1
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Ni WJ, Li ZL, Wen XL, Ji JL, Liu H, Yin Q, Jiang LYZ, Zhang YL, Wen Y, Tang TT, Jiang W, Lv LL, Gan WH, Liu BC, Wang B. HIF-1α and adaptor protein LIM and senescent cell antigen-like domains protein 1 axis promotes tubulointerstitial fibrosis by interacting with vimentin in angiotensin II-induced hypertension. Br J Pharmacol 2024; 181:3098-3117. [PMID: 38698737 DOI: 10.1111/bph.16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.
Collapse
Affiliation(s)
- Wei-Jie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xian-Li Wen
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Liang-Yun-Zi Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei-Hua Gan
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Ye Q, Ren M, Fan D, Mao Y, Zhu YZ. Identification and Validation of the miR/RAS/RUNX2 Autophagy Regulatory Network in AngII-Induced Hypertensive Nephropathy in MPC5 Cells Treated with Hydrogen Sulfide Donors. Antioxidants (Basel) 2024; 13:958. [PMID: 39199205 PMCID: PMC11351630 DOI: 10.3390/antiox13080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
The balanced crosstalk between miRNAs and autophagy is essential in hypertensive nephropathy. Hydrogen sulfide donors have been reported to attenuate renal injury, but the mechanism is unclear. We aimed to identify and verify the miRNAs and autophagy regulatory networks in hypertensive nephropathy treated with hydrogen sulfide donors through bioinformatics analysis and experimental verification. From the miRNA dataset, autophagy was considerably enriched in mice kidney after angiotensin II (AngII) and combined hydrogen sulfide treatment (H2S_AngII), among which there were 109 differentially expressed miRNAs (DEMs) and 21 hub ADEGs (autophagy-related differentially expressed genes) in the AngII group and 70 DEMs and 13 ADEGs in the H2S_AngII group. A miRNA-mRNA-transcription factors (TFs) autophagy regulatory network was then constructed and verified in human hypertensive nephropathy samples and podocyte models. In the network, two DEMs (miR-98-5p, miR-669b-5p), some hub ADEGs (KRAS, NRAS), and one TF (RUNX2) were altered, accompanied by a reduction in autophagy flux. However, significant recovery occurred after treatment with endogenous or exogenous H2S donors, as well as an overexpression of miR-98-5p and miR-669b-5p. The miR/RAS/RUNX2 autophagy network driven by H2S donors was related to hypertensive nephropathy. H2S donors or miRNAs increased autophagic flux and reduced renal cell injury, which could be a potentially effective medical therapy.
Collapse
Affiliation(s)
- Qing Ye
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mi Ren
- The Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Di Fan
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
- State Key Laboratory of Quality Research in Chinese Medicines, (R & D Center) Lab. for Drug Discovery from Natural Resource, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
4
|
Majumder S, Pushpakumar SB, Almarshood H, Ouseph R, Gondim DD, Jala VR, Sen U. Toll-like receptor 4 mutation mitigates gut microbiota-mediated hypertensive kidney injury. Pharmacol Res 2024; 206:107303. [PMID: 39002869 PMCID: PMC11287947 DOI: 10.1016/j.phrs.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Hypertension-associated dysbiosis is linked to several clinical complications, including inflammation and possible kidney dysfunction. Inflammation and TLR4 activation during hypertension result from gut dysbiosis-related impairment of intestinal integrity. However, the contribution of TLR4 in kidney dysfunction during hypertension-induced gut dysbiosis is unclear. We designed this study to address this knowledge gap by utilizing TLR4 normal (TLR4N) and TLR4 mutant (TLR4M) mice. These mice were infused with high doses of Angiotensin-II for four weeks to induce hypertension. Results suggest that Ang-II significantly increased renal arterial resistive index (RI), decreased renal vascularity, and renal function (GFR) in TLR4N mice compared to TLR4M. 16 S rRNA sequencing analysis of gut microbiome revealed that Ang-II-induced hypertension resulted in alteration of Firmicutes: Bacteroidetes ratio in the gut of both TLR4N and TLR4M mice; however, it was not comparably rather differentially. Additionally, Ang-II-hypertension decreased the expression of tight junction proteins and increased gut permeability, which were more prominent in TLR4N mice than in TLR4M mice. Concomitant with gut hyperpermeability, an increased bacterial component translocation to the kidney was observed in TLR4N mice treated with Ang-II compared to TLR4N plus saline. Interestingly, microbiota translocation was mitigated in Ang-II-hypertensive TLR4M mice. Furthermore, Ang-II altered the expression of inflammatory (IL-1β, IL-6) and anti-inflammatory IL-10) markers, and extracellular matrix proteins, including MMP-2, -9, -14, and TIMP-2 in the kidney of TLR4N mice, which were blunted in TLR4M mice. Our data demonstrate that ablation of TLR4 attenuates hypertension-induced gut dysbiosis resulting in preventing gut hyperpermeability, bacterial translocation, mitigation of renal inflammation and alleviation of kidney dysfunction.
