1
|
He Y, Chen S, Xue Y, Lu H, Li Z, Jia X, Ning Y, Yuan Q, Wang S. Analysis of Alterations in Intestinal Flora in Chinese Elderly with Cardiovascular Disease and Its Association with Trimethylamine. Nutrients 2024; 16:1864. [PMID: 38931219 PMCID: PMC11206853 DOI: 10.3390/nu16121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
To investigate the changes in the intestinal flora in the Chinese elderly with cardiovascular disease (CVD) and its correlation with the metabolism of trimethylamine (TMA), the intestinal flora composition of elderly individuals with CVD and healthy elderly individuals was analyzed using 16S rRNA sequencing, the TMA levels in the feces of elderly were detected using headspace-gas chromatography (HS-GC), and four kinds of characterized TMA-producing intestinal bacteria in the elderly were quantified using real-time fluorescence quantitative polymerase chain reaction (qPCR). The results showed that Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Verrucomicrobia are the dominant microorganisms of the intestinal flora in the Chinese elderly. And there were significant differences in the intestinal bacteria composition between healthy elderly individuals and those with CVD, accompanied by a notable difference in the TMA content. The richness and diversity of the intestinal flora in the elderly with CVD were higher than those in the healthy elderly. Correlation analysis indicated that certain significantly different intestinal flora were associated with the TMA levels. Our findings showed a significant difference in TMA-producing intestinal flora between healthy elderly individuals and those with CVD. The TMA levels were found to be positively and significantly correlated with Klebsiella pneumoniae, suggesting that this bacterium is closely linked to the production of TMA in the elderly gut. This may have implications for the development and progression of CVD in the elderly population.
Collapse
Affiliation(s)
- Yannan He
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
| | - Song Chen
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
| | - Yuling Xue
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China; (Y.X.); (Y.N.); (Q.Y.)
| | - Han Lu
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
| | - Ziteng Li
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China;
| | - Yibing Ning
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China; (Y.X.); (Y.N.); (Q.Y.)
| | - Qingbin Yuan
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China; (Y.X.); (Y.N.); (Q.Y.)
| | - Shijie Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China; (Y.X.); (Y.N.); (Q.Y.)
| |
Collapse
|
2
|
Guiducci L, Nicolini G, Forini F. Dietary Patterns, Gut Microbiota Remodeling, and Cardiometabolic Disease. Metabolites 2023; 13:760. [PMID: 37367916 DOI: 10.3390/metabo13060760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
The cardiovascular and metabolic disorders, collectively known as cardiometabolic disease (CMD), are high morbidity and mortality pathologies associated with lower quality of life and increasing health-care costs. The influence of the gut microbiota (GM) in dictating the interpersonal variability in CMD susceptibility, progression and treatment response is beginning to be deciphered, as is the mutualistic relation established between the GM and diet. In particular, dietary factors emerge as pivotal determinants shaping the architecture and function of resident microorganisms in the human gut. In turn, intestinal microbes influence the absorption, metabolism, and storage of ingested nutrients, with potentially profound effects on host physiology. Herein, we present an updated overview on major effects of dietary components on the GM, highlighting the beneficial and detrimental consequences of diet-microbiota crosstalk in the setting of CMD. We also discuss the promises and challenges of integrating microbiome data in dietary planning aimed at restraining CMD onset and progression with a more personalized nutritional approach.
Collapse
Affiliation(s)
- Letizia Guiducci
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | | | - Francesca Forini
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
3
|
Florea CM, Baldea I, Rosu R, Moldovan R, Decea N, Filip GA. The Acute Effect of Trimethylamine-N-Oxide on Vascular Function, Oxidative Stress, and Inflammation in Rat Aortic Rings. Cardiovasc Toxicol 2023:10.1007/s12012-023-09794-6. [PMID: 37119388 DOI: 10.1007/s12012-023-09794-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
A growing body of evidence suggests that the gut microbiota affects the cardiovascular system directly and indirectly via biologically active molecules. TMAO, a key metabolite produced by gut bacteria is implicated in atherosclerosis and chronic endothelial dysfunction, but with an unclear effect on vascular tone, oxidative stress, and inflammation. Our study aimed to evaluate the acute effects of TMAO on vascular contractility in relation with oxidative stress markers and inflammation. Aortic rings were harvested from laboratory rats and placed in a tissue bath system containing TMAO in concentrations of 300, 100, 10 µM, and control. Vascular tone under the influence of vasoconstrictor phenylephrine and non-endothelial-dependent vasodilator sodium nitroprusside was assessed using force transducers connected to a computer-based acquisition system. Oxidative stress and inflammation were quantified by vascular assessment of the activity of NF-κB, NRF2, SOD1, and iNOS by western-blotting and MDA by spectrofluorimetry. After the incubation of the aortic rings in TMAO solutions for 1 h, there was no difference in vasoconstrictor and non-endothelial vasodilator response between the studied doses. TMAO acutely induced oxidative stress and inflammation, significantly increasing levels of MDA and the expression of NF-κB, NRF2, SOD1, and iNOS, mostly in a dose-dependent manner. Our study showed the lack of a short-term effect of studied TMAO doses on vascular contractility, but demonstrated an acute prooxidative effect and activation of major inflammatory pathways, which can partially explain the detrimental effects of TMAO in cardiovascular disease.
