on Epithelial-Mesenchymal Transition-Related Genes for Endometrial Cancer Patients. Front Immunol 2022; 12:805883. [PMID: 35095892 PMCID: PMC8795518 DOI: 10.3389/fimmu.2021.805883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Backgrounds Epithelial-mesenchymal transition (EMT) is a sequential process where tumor cells develop from the epithelial state to the mesenchymal state. EMT contributes to various tumor functions including initiation, propagating potential, and resistance to therapy, thus affecting the survival time of patients. The aim of this research is to set up an EMT-related prognostic signature for endometrial cancer (EC). Methods EMT-related gene (ERG) expression and clinical data were acquired from The Cancer Genome Atlas (TCGA). The entire set was randomly divided into two sets, one for contributing the risk model (risk score) and the other for validating. Univariate and multivariate Cox proportional hazards regression analyses were applied to the training set to select the prognostic ERGs. The expression of 10 ERGs was confirmed by qRT-PCR in clinical samples. Then, we developed a nomogram predicting 1-/3-/5-year survival possibility combining the risk score and clinical factors. The entire set was stratified into the high- and low-risk groups, which was used to analyze the immune infiltrating, tumorigenesis pathways, and response to drugs. Results A total of 220 genes were screened out from 1,316 ERGs for their differential expression in tumor versus normal. Next, 10 genes were found to be associated with overall survival (OS) in EC, and the expression was validated by qRT-PCR using clinical samples, so we constructed a 10-ERG-based risk score to distinguish high-/low-risk patients and a nomogram to predict survival rate. The calibration plots proved the predictive value of our model. Gene Set Enrichment Analysis (GSEA) discovered that in the low-risk group, immune-related pathways were enriched; in the high-risk group, tumorigenesis pathways were enriched. The low-risk group showed more immune activities, higher tumor mutational burden (TMB), and higher CTAL4/PD1 expression, which was in line with a better response to immune checkpoint inhibitors. Nevertheless, response to chemotherapeutic drugs turned out better in the high-risk group. The high-risk group had higher N 6-methyladenosine (m6A) RNA expression, microsatellite instability level, and stemness indices. Conclusion We constructed the ERG-related signature model to predict the prognosis of EC patients. What is more, it might offer a reference for predicting individualized response to immune checkpoint inhibitors and chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuning Shen
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Zhu
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Yinghua Xu
- Department of Radiation Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| |
Collapse
|
22
|
Jia X, Chen B, Li Z, Huang S, Chen S, Zhou R, Feng W, Zhu H, Zhu X. Identification of a Four-Gene-Based SERM Signature for Prognostic and Drug Sensitivity Prediction in Gastric Cancer. Front Oncol 2022; 11:799223. [PMID: 35096599 PMCID: PMC8790320 DOI: 10.3389/fonc.2021.799223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background Gastric cancer (GC) is a highly molecular heterogeneous tumor with poor prognosis. Epithelial-mesenchymal transition (EMT) process and cancer stem cells (CSCs) are reported to share common signaling pathways and cause poor prognosis in GC. Considering about the close relationship between these two processes, we aimed to establish a gene signature based on both processes to achieve better prognostic prediction in GC. Methods The gene signature was constructed by univariate Cox and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses by using The Cancer Genome Atlas (TCGA) GC cohort. We performed enrichment analyses to explore the potential mechanisms of the gene signature. Kaplan-Meier analysis and time-dependent receiver operating characteristic (ROC) curves were implemented to assess its prognostic value in TCGA cohort. The prognostic value of gene signature on overall survival (OS), disease-free survival (DFS), and drug sensitivity was validated in different cohorts. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) validation of the prognostic value of gene signature for OS and DFS prediction was performed in the Fudan cohort. Results A prognostic signature including SERPINE1, EDIL3, RGS4, and MATN3 (SERM signature) was constructed to predict OS, DFS, and drug sensitivity in GC. Enrichment analyses illustrated that the gene signature has tight connection with the CSC and EMT processes in GC. Patients were divided into two groups based on the risk score obtained from the formula. The Kaplan-Meier analyses indicated high-risk group yielded significantly poor prognosis compared with low-risk group. Pearson’s correlation analysis indicated that the risk score was positively correlated with carboplatin and 5-fluorouracil IC50 of GC cell lines. Multivariate Cox regression analyses showed that the gene signature was an independent prognostic factor for predicting GC patients’ OS, DFS, and susceptibility to adjuvant chemotherapy. Conclusions Our SERM prognostic signature is of great value for OS, DFS, and drug sensitivity prediction in GC, which may give guidance to the development of targeted therapy for CSC- and EMT-related gene in the future.