Collapse
Affiliation(s)
- Suravi Majumder
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States; Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Hebah Almarshood
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Rosemary Ouseph
- Division of Nephrology and Hypertension, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Dibson D Gondim
- Department of Pathology and Laboratory Medicine, and University of Louisville, School of Medicine, Louisville, KY, United States
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States.
| |
Collapse
|
5
|
Zhuo H, Zhang Y, Fu S, Lin L, Li J, Zhou X, Wu G, Guo C, Liu J. miR-8-3p regulates the antioxidant response and apoptosis in white shrimp, Litopenaeus vannamei under ammonia-N stress. Int J Biol Macromol 2024; 274:133305. [PMID: 38914409 DOI: 10.1016/j.ijbiomac.2024.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
Exposure to excess ammonia-N (NH3/NH4+) in aquaculture can disrupt physiological function in shrimp leading to enhanced oxidative stress and apoptosis, but little is known concerning the post-transcriptional regulation mechanism. In this study, the first miR-200 family member in crustacean was identified and characterized from Litopenaeus vannamei (designed as Lva-miR-8-3p). Lva-miR-8-3p was highly expressed in eyestalks, brainganglion, and gills. The expression of Lva-miR-8-3p in gills significantly decreased after ammonia-N stress, and Lva-miR-8-3p was confirmed to target IKKβ 3'UTR for negatively regulating IKKβ/NF-κB pathway. Overexpression of miR-8-3p promoted the hemolymph ammonia-N accumulation, total hemocyte count (THC) decrease, and gills tissue damage, thus resulting in a decreased survival rate of ammonia-exposed shrimp. Besides, Lva-miR-8-3p silencing could enhance the antioxidant enzymes activities and reduce the oxidative damage, whereas overexpression of Lva-miR-8-3p exerted the opposite effects. Furthermore, Lva-miR-8-3p overexpression was found to aggravate ammonia-N induced apoptosis in gills. In primarily cultured hemocytes, the cell viability decreased, the ROS content and caspase-3 activity increased after agomiR-8-3p transfection, while antagomiR-8-3p transfection caused the opposite change except the cell viability. These findings indicate that Lva-miR-8-3p acts as a post-transcriptional regulator in ammonia-N induced antioxidant response and apoptosis by negatively regulating IKKβ/NF-κB pathway.
