1
|
Ihara E, Manabe N, Ohkubo H, Ogasawara N, Ogino H, Kakimoto K, Kanazawa M, Kawahara H, Kusano C, Kuribayashi S, Sawada A, Takagi T, Takano S, Tomita T, Noake T, Hojo M, Hokari R, Masaoka T, Machida T, Misawa N, Mishima Y, Yajima H, Yamamoto S, Yamawaki H, Abe T, Araki Y, Kasugai K, Kamiya T, Torii A, Nakajima A, Nakada K, Fukudo S, Fujiwara Y, Miwa H, Kataoka H, Nagahara A, Higuchi K. Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023. Digestion 2024; 105:480-497. [PMID: 39197422 PMCID: PMC11633876 DOI: 10.1159/000541121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
The Japan Gastroenterological Association (JGA) published the first version of clinical guidelines for chronic diarrhea 2023. These guidelines describe the definition, classification, diagnostic criteria, diagnostic testing methods, epidemiology, pathophysiology, and treatment of chronic diarrhea, and provide flowcharts for the diagnosis and treatment of chronic diarrhea based on the latest evidence. Treatment for chronic diarrhea begins by distinguishing secondary chronic constipation with a clear etiology, such as drug-induced diarrhea, food-induced diarrhea, systemic disease-associated diarrhea, infection-associated diarrhea, organic disease-associated diarrhea, and bile acid diarrhea. The first line of treatment for chronic diarrhea in the narrow sense, defined in these guidelines as functional diarrhea in routine medical care, is lifestyle modification and dietary therapy. The first medicines to be considered for oral treatment are probiotics for regulating the gut microbiome and anti-diarrheals. Other medications, such as 5HT3 receptor antagonists, anticholinergics, Kampo medicine, psychotherapy, antibiotics, bulking agents, adrenergic agonists, and somatostatin analogs, lack sufficient evidence for their use, highlighting a challenge for future research. This Clinical Guidelines for Chronic Diarrhea 2023, which provides the best clinical strategies for treating chronic diarrhea in Japan, will also be useful for medical treatment worldwide.
Collapse
Affiliation(s)
- Eikichi Ihara
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriaki Manabe
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Hidenori Ohkubo
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Naotaka Ogasawara
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Haruei Ogino
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Kazuki Kakimoto
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Motoyori Kanazawa
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Hidejiro Kawahara
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Chika Kusano
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Shiko Kuribayashi
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Akinari Sawada
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Tomohisa Takagi
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Shota Takano
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Toshihiko Tomita
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Toshihiro Noake
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Mariko Hojo
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Ryota Hokari
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Tatsuhiro Masaoka
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Tomohiko Machida
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Noboru Misawa
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Yoshiyuki Mishima
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Hiroshi Yajima
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Sayuri Yamamoto
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Hiroshi Yamawaki
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Tatsuya Abe
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Yasumi Araki
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Kunio Kasugai
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Takeshi Kamiya
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Akira Torii
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Atsushi Nakajima
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Koji Nakada
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Shin Fukudo
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Yasuhiro Fujiwara
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Hiroto Miwa
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Hiromi Kataoka
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Akihito Nagahara
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| | - Kazuhide Higuchi
- Guidelines Committee for Creating and Evaluating the “Evidence-Based Clinical Guidelines for Chronic Diarrhea 2023”, The Japanese Gastroenterological Association, Bunkyo-ku, Japan
| |
Collapse
|
2
|
Wang K, Liu CY, Fang B, Li B, Li YH, Xia QQ, Zhao Y, Cheng XL, Yang SM, Zhang MH, Wang K. The function and therapeutic potential of transfer RNA-derived small RNAs in cardiovascular diseases: A review. Pharmacol Res 2024; 206:107279. [PMID: 38942340 DOI: 10.1016/j.phrs.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying-Hui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qian-Qian Xia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xue-Li Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Mei-Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China.