Collapse
Affiliation(s)
- Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bing Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Siyuan Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hui Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
23
|
Xiang Z, He Q, Huang L, Xiong B, Xiang Q. Breast Cancer Classification Based on Tumor Budding and Stem Cell-Related Signatures Facilitate Prognosis Evaluation. Front Oncol 2022; 11:818869. [PMID: 35083162 PMCID: PMC8784696 DOI: 10.3389/fonc.2021.818869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background Tumor budding (TB) is emerging as a prognostic factor in multiple cancers. Likewise, the stemness of cancer cells also plays a vital role in cancer progression. However, nearly no research has focused on the interaction of TB and tumor stemness in cancer. Methods Tissue microarrays including 229 cases of invasive breast cancer (BC) were established and subjected to pan-cytokeratin immunohistochemical staining to evaluate molecular expression. Univariate and multivariate analyses were applied to identify prognostic factors of BC, and the Chi-square test was used for comparison of categorical variables. Results High-grade TB was significantly associated with T stage, lymph node metastasis, tumor node metastasis (TNM) stage, epithelial-mesenchymal transition, and poor disease-free survival (DFS) of BC patients. We also found that the prognostic value of TB varied widely among different subtypes and subgroups. Cox regression analysis then showed that TB grade was an independent prognostic factor. Moreover, cancer stem cell (CSC) markers CD44 and ALDH1A1 were significantly higher in high-grade TB tumors. Consequently, patients were classified into high CSC score subgroup and low CSC score subgroups. Further research found that CSC scores correlated with clinicopathological features and DFS of BC patients. Based on TB grade and CSC scores, we classified BC patients into TBlow-CSCslow (type I), TBlow-CSCshigh (type II), TBhigh-CSCslow (type III), and TBhigh-CSCshigh (type IV) subgroups. Survival analysis showed that patients in the type I subgroup had the best DFS, whereas those in the type IV subgroup had the worst DFS. Finally, a TB-CSC-based nomogram for use in BC was established. The nomogram was well calibrated to predict the probability of 5-year DFS, and the C-index was 0.837. Finally, the area under the curve value for the nomogram (0.892) was higher than that of the TNM staging system (0.713). Conclusion The combination of TB grade with CSC score improves the prognostic evaluation of BC patients. A novel nomogram containing TB grade and CSC score provides doctors with a candidate tool to guide the individualized treatment of cancer patients.
Collapse
Affiliation(s)
- Zhenxian Xiang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qiuming He
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Li Huang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qingming Xiang
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
24
|
Implications of Stemness Features in 1059 Hepatocellular Carcinoma Patients from Five Cohorts: Prognosis, Treatment Response, and Identification of Potential Compounds. Cancers (Basel) 2022; 14:cancers14030563. [PMID: 35158838 PMCID: PMC8833508 DOI: 10.3390/cancers14030563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Cancer stemness has been reported to drive hepatocellular carcinoma (HCC) tumorigenesis and treatment resistance. However, comprehensive interpretations of transcriptomic stemness features in HCC patients have not been conducted in multiple cohorts. Our aim was to interpret clinical and therapeutic implications of transcriptional stemness features and explore potential compounds for HCC treatment. We found that transcriptional stemness indexes (mRNAsi) were independently associated with worse HCC prognosis. The HCC stemness risk model (HSRM) developed in this study significantly