Collapse
Affiliation(s)
- Hongbiao Zhuo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yuan Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuo Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lanting Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinyan Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoxun Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangbo Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chaoan Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
6
|
Wu Z, Song Y, Wang Y, Zhou H, Chen L, Zhan Y, Li T, Xie G, Wu H. Biological role of mitochondrial TLR4-mediated NF-κB signaling pathway in central nervous system injury. Cell Biochem Funct 2024; 42:e4056. [PMID: 38812104 DOI: 10.1002/cbf.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Previous studies suggested that central nervous system injury is often accompanied by the activation of Toll-like receptor 4/NF-κB pathway, which leads to the upregulation of proapoptotic gene expression, causes mitochondrial oxidative stress, and further aggravates the inflammatory response to induce cell apoptosis. Subsequent studies have shown that NF-κB and IκBα can directly act on mitochondria. Therefore, elucidation of the specific mechanisms of NF-κB and IκBα in mitochondria may help to discover new therapeutic targets for central nervous system injury. Recent studies have suggested that NF-κB (especially RelA) in mitochondria can inhibit mitochondrial respiration or DNA expression, leading to mitochondrial dysfunction. IκBα silencing will cause reactive oxygen species storm and initiate the mitochondrial apoptosis pathway. Other research results suggest that RelA can regulate mitochondrial respiration and energy metabolism balance by interacting with p53 and STAT3, thus initiating the mitochondrial protection mechanism. IκBα can also inhibit apoptosis in mitochondria by interacting with VDAC1 and other molecules. Regulating the biological role of NF-κB signaling pathway in mitochondria by targeting key proteins such as p53, STAT3, and VDAC1 may help maintain the balance of mitochondrial respiration and energy metabolism, thereby protecting nerve cells and reducing inflammatory storms and death caused by ischemia and hypoxia.
Collapse
Affiliation(s)
- Zhuochao Wu
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Ying Wang
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hua Zhou
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lingling Chen
- Department of Ultrasonic, Cixi Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China
| | - Yunyun Zhan
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Li
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Juin SK, Pushpakumar S, Sen U. Nimbidiol protects from renal injury by alleviating redox imbalance in diabetic mice. Front Pharmacol 2024; 15:1369408. [PMID: 38835661 PMCID: PMC11148448 DOI: 10.3389/fphar.2024.1369408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Chronic hyperglycemia-induced oxidative stress plays a crucial role in the development of diabetic nephropathy (DN). Moreover, adverse extracellular matrix (ECM) accumulation elevates renal resistive index leading to progressive worsening of the pathology in DN. Nimbidiol is an alpha-glucosidase inhibitor, isolated from the medicinal plant, 'neem' (Azadirachta indica) and reported as a promising anti-diabetic compound. Previously, a myriad of studies demonstrated an anti-oxidative property of a broad-spectrum neem-extracts in various diseases including diabetes. Our recent study has shown that Nimbidiol protects diabetic mice from fibrotic renal dysfunction in part by mitigating adverse ECM accumulation. However, the precise mechanism remains poorly understood. Methods The present study aimed to investigate whether Nimbidiol ameliorates renal injury by reducing oxidative stress in type-1 diabetes. To test the hypothesis, wild-type (C57BL/6J) and diabetic Akita (C57BL/6-Ins2Akita/J) mice aged 10-14 weeks were used to treat with saline or Nimbidiol (400 μg kg-1 day-1) for 8 weeks. Results Diabetic mice showed elevated blood pressure, increased renal resistive index, and decreased renal vasculature compared to wild-type control. In diabetic kidney, reactive oxygen species and the expression levels of 4HNE, p22phox, Nox4, and ROMO1 were increased while GSH: GSSG, and the expression levels of SOD-1, SOD-2, and catalase were decreased. Further, eNOS, ACE2, Sirt1 and IL-10 were found to be downregulated while iNOS and IL-17 were upregulated in diabetic kidney. The changes were accompanied by elevated expression of the renal injury markers viz., lipocalin-2 and KIM-1 in diabetic kidney. Moreover, an upregulation of p-NF-κB and a downregulation of IkBα were observed in diabetic kidney compared to the control. Nimbidiol ameliorated these pathological changes in diabetic mice. Conclusion Altogether, the data of our study suggest that oxidative stress largely contributes to the diabetic renal injury, and Nimbidiol mitigates redox imbalance and thereby protects kidney in part by inhibiting NF-κB signaling pathway in type-1 diabetes.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