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
3
|
Chen H, Xu Z, Zhao H, Cao J, Wang R, He J, Nie R, Jia J, Yuan S, Li Y, Liu Z, Zhang X, Ha L, Xu X, Li T. Global research states and trends of micro RNA in irritable bowel syndrome: a bibliometric analysis. Clin Exp Med 2024; 24:149. [PMID: 38967892 PMCID: PMC11226481 DOI: 10.1007/s10238-024-01396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, but its diagnosis and treatment remain obscure. Non-coding RNAs (ncRNAs), as potential biomarkers, have attracted increasing attention in digestive diseases. Here, we present a comprehensive research status, development trends, and valuable insights in this subject area. The literature search was performed using Web of Science Core Collection. VOSviewer 1.6.20, Citespace 6.2.R4, and Microsoft Excel 2021 were used for bibliometric analysis. A total of 124 articles were included in the analysis. Overall, publication patterns fluctuated. Globally, People's Republic of China, the USA, and Germany were the top three contributors of publications. Guangzhou University of Chinese Medicine, University of California, Mayo Clinic, and University of California, Los Angeles contributed the highest number of publications. The pathways and specific mechanisms by which ncRNAs regulate transcription and translation and thus regulate the pathophysiological processes of IBS are the main research hotspots in this field. We found that microRNA (miRNAs) are intricately involved in the regulation of key pathologies such as viscera sensitivity, intestinal permeability, intestinal mucosal barrier, immunoinflammatory response, and brain-gut axis in the IBS, and these topics have garnered significant attention in research community. Notably, microecological disorders are also associated with IBS pathogenesis, and ncRNA may play an important role in the interactions between host and intestinal flora. This is the first bibliometric study to comprehensively summarize the research hotspots and trends related to IBS and ncRNAs (especially miRNAs). Our findings will help understand the role of ncRNAs in IBS and provide guidance to future studies.
Collapse
Affiliation(s)
- Hongxiu Chen
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Zhifang Xu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Honggang Zhao
- Shenzhen Hospital of Integrated Chinese and Western Medicine, 528 Xinsha Road, Shajing Street, Baoan District, Shenzhen, People's Republic of China
| | - Jiazhen Cao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Rui Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Jing He
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Ru Nie
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Jialin Jia
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Shuting Yuan
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Yonghong Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Zhicheng Liu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Xinyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Lijuan Ha
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| | - Xiaoru Xu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| | - Tie Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| |
Collapse
|
4
|
Wang Q, Huang Q, Ying X, Zhou Y, Duan S. Exploring the regulatory role of tsRNAs in the TNF signaling pathway: Implications for cancer and non-cancer diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:1-10. [PMID: 38971324 DOI: 10.1016/j.pbiomolbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs), a recently identified subclass of small non-coding RNAs (sncRNAs), emerge through the cleavage of mature transfer RNA (tRNA) or tRNA precursors mediated by specific enzymes. The tumor necrosis factor (TNF) protein, a signaling molecule produced by activated macrophages, plays a pivotal role in systemic inflammation. Its multifaceted functions include the capacity to eliminate or hinder tumor cells, enhance the phagocytic capabilities of neutrophils, confer resistance against infections, induce fever, and prompt the production of acute phase proteins. Notably, four TNF-related tsRNAs have been conclusively linked to distinct diseases. Examples include 5'tiRNA-Gly in skeletal muscle injury, tsRNA-21109 in systemic lupus erythematosus (SLE), tRF-Leu-AAG-001 in endometriosis (EMs), and tsRNA-04002 in intervertebral disk degeneration (IDD). These tsRNAs exhibit the ability to suppress the expression of TNF-α. Additionally, KEGG analysis has identified seven tsRNAs potentially involved in modulating the TNF pathway, exerting their influence across a spectrum of non-cancerous diseases. Noteworthy instances include aberrant tiRNA-Ser-TGA-001 and tRF-Val-AAC-034 in intrauterine growth restriction (IUGR), irregular tRF-Ala-AGC-052 and tRF-Ala-TGC-027 in obesity, and deviant tiRNA-His-GTG-001, tRF-Ser-GCT-113, and tRF-Gln-TTG-035 in irritable bowel syndrome with diarrhea (IBS-D). This comprehensive review explores the biological functions and mechanisms of tsRNAs associated with the TNF signaling pathway in both cancer and other diseases, offering novel insights for future translational medical research.