predicted prognosis and treatment response in various HCC cohorts. Analysis of two stemness subtypes suggested several liver-specific metabolic pathways, and mutations of TP53 and RB1 were associated with HCC transcriptional stemness. Moreover, we also identified potential compounds that target HCC transcriptional stemness. Our findings comprehensively characterized transcriptional stemness as a risk factor in HCC progression and treatment. Abstract Cancer stemness has been reported to drive hepatocellular carcinoma (HCC) tumorigenesis and treatment resistance. In this study, five HCC cohorts with 1059 patients were collected to calculate transcriptional stemness indexes (mRNAsi) by the one-class logistic regression machine learning algorithm. In the TCGA-LIHC cohort, we found mRNAsi was an independent prognostic factor, and 626 mRNAsi-related genes were identified by Spearman correlation analysis. The HCC stemness risk model (HSRM) was trained in the TCGA-LIHC cohort and significantly discriminated overall survival in four independent cohorts. HSRM was also significantly associated with transarterial chemoembolization treatment response and rapid tumor growth in HCC patients. Consensus clustering was conducted based on mRNAsi-related genes to divide 1059 patients into two stemness subtypes. On gene set variation analysis, samples of subtype I were found enriched with pathways such as DNA replication and cell cycle, while several liver-specific metabolic pathways were inhibited in these samples. Somatic mutation analysis revealed more frequent mutations of TP53 and RB1 in the subtype I samples. In silico analysis suggested topoisomerase, cyclin-dependent kinase, and histone deacetylase as potential targets to inhibit HCC stemness. In vitro assay showed two predicted compounds, Aminopurvalanol-a and NCH-51, effectively suppressed oncosphere formation and impaired viability of HCC cell lines, which may shed new light on HCC treatment.
Collapse
|
25
|
Li CW, Shi X, Ma B, Wang YL, Lu ZW, Liao T, Wang Y, Ji QH, Wei WJ. A 4 Gene-based Immune Signature Predicts Dedifferentiation and Immune Exhaustion in Thyroid Cancer. J Clin Endocrinol Metab 2021; 106:e3208-e3220. [PMID: 33656532 DOI: 10.1210/clinem/dgab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT The role of immune-related genes (IRGs) in thyroid cancer dedifferentiation and accompanying immune exhaustion remains largely unexplored. OBJECTIVE To construct a significant IRG-based signature indicative of dedifferentiation and immune exhaustion in thyroid cancer. DESIGN AND SETTINGS One exploratory cohort and 2 validation cohorts were used to identify stably dysregulated IRGs in dedifferentiated thyroid cancer (DDTC) and to obtain independent risk factors for dedifferentiation. The IRGs formed a gene signature, whose predictive value was tested by the receiver operating characteristic curve. Correlations between the signature and differentiation-related genes, immune checkpoints, and prognosis were analyzed. Gene set enrichment analyses were performed to identify related signaling pathways. RESULTS Four IRGs (PRKCQ, PLAUR, PSMD2, and BMP7) were found to be repeatedly dysregulated in DDTC, and they formed an IRG-based signature with a satisfactory predictive value for thyroid cancer dedifferentiation. Correlation analyses revealed that immune checkpoints were closely related to the 4 IRGs and the IRG-based signature, which was significantly associated with the histological subtype (P = 0.026), lymph node metastasis (P = 0.001), and BRAFV600E mutation (P < 0.001). The downregulated expression of PRKCQ shortened the disease-free survival for patients with thyroid cancer. Furthermore, we identified several signaling pathways inherently associated with the IRG-based signature. CONCLUSIONS This study suggests that IRGs participate in the dedifferentiation and immune exhaustion process of thyroid cancer and are potential biomarkers for DDTC.