8
|
He M, Liu Z, Li L, Liu Y. Cell-cell communication in kidney fibrosis. Nephrol Dial Transplant 2024; 39:761-769. [PMID: 38040652 PMCID: PMC11494227 DOI: 10.1093/ndt/gfad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 12/03/2023] Open
Abstract
Kidney fibrosis is a common outcome of a wide variety of chronic kidney diseases, in which virtually all kinds of renal resident and infiltrating cells are involved. As such, well-orchestrated intercellular communication is of vital importance in coordinating complex actions during renal fibrogenesis. Cell-cell communication in multicellular organisms is traditionally assumed to be mediated by direct cell contact or soluble factors, including growth factors, cytokines and chemokines, through autocrine, paracrine, endocrine and juxtacrine signaling mechanisms. Growing evidence also demonstrates that extracellular vesicles, lipid bilayer-encircled particles naturally released from almost all types of cells, can act as a vehicle to transfer a diverse array of biomolecules including proteins, mRNA, miRNA and lipids to mediate cell-cell communication. We recently described a new mode of intercellular communication via building a special extracellular niche by insoluble matricellular proteins. Kidney cells, upon injury, produce and secrete different matricellular proteins, which incorporate into the local extracellular matrix network, and regulate the behavior, trajectory and fate of neighboring cells in a spatially confined fashion. This extracellular niche-mediated cell-cell communication is unique in that it restrains the crosstalk between cells within a particular locality. Detailed delineation of this unique manner of intercellular communication will help to elucidate the mechanism of kidney fibrosis and could offer novel insights in developing therapeutic intervention.
Collapse
Affiliation(s)
- Meizhi He
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Zhao Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
9
|
Liao F, Wang L, Wu Z, Luo G, Qian Y, He X, Ding S, Pu J. Disulfiram protects against abdominal aortic aneurysm by ameliorating vascular smooth muscle cells pyroptosis. Cardiovasc Drugs Ther 2023; 37:1-14. [PMID: 35723784 DOI: 10.1007/s10557-022-07352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Recent studies demonstrated that pyroptosis is involved in abdominal aortic aneurysm (AAA) progression, suggesting a potential target for AAA treatment. This study aimed to identify if disulfiram could inhibit angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs) damage, thereby exerting protective effects on AAA. METHODS The AAA mouse model was established by continuous subcutaneous Ang II infusion for 28 days. Then aortic tissue of the mice was isolated and subjected to RNA sequencing, qRT-PCR, Western blotting, and immunofluorescence staining. To explore the therapeutic effect of disulfiram, mice were orally administered disulfiram (50 mg/kg/day) or vehicle for 28 days accompanied with Ang II infusion. Pathological changes in aortic tissues were measured using microultrasound imaging analysis and histopathological analysis. In addition, inflammatory response, pyroptosis, and oxidative stress damage were examined in mouse aortic vascular smooth muscle (MOVAS) cells stimulated with Ang II in vitro. RESULTS The RNA sequencing and bioinformatic analysis results suggested that pyroptosis- and inflammation-related genes were significantly upregulated in AAA, consistent with the results of qRT-PCR and Western blotting. Most importantly, the therapeutic effect of disulfiram on AAA was identified in our study. First, disulfiram administration significantly attenuated Ang II-induced inflammation, pyroptosis, and oxidative stress in VSMCs, which is associated with the inhibition of the NF-κB-NLRP3 pathway. Second, in-vivo studies revealed that disulfiram treatment reduced AAA formation and significantly ameliorated collagen deposition and elastin degradation in the aortic wall. CONCLUSION Our findings suggest that disulfiram has a novel protective effect against AAA by inhibiting Ang II-induced VSMCs pyroptosis.