Collapse
Affiliation(s)
- Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Xiaowei Ying
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Yang Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Song J, Ham J, Park W, Song G, Lim W. Osthole impairs mitochondrial metabolism and the autophagic flux in colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155383. [PMID: 38295666 DOI: 10.1016/j.phymed.2024.155383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Osthole is active constituent of Cnidium monnieri (L.) Cuss. with various physiological functions including anti-inflammation and anti-lipedemic effects. However, the regulatory activity of osthole in colorectal cancer development, focusing on mitochondrial metabolism, is not well known. HYPOTHESIS/PURPOSE We hypothesized that osthole may suppress progression of colorectal cancer and aimed to determine the underlying mitochondrial metabolism and the autophagic flux. STUDY DESIGN In this study, we elucidated the mechanism of action of osthole in colorectal cancer using an in vivo azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model and an in vitro cell culture system. METHODS AOM/DSS mouse model was established and analyzed the effects of osthole on survival rate, diseases activity index, number of tumor and histopathology. Then, cell based assays including viability, cell cycle, reactive oxygen species (ROS), apoptosis, calcium efflux, and mitochondrial function were analyzed. Moreover, osthole-mediated signaling was demonstrated by western blot analyses. RESULTS Osthole effectively suppressed the growth of colorectal tumors and alleviated AOM/DSS-induced intestinal injury. Osthole restored the function of goblet cells and impaired the expression of Claudin1 and Axin1 impaired by AOM/DSS. In addition, osthole specifically showed cytotoxicity in colorectal carcinoma cells, but not in normal colon cells. Osthole decreased the ASC/caspase-1/IL-1β inflammasome pathway and induced mitochondrial dysfunction in redox homeostasis, calcium homeostasis. Furthermore, osthole inhibited both oxidative phosphorylation (OXPHOS) and glycolysis, leading to the suppression of ATP production. Moreover, via combination treatment with chloroquine (CQ), we demonstrated that osthole impaired autophagic flux, leading to apoptosis of HCT116 and HT29 cells. Finally, we elucidated that the functional role of tiRNAHisGTG regulated by osthole directly affects the cellular fate of colon cancer cells. CONCLUSION These results suggest that osthole has the potential to manage progression of colorectal cancer by regulating autophagy- and mitochondria-mediated signal transduction.
Collapse
Affiliation(s)
- Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Du J, Huang T, Zheng Z, Fang S, Deng H, Liu K. Biological function and clinical application prospect of tsRNAs in digestive system biology and pathology. Cell Commun Signal 2023; 21:302. [PMID: 37904174 PMCID: PMC10614346 DOI: 10.1186/s12964-023-01341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
tsRNAs are small non-coding RNAs originating from tRNA that play important roles in a variety of physiological activities such as RNA silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, as well as involvement in cellular differentiation, proliferation, and apoptosis. tsRNA-related abnormalities have a significant influence on the onset, development, and progression of numerous human diseases, including malignant tumors through affecting the cell cycle and specific signaling molecules. This review introduced origins together with tsRNAs classification, providing a summary for regulatory mechanism and physiological function while dysfunctional effect of tsRNAs in digestive system diseases, focusing on the clinical prospects of tsRNAs for diagnostic and prognostic biomarkers. Video Abstract.