Collapse
Affiliation(s)
- Cristian Marius Florea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No 1, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No 1, Cluj-Napoca, Romania.
| | - Radu Rosu
- Fifth Department of Internal Medicine, Cardiology Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No 1, Cluj-Napoca, Romania
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No 1, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No 1, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ongun MC, Orgul G, Celik C, Bariskaner H. Contractile effect of trimethylamine and trimethylamine-n-oxide on isolated human umbilical arteries. J Obstet Gynaecol Res 2023. [PMID: 37045561 DOI: 10.1111/jog.15656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND The aim of this study is to investigate the effect of trimethylamine (TMA) and trimethylamine-n-oxide (TMAO) on the contractility of human umbilical artery and the possible mechanisms involved. METHODS Vasoactive responses to TMA and TMAO on human umbilical artery rings were measured in isolated organ baths. Cumulative dose-response curves for TMA and TMAO were obtained before and after incubation with atropine, yohimbine, prazosin, indomethacin, verapamil, and Ca+2 -free Krebs-Henselite solution. RESULTS Administration of cumulative TMA and TMAO resulted in dose-dependent contraction at concentrations ranging from 10 to 100 mM on human umbilical artery rings. TMA-induced contractions were more potent than TMAO-induced contractions (TMA: -logEC50 = 1.00 ± 0.02, TMAO: -logEC50 = 0.57 ± 0.02). Contraction responses to TMA were significantly lower in the presence of verapamil and in the absence of external Ca+2 (p < 0.001, p < 0.05, respectively). CONCLUSION Our results showed that TMA and TMAO caused vasoconstriction in isolated human umbilical artery rings. Our findings also indicated that TMA but not TMAO-induced vasoconstriction was partially dependent on extracellular Ca2+ and calcium influx through L-type Ca2+ channels. Our results suggest that TMA and TMAO may have the potential to contribute to cardiovascular diseases through their direct effect on vascular contractility in human arteries.
Collapse
Affiliation(s)
- Mert C Ongun
- Department of Medical Pharmacology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Gokcen Orgul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Cetin Celik
- Department of Obstetrics and Gynecology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Hulagu Bariskaner
- Department of Medical Pharmacology, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
5
|
Márquez-Sánchez AC, Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm. Front Immunol 2022; 13:989933. [PMID: 36275758 PMCID: PMC9583679 DOI: 10.3389/fimmu.2022.989933] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Immune-mediated infiltration and a destruction of the aortic wall during AAA development plays significant role in the pathogenesis of this disease. While various immune cells had been found in AAA, the mechanisms of their activation and function are still far from being understood. A better understanding of mechanisms regulating the development of aberrant immune cell activation in AAA is essential for the development of novel preventive and therapeutic approaches. In this review we summarize current knowledge about the role of immune cells in AAA and discuss how pathogenic immune cell activation is regulated in this disease.
Collapse
|
6
|
Schäfer TV, Vakunenkova OA, Ivnitsky JJ, Golovko AI. Gut Barrier in Critical States of the Body. BIOLOGY BULLETIN REVIEWS 2022. [PMCID: PMC9297268 DOI: 10.1134/s2079086422040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intestinal barrier (IB) is a system of diffusion barriers separating the intestinal chyme and blood. The aim of the review is to identify the role of IB dysfunction in the formation of critical states of the body and to substantiate ways to prevent these states. Toxic substances produced by normal intestinal microflora are characterized. The involvement of endotoxin and ammonia in the pathogenesis of sepsis, acute circulatory disorders, secondary acute pulmonary lesions, and acute cerebral insufficiency is shown. Approaches to protect the IB in critical states of the body are proposed.