Collapse
Affiliation(s)
- Fei Liao
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Blood Transfusion, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhinan Wu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guqing Luo
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxuan Qian
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie He
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Shelke V, Dagar N, Gaikwad AB. Phloretin as an add-on therapy to losartan attenuates diabetes-induced AKI in rats: A potential therapeutic approach targeting TLR4-induced inflammation. Life Sci 2023; 332:122095. [PMID: 37722590 DOI: 10.1016/j.lfs.2023.122095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
AIM Targeting Toll-like receptor 4 (TLR4) and Angiotensin II type 1 receptor (AT1R) could provide renoprotection during acute kidney injury (AKI) mainly by regulating inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Phloretin (TLR4 inhibitor) as an add-on therapy to losartan (AT1R inhibitor) could provide more therapeutic benefits against AKI under diabetic condition. We aimed to study the effect of phloretin as an add-on therapy to losartan against AKI under diabetic condition. MAIN METHODS To mimic diabetic AKI condition, bilateral ischemia-reperfusion injury (BIRI) was done in diabetic male Wistar rats, and sodium azide treatment was given to high glucose NRK52E cells to mimic hypoxia-reperfusion injury. In diabetic rats, phloretin (50 mg/kg/per os (p.o.)) and losartan (10 mg/kg/p.o.) treatment was given for 4 days and 1 h prior to surgery while in NRK52E cells, both drugs (phloretin 50 μM and losartan 10 μM) were given 24 h prior to the hypoxia condition. The in vivo and in vitro samples were further used for different experiments. KEY FINDINGS Treatment with phloretin and losartan decreased diabetic and AKI biomarkers such as plasma creatinine, blood urea nitrogen (BUN), and kidney injury molecular 1 (KIM1). Moreover, a combination of phloretin and losartan significantly preserved ΔΨm and kidney morphology potentially by inhibiting TLR4-associated inflammation and AT1R-associated mitochondrial dysfunction, thereby oxidative stress. SIGNIFICANCE Combination therapy of phloretin and losartan was more effective than monotherapies. Both drugs target TLR4/MyD88/NF-κB pathway and reduce inflammation and mitochondrial dysfunction in AKI under diabetic condition.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
11
|
Liu W, Tan Z, Geng M, Jiang X, Xin Y. Impact of the gut microbiota on angiotensin Ⅱ-related disorders and its mechanisms. Biochem Pharmacol 2023:115659. [PMID: 37330020 DOI: 10.1016/j.bcp.2023.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
The renin-angiotensin system (RAS) consists of multiple angiotensin peptides and performs various biological functions mediated by distinct receptors. Angiotensin II (Ang II) is the major effector of the RAS and affects the occurrence and development of inflammation, diabetes mellitus and its complications, hypertension, and end-organ damage via the Ang II type 1 receptor. Recently, considerable interest has been given to the association and interaction between the gut microbiota and host. Increasing evidence suggests that the gut microbiota may contribute to cardiovascular diseases, obesity, type 2 diabetes mellitus, chronic inflammatory diseases, and chronic kidney disease. Recent data have confirmed that Ang II can induce an imbalance in the intestinal flora and further aggravate disease progression. Furthermore, angiotensin converting enzyme 2 is another player in RAS, alleviates the deleterious effects of Ang II, modulates gut microbial dysbiosis, local and systemic immune responses associated with coronavirus disease 19. Due to the complicated etiology of pathologies, the precise mechanisms that link disease processes with specific characteristics of the gut microbiota remain obscure. This review aims to highlight the complex interactions between the gut microbiota and its metabolites in Ang II-related disease progression, and summarize the possible mechanisms. Deciphering these mechanisms will provide a theoretical basis for novel therapeutic strategies for disease prevention and treatment. Finally, we discuss therapies targeting the gut microbiota to treat Ang II-related disorders.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Zining Tan
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Mengrou Geng
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