Collapse
Affiliation(s)
- Juan Du
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tianyi Huang
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
7
|
Bourgery M, Ekholm E, Hiltunen A, Heino TJ, Pursiheimo JP, Bendre A, Yatkin E, Laitala T, Määttä J, Säämänen AM. Signature of circulating small non-coding RNAs during early fracture healing in mice. Bone Rep 2022; 17:101627. [PMID: 36304905 PMCID: PMC9593857 DOI: 10.1016/j.bonr.2022.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Fracture healing is a complex process with multiple overlapping metabolic and differentiation phases. Small non-coding RNAs are involved in the regulation of fracture healing and their presence in circulation is under current interest due to their obvious value as potential biomarkers. Circulating microRNAs (miRNAs) have been characterized to some extent but the current knowledge on tRNA-derived small RNA fragments (tsRNAs) is relatively scarce, especially in circulation. In this study, the spectrum of circulating miRNAs and tsRNAs was analysed by next generation sequencing to show their differential expression during fracture healing in vivo. Analysed tsRNA fragments included stress-induced translation interfering tRNA fragments (tiRNAs or tRNA halves) and internal tRNA fragments (i-tRF), within the size range of 28–36 bp. To unveil the expression of these non-coding RNAs, genome-wide analysis was performed on two months old C57BL/6 mice on days 1, 5, 7, 10, and 14 (D1, D5, D7, D10, and D14) after a closed tibial fracture. Valine isoacceptor tRNA-derived Val-AAC 5′end and Val-CAC 5′end fragments were the major types of 5′end tiRNAs in circulation, comprising about 65 % of the total counts. Their expression was not affected by fracture. After a fracture, the levels of two 5′end tiRNAs Lys-TTT 5′ and Lys-CTT 5′ were decreased and His-GTG 5′ was increased through D1-D14. The level of miR-451a was decreased on the first post-fracture day (D1), whereas miR-328-3p, miR-133a-3p, miR-375-3p, miR-423-5p, and miR-150-5p were increased post-fracture. These data provide evidence on how fracture healing could provoke systemic metabolic effects and further pinpoint the potential of small non-coding RNAs as biomarkers for tissue regeneration.
Collapse
Affiliation(s)
- Matthieu Bourgery
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Erika Ekholm
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | | | - Terhi J. Heino
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Juha-Pekka Pursiheimo
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Genomill Health, Turku, Finland
| | - Ameya Bendre
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Tiina Laitala
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Jorma Määttä
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Turku Center for Disease Modeling (TCDM), Turku, Finland
| | - Anna-Marja Säämänen
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Corresponding author at: Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
8
|
Chu X, He C, Sang B, Yang C, Yin C, Ji M, Qian A, Tian Y. Transfer RNAs-derived small RNAs and their application potential in multiple diseases. Front Cell Dev Biol 2022; 10:954431. [PMID: 36072340 PMCID: PMC9441921 DOI: 10.3389/fcell.2022.954431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The role of tRNAs is best known as adapter components of translational machinery. According to the central dogma of molecular biology, DNA is transcribed to RNA and in turn is translated into proteins, in which tRNA outstands by its role of the cellular courier. Recent studies have led to the revision of the canonical function of transfer RNAs (tRNAs), which indicates that tRNAs also serve as a source for short non-coding RNAs called tRNA-derived small RNAs (tsRNAs). tsRNAs play key roles in cellular processes by modulating complicated regulatory networks beyond translation and are widely involved in multiple diseases. Herein, the biogenesis and classification of tsRNAs were firstly clarified. tsRNAs are generated from pre-tRNAs or mature tRNAs and are classified into tRNA-derived fragments (tRFs) and tRNA halves (tiRNA). The tRFs include five types according to the incision loci: tRF-1, tRF-2, tRF-3, tRF-5 and i-tRF which contain 3′ tiRNA and 5′ tiRNA. The functions of tsRNAs and their regulation mechanisms involved in disease processes are systematically summarized as well. The mechanisms can elaborate on the specific regulation of tsRNAs. In conclusion, the current research suggests that tsRNAs are promising targets for modulating pathological processes, such as breast cancer, ischemic stroke, respiratory syncytial virus, osteoporosis and so on, and maintain vital clinical implications in diagnosis and therapeutics of various diseases.
Collapse
Affiliation(s)
- Xiaohua Chu
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chenyang He
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo Sang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Chong Yin
- Department of Clinical Laboratory, Academician (expert) Workstation, Lab of Epigenetics and RNA Therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mili Ji
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
- *Correspondence: Airong Qian, ; Ye Tian,
| | - Ye Tian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, SN, China
- *Correspondence: Airong Qian, ; Ye Tian,
| |
Collapse
|