Collapse
Affiliation(s)
- Cui-Wei Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhong-Wu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
26
|
Hong L, Zhou Y, Xie X, Wu W, Shi C, Lin H, Shi Z. A stemness-based eleven-gene signature correlates with the clinical outcome of hepatocellular carcinoma. BMC Cancer 2021; 21:716. [PMID: 34147074 PMCID: PMC8214273 DOI: 10.1186/s12885-021-08351-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cumulative evidences have been implicated cancer stem cells in the tumor environment of hepatocellular carcinoma (HCC) cells, whereas the biological functions and prognostic significance of stemness related genes (SRGs) in HCC is still unclear. Methods Molecular subtypes were identified by cumulative distribution function (CDF) clustering on 207 prognostic SRGs. The overall survival (OS) predictive gene signature was developed, internally and externally validated based on HCC datasets including The Cancer Genome Atlas (TCGA), GEO and ICGC datasets. Hub genes were identified in molecular subtypes by protein-protein interaction (PPI) network analysis, and then enrolled for determination of prognostic genes. Univariate, LASSO and multivariate Cox regression analyses were performed to assess prognostic genes and construct the prognostic gene signature. Time-dependent receiver operating characteristic (ROC) curve, Kaplan-Meier curve and nomogram were used to assess the performance of the gene signature. Results We identified four molecular subtypes, among which the C2 subtype showed the highest SRGs expression levels and proportions of immune cells, whereas the worst OS; the C1 subtype showed the lowest SRGs expression levels and was associated with most favorable OS. Next, we identified 11 prognostic genes (CDX2, PON1, ADH4, RBP2, LCAT, GAL, LPA, CYP19A1, GAST, SST and UGT1A8) and then constructed a prognostic 11-gene module and validated its robustness in all three datasets. Moreover, by univariate and multivariate Cox regression, we confirmed the independent prognostic ability of the 11-gene module for patients with HCC. In addition, calibration analysis plots indicated the excellent predictive performance of the prognostic nomogram constructed based on the 11-gene signature. Conclusions Findings in the present study shed new light on the role of stemness related genes within HCC, and the established 11-SRG signature can be utilized as a novel prognostic marker for survival prognostication in patients with HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08351-0.
Collapse
Affiliation(s)
- Liang Hong
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, 325200, People's Republic of China
| | - Yu Zhou
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, 325200, People's Republic of China
| | - Xiangbang Xie
- Department of Interventional, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, 325200, People's Republic of China
| | - Wanrui Wu
- Department of Interventional, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, 325200, People's Republic of China
| | - Changsheng Shi
- Department of Interventional, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, 325200, People's Republic of China
| | - Heping Lin
- Department of Interventional, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, 325200, People's Republic of China. .,Department of Respiratory, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, 325200, People's Republic of China.
| | - Zhenjing Shi
- Department of Interventional, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, 325200, People's Republic of China.
| |
Collapse
|
27
|
Guo C, Tang Y, Zhang Y, Li G. Mining TCGA Data for Key Biomarkers Related to Immune Microenvironment in Endometrial cancer by Immune Score and Weighted Correlation Network Analysis. Front Mol Biosci 2021; 8:645388. [PMID: 33869285 PMCID: PMC8048410 DOI: 10.3389/fmolb.2021.645388] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Endometrial cancer (EC) is one of the most lethal gynecological cancers around the world. The aim of this study is to identify the potential immune microenvironment-related biomarkers associated with the prognosis for EC. Methods: RNA-seq data and clinical information of EC patients were derived from The Cancer Genome Atlas (TCGA). The immune score of each EC sample was obtained by ESTIMATE algorithm. Weighted gene co-expression network analysis (WGCNA) was used to identify the interesting module and potential key genes concerning the immune score. The expression patterns of the key genes were then verified via the GEPIA database. Finally, CIBERSORT was applied to evaluate the relative abundances of 22 immune cell types in EC. Results: Immune scores were significantly associated with tumor grade and histology of EC, and high immune scores may exert a protective influence on the survival outcome for EC. WGCNA indicated that the black module was significantly correlated with the immune score. Function analysis revealed it mainly involved in those terms related to immune regulation and inflammatory response. Moreover, 11 key genes (APOL3, C10orf54, CLEC2B, GIMAP1, GIMAP4, GIMAP6, GIMAP7, GIMAP8, GYPC, IFFO1, TAGAP) were identified from the black module, validated by the GEPIA database, and revealed strong correlations with infiltration levels of multiple immune cell types, as was the prognosis of EC. Conclusion: In this study, 11 key genes showed abnormal expressions and strong correlations with immune infiltration in EC, most of which were significantly associated with the prognosis of EC. These findings made them promising therapeutic targets for the treatment of EC.
Collapse
Affiliation(s)
- Chengbin Guo
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuqin Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongqiang Zhang
- Molecular Medicine Center, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Gen Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|