12
|
Juin SK, Ouseph R, Gondim DD, Jala VR, Sen U. Diabetic Nephropathy and Gaseous Modulators. Antioxidants (Basel) 2023; 12:antiox12051088. [PMID: 37237955 DOI: 10.3390/antiox12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic nephropathy (DN) remains the leading cause of vascular morbidity and mortality in diabetes patients. Despite the progress in understanding the diabetic disease process and advanced management of nephropathy, a number of patients still progress to end-stage renal disease (ESRD). The underlying mechanism still needs to be clarified. Gaseous signaling molecules, so-called gasotransmitters, such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), have been shown to play an essential role in the development, progression, and ramification of DN depending on their availability and physiological actions. Although the studies on gasotransmitter regulations of DN are still emerging, the evidence revealed an aberrant level of gasotransmitters in patients with diabetes. In studies, different gasotransmitter donors have been implicated in ameliorating diabetic renal dysfunction. In this perspective, we summarized an overview of the recent advances in the physiological relevance of the gaseous molecules and their multifaceted interaction with other potential factors, such as extracellular matrix (ECM), in the severity modulation of DN. Moreover, the perspective of the present review highlights the possible therapeutic interventions of gasotransmitters in ameliorating this dreaded disease.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Microbiology & Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rosemary Ouseph
- Division of Nephrology & Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dibson Dibe Gondim
- Department of Pathology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology & Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
13
|
Deng YX, Liu K, Qiu QX, Tang ZY, Que RM, Li DK, Gu XR, Zhou GL, Wu YF, Zhou LY, Yin WJ, Zuo XC. Identification and validation of hub genes in drug induced acute kidney injury basing on integrated transcriptomic analysis. Front Immunol 2023; 14:1126348. [PMID: 37063876 PMCID: PMC10090697 DOI: 10.3389/fimmu.2023.1126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundDrug-induced acute kidney damage (DI-AKI) is a clinical phenomenon of rapid loss of kidney function over a brief period of time as a consequence of the using of medicines. The lack of a specialized treatment and the instability of traditional kidney injury markers to detect DI-AKI frequently result in the development of chronic kidney disease. Thus, it is crucial to continue screening for DI-AKI hub genes and specific biomarkers.MethodsDifferentially expressed genes (DEGs) of group iohexol, cisplatin, and vancomycin’s were analyzed using Limma package, and the intersection was calculated. DEGs were then put into String database to create a network of protein-protein interactions (PPI). Ten algorithms are used in the Cytohubba plugin to find the common hub genes. Three DI-AKI models’ hub gene expression was verified in vivo and in vitro using PCR and western blot. To investigate the hub gene’s potential as a biomarker, protein levels of mouse serum and urine were measured by ELISA kits. The UUO, IRI and aristolochic acid I-induced nephrotoxicity (AAN) datasets in the GEO database were utilized for external data verification by WGCNA and Limma package. Finally, the Elisa kit was used to identify DI-AKI patient samples.Results95 up-regulated common DEGs and 32 down-regulated common DEGs were obtained using Limma package. A PPI network with 84 nodes and 24 edges was built with confidence >0.4. Four hub genes were obtained by Algorithms of Cytohubba plugin, including TLR4, AOC3, IRF4 and TNFAIP6. Then, we discovered that the protein and mRNA levels of four hub genes were significantly changed in the DI-AKI model in vivo and in vitro. External data validation revealed that only the AAN model, which also belonged to DI-AKI model, had significant difference in these hub genes, whereas IRI and UUO did not. Finally, we found that plasma TLR4 levels were higher in patients with DI-AKI, especially in vancomycin-induced AKI.ConclusionThe immune system and inflammation are key factors in DI-AKI. We discovered the immunological and inflammatory-related genes TLR4, AOC3, IRF4, and TNFAIP6, which may be promising specific biomarkers and essential hub genes for the prevention and identification of DI-AKI.