Collapse
Affiliation(s)
- T. V. Schäfer
- State Scientific Research and Testing Institute of Military Medicine, St. Petersburg, Russia
| | - O. A. Vakunenkova
- Golikov Scientific and Clinical Center of Toxicology, St. Petersburg, Russia
| | - Ju. Ju. Ivnitsky
- Golikov Scientific and Clinical Center of Toxicology, St. Petersburg, Russia
| | - A. I. Golovko
- Golikov Scientific and Clinical Center of Toxicology, St. Petersburg, Russia
| |
Collapse
|
7
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
8
|
Romani A, Marrone G, Celotto R, Campo M, Vita C, Chiaramonte C, Carretta A, Di Daniele N, Noce A. Utility of SIFT-MS to evaluate volatile organic compounds in nephropathic patients' breath. Sci Rep 2022; 12:10413. [PMID: 35729207 PMCID: PMC9428186 DOI: 10.1038/s41598-022-14152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Several studies highlighted a correlation between exhaled air volatile organic compounds (VOCs) and some pathological conditions, such as chronic kidney disease (CKD), chronic liver disease, etc. In fact, in literature has been reported that CKD is characterized by an increased concentration of ammonia, trimethylamine (TMA) and isoprene compared to healthy subjects. Currently, there is not a validate and standardized method to detect VOCs. For this purpose, we examined the utility of selected ion flow tube-mass spectrometry (SIFT-MS) to measure VOCs in CKD patients and we evaluated the possible correlation between VOCs and the presence of CKD and its stage. We enrolled 68 CKD patients under conservative therapy and 54 healthy subjects. The analysis of the VOCs of the exhaled air of the enrolled subjects was performed by SIFT-MS. Among all the VOCs analyzed, the most relevant results by ROC curves were observed for TMA, acetone, ammonia and dimethyl sulfide. We found that a breath TMA concentration superior to 26 ppbv characterizes a 6.11 times greater risk of CKD, compared to subjects with lower levels. Moreover, we detected an increased concentration of acetone and ammonia in CKD patients compared to healthy subjects. We highlight the potential utility of SIFT-MS in CKD clinical management. Clinical trial registry: R.S. 15.19 of 6 February 2019.
Collapse
Affiliation(s)
- Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - Roberto Celotto
- Department of Cardiovascular Disease, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Chiara Vita
- QuMAP-PIN S.c.r.l.-Polo Universitario "Città di Prato" Servizi Didattici e Scientifici per L'Università di Firenze, Piazza Giovanni Ciardi, 25, 59100, Prato, Italy
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy.
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
9
|
Effects of Serum Metabolites on the Pancreatic Transcriptome in Acute Acalculous Cholecystitis. Gastroenterol Res Pract 2021; 2021:2368571. [PMID: 34925503 PMCID: PMC8674085 DOI: 10.1155/2021/2368571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/15/2021] [Indexed: 01/30/2023] Open
Abstract
Background To provide a basis for the diagnosis and treatment of acalculous biliary pancreatitis, this study investigated the impact of serum metabolites on the pancreatic transcriptome in acute acalculous cholecystitis (AAC). Methods Fourteen rabbits were randomly divided into two groups (a normal control group of 7 rabbits and an AAC group of 7 rabbits), blood was collected from the 14 rabbits, and metabolomic analysis was performed through 1H NMR. Two pancreatic tissue chips of the AAC group and the normal control group were prepared and sequenced. We utilized the limma package of R software, the DAVID database, the STRING database, Cytoscape software, and the CFinder analysis tool to perform differential expression gene analysis, gene function enrichment analysis, protein interaction network (PPI) construction, and network module mining, and we performed gene enrichment analysis in each module. Results Serum metabolism analysis showed that in AAC, the metabolism of sugar, lipids, and protein, that is, the three major nutrients, was affected to varying degrees, and levels of serum trimethylamine N-oxide (TMAO) increased. Bioinformatic methods were utilized to identify a total of 183 differentially expressed genes and 3 key genes. Enrichment analysis showed that differentially expressed genes were significantly enriched in cation transport, the inflammatory response, the NF-κB pathway, and the cancer signaling pathway. Conclusion Metabolomic analysis and functional analysis of 3 key genes demonstrated that abnormal serum metabolites affected the pancreatic transcriptome and induced a sensitive state of inflammation in the pancreas. These metabolites may represent important targets for future research on the pathogenesis, clinical diagnosis, and treatment of noncalculous biliary pancreatitis.
Collapse
|
10
|
Jaworska K, Koper M, Ufnal M. Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels. Am J Physiol Gastrointest Liver Physiol 2021; 321:G355-G366. [PMID: 34405730 PMCID: PMC8486428 DOI: 10.1152/ajpgi.00099.2021] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders.
Collapse
Affiliation(s)
- Kinga Jaworska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Koper
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Hamad A, Ozkan MH, Uma S. Trimethylamine-N-oxide (TMAO) Selectively Disrupts Endothelium-Dependent Hyperpolarization-Type Relaxations in a Time-Dependent Manner in Rat Superior Mesenteric Artery. Biol Pharm Bull 2021; 44:1220-1229. [PMID: 34471050 DOI: 10.1248/bpb.b20-00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vascular action of trimethylamine-N-oxide (TMAO)-the gut microbiota-derived metabolite-in contributing cardiovascular disease is a controversial topic. A recent study has shown that acute exposure of TMAO at moderate concentrations inhibits endothelium-dependent hyperpolarization (EDH)-type relaxations selectively in rat isolated femoral arteries, but not in mesenteric arteries. Here we determined the efficacy of higher TMAO concentrations with longer exposure times on vascular reactivity in rat isolated superior mesenteric arteries. Acetylcholine-induced EDH-type relaxations were examined before and after incubation with TMAO (0.1-10 mM) at increasing exposure times (1-24 h). One- and 4-h-incubations with TMAO at 0.1-3 mM did not cause any change in EDH-type relaxations. However, when the incubation time was increased to 24 h, responses to acetylcholine were reduced in arteries incubated with 1-3 mM TMAO. In addition, at higher TMAO concentration (10 mM) the decrease in EDH relaxations could be detected both in 4-h- and 24-h-incubations. The EDH-relaxations were preserved in rings incubated with 10 mM TMAO for 24 h in the presence of SKA-31 (10 µM), the small (SKCa)- and intermediate (IKCa)-conductance calcium-activated potassium channel activator. Contractile responses to phenylephrine increased in arteries exposed to 10 mM TMAO for 24 h. Interestingly, nitric oxide (NO)-mediated relaxations remained unchanged in arteries treated for 24 h at any TMAO concentration. Our study revealed that TMAO selectively disrupted EDH-type relaxations time-dependently without interfering with NO-induced vasodilation in rat isolated mesenteric arteries. Disruption of these relaxations may help explain the causal role of elevated TMAO levels in certain vascular diseases.
Collapse
Affiliation(s)
- Abdelrahman Hamad
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University
| | | | - Serdar Uma
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University
| |
Collapse
|
12
|
He S, Jiang H, Zhuo C, Jiang W. Trimethylamine/Trimethylamine-N-Oxide as a Key Between Diet and Cardiovascular Diseases. Cardiovasc Toxicol 2021; 21:593-604. [PMID: 34003426 DOI: 10.1007/s12012-021-09656-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
Trimethylamine (TMA) is a gut microbiota-derived metabolite which comes from diets rich of choline, betaine or L-carnitine and could be further converted to Trimethylamine-N-oxide (TMAO) in the liver. As the function of gut microbiota and its metabolites being explored so far, studies suggest that TMAO may be a potential risk factor of cardiovascular diseases independent of other traditional risk factors. However, the precise role of TMAO is controversial as some converse results were discovered. In recent studies, it is hypothesized that TMA may also participate in the progression of cardiovascular diseases and some cytotoxic effect of TMA has been discovered. Thus, exploring the relationship between TMA, TMAO and CVD may bring a novel insight into the diagnosis and therapy of cardiovascular diseases. In this review, we discussed the factors which influence the TMA/TMAO's process of metabolism in the human body. We have also summarized the pathogenic effect of TMA/TMAO in cardiovascular diseases, as well as the limitation of some controversial discoveries.
Collapse
Affiliation(s)
- Siyu He
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hong Jiang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Caili Zhuo
- The Laboratory of Cardiovascular Diseases, Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Jiang
- The Laboratory of Cardiovascular Diseases, Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Bordoni L, Petracci I, Pelikant-Malecka I, Radulska A, Piangerelli M, Samulak JJ, Lewicki L, Kalinowski L, Gabbianelli R, Olek RA. Mitochondrial DNA copy number and trimethylamine levels in the blood: New insights on cardiovascular disease biomarkers. FASEB J 2021; 35:e21694. [PMID: 34165220 DOI: 10.1096/fj.202100056r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Among cardiovascular disease (CVD) biomarkers, the mitochondrial DNA copy number (mtDNAcn) is a promising candidate. A growing attention has been also dedicated to trimethylamine-N-oxide (TMAO), an oxidative derivative of the gut metabolite trimethylamine (TMA). With the aim to identify biomarkers predictive of CVD, we investigated TMA, TMAO, and mtDNAcn in a population of 389 coronary artery disease (CAD) patients and 151 healthy controls, in association with established risk factors for CVD (sex, age, hypertension, smoking, diabetes, glomerular filtration rate [GFR]) and troponin, an established marker of CAD. MtDNAcn was significantly lower in CAD patients; it correlates with GFR and TMA, but not with TMAO. A biomarker including mtDNAcn, sex, and hypertension (but neither TMA nor TMAO) emerged as a good predictor of CAD. Our findings support the mtDNAcn as a promising plastic biomarker, useful to monitor the exposure to risk factors and the efficacy of preventive interventions for a personalized CAD risk reduction.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Iwona Pelikant-Malecka
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Adriana Radulska
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Marco Piangerelli
- Computer Science Division and Mathematics Division, School of Science and Technology, University of Camerino, Camerino, Italy
| | - Joanna J Samulak
- Doctoral School, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Lukasz Lewicki
- Department of Cardiology and Angiology, Kashubian Center for Heart and Vascular Diseases, Pomeranian Hospitals, Wejherowo, Poland
| | - Leszek Kalinowski
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland.,Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Robert A Olek
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
14
|
Silva CBP, Elias-Oliveira J, McCarthy CG, Wenceslau CF, Carlos D, Tostes RC. Ethanol: striking the cardiovascular system by harming the gut microbiota. Am J Physiol Heart Circ Physiol 2021; 321:H275-H291. [PMID: 34142885 DOI: 10.1152/ajpheart.00225.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol consumption represents a significant public health problem, and excessive ethanol intake is a risk factor for cardiovascular disease (CVD), one of the leading causes of death and disability worldwide. The mechanisms underlying the effects of ethanol on the cardiovascular system are complex and not fully comprehended. The gut microbiota and their metabolites are indispensable symbionts essential for health and homeostasis and therefore, have emerged as potential contributors to ethanol-induced cardiovascular system dysfunction. By mechanisms that are not completely understood, the gut microbiota modulates the immune system and activates several signaling pathways that stimulate inflammatory responses, which in turn, contribute to the development and progression of CVD. This review summarizes preclinical and clinical evidence on the effects of ethanol in the gut microbiota and discusses the mechanisms by which ethanol-induced gut dysbiosis leads to the activation of the immune system and cardiovascular dysfunction. The cross talk between ethanol consumption and the gut microbiota and its implications are detailed. In summary, an imbalance in the symbiotic relationship between the host and the commensal microbiota in a holobiont, as seen with ethanol consumption, may contribute to CVD. Therefore, manipulating the gut microbiota, by using antibiotics, probiotics, prebiotics, and fecal microbiota transplantation might prove a valuable opportunity to prevent/mitigate the deleterious effects of ethanol and improve cardiovascular health and risk prevention.
Collapse
Affiliation(s)
- Carla B P Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Camilla F Wenceslau
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Ishimwe JA. Maternal microbiome in preeclampsia pathophysiology and implications on offspring health. Physiol Rep 2021; 9:e14875. [PMID: 34042284 PMCID: PMC8157769 DOI: 10.14814/phy2.14875] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia is a devastating hypertensive pregnancy disorder that currently affects 2%–8% of pregnancies worldwide. It is associated with maternal and fetal mortality and morbidity and adverse health outcomes both in mom and offspring beyond pregnancy. The pathophysiology is not completely understood, and there are no approved therapies to specifically treat for the disease, with only few therapies approved to manage symptoms. Recent advances suggest that aberrations in the composition of the microbiome may play a role in the pathogenesis of various diseases including preeclampsia. The maternal and uteroplacental environments greatly influence the long‐term health outcomes of the offspring through developmental programming mechanisms. The current review summarizes recent developments on the role of the microbiome in adverse pregnancy outcomes with a focus on preeclampsia. It also discusses the potential role of the maternal microbiome in fetal programming; explores gut‐targeted therapeutics advancement and their implications in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
16
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 2021; 321:H77-H111. [PMID: 33989082 DOI: 10.1152/ajpheart.01021.2020] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|