Collapse
Affiliation(s)
- Yi-Xuan Deng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qun-Xiang Qiu
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Yao Tang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui-Man Que
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dian-Ke Li
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xu-Rui Gu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guang-Liang Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Feng Wu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Yun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao-Cong Zuo,
| |
Collapse
|
14
|
Thymus transplantation regulates blood pressure and alleviates hypertension-associated heart and kidney damage via transcription factors FoxN1 pathway. Int Immunopharmacol 2023; 116:109798. [PMID: 36738681 DOI: 10.1016/j.intimp.2023.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Previous studies have found that thymus is involved in the process of hypertension. However, whether thymus transplantation alleviates target organ damage in hypertensive mice remains unknown. The aim of this study was to evaluate the effects of thymus transplantation on blood pressure and target organ changes in mice with hypertension. Mice were randomly divided into normal control group (Con), hypertensive group (HTN) and thymus transplantation group (HTN + Trans). Thymus of neonatal mice was transplanted into the renal capsule of the transplantation group. After transplantation, the mouse tail noninvasive pressure was measured and heart function was evaluated weekly. Then mice were euthanized and organs or tissues were harvested at 4 weeks post-transplantation. The blood pressure of HTN + Trans group was lower than that in the HTN group. The expression of FoxN1, Aire, ATRAP, thymosin β4 and the content of sjTREC in thymus of HTN group was decreased and the number of naïve T cells in HTN group was lower compared with other two groups. The ratio of cTEC/mTEC in HTN group was higher than that in Con group and lower than that in HTN + Trans group. Cardiac pathology showed cardiac hypertrophy and fibrosis in HTN group whereas thymus transplantation improved heart function and structure. Altogether, our findings demonstrated thymus transplantation could improve thymus function of hypertensive mice, which increased the expression of thymus transcription factor FoxN1, affected the proportion of T cell subsets, and increased thymosin β4 thereby reducing blood pressure and reversing the progression of target organ damage.
Collapse
|
15
|
Wang C, Liu C, Xu W, Cheng Y, Guo Y, Zhao Y, Shen F, Qian H. Torularhodin bilosomes attenuate high-fat diet-induced chronic kidney disease in mice by regulating the TLR4/NF-κB pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Wang MQ, Zhu XH, Liu K, Tian XY, Liu YH. LncRNA ANRIL Promotes Autophagy Activation Through miR-16-5p/TLR4 Axis in Allergic Rhinitis. Am J Rhinol Allergy 2022; 36:510-520. [PMID: 35404176 DOI: 10.1177/19458924221086059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is an allergic disease of nasal mucosa. LncRNAs are key modulators affecting AR development. Neverthelss, the impact of lncRNA ANRIL in AR is not clear. OBJECTIVE This work decided to study the mechanism underlying the impact of ANRIL on TLR4 expression through targeting miR-16-5p during autophagy and epithelial barrier dysfunction in the progression of AR. METHODS Human nasal epithelial cells were exposed to TNF-α to establish AR cell model, AR mice model was constructed by ovalbumin (OVA) treatment. QRT-PCR or western blot assays were applied to measure the levels of mRNA and proteins. Dual-luciferase reporter gene detection and RIP assay were conducted to verify the association between ANRIL and miR-16-5p. Autophagy flux assessment by mRFP-GFP-LC3 method was performed to detect autophagy level. RESULTS AR progression could induce the autophagy, and the expressions of tight junction proteins were downregulated in AR cell model. Moreover, knockdown of ANRIL reversed the effect of AR on autophagy-related protein and tight junction proteins MiR-16-5p was found to be bound with ANRIL and miR-16-5p inhibitor could reverse ANRIL knockdown-induced downregulation of autophagy-related proteins and epithelial barrier dysfunction. In addition, miR-16-5p directly targeted TLR4. Furthermore, knockdown of ANRIL reversed miR-16-5p and TLR4 expression, autophagy level, and tight junction protein levels in nasal mucosa of AR mice. CONCLUSION This study illustrated that ANRIL acted as a promotion factor in AR induced autophagy and epithelial barrier dysfunction by enhancing the expression of TLR4 via interacting with miR-16-5p.
Collapse
Affiliation(s)
- Mei-Qun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xin-Hua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Ke Liu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xiao-Yan Tian
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Yue-Hui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
17
|
Shelke V, Kale A, Anders HJ, Gaikwad AB. Epigenetic regulation of Toll-like receptors 2 and 4 in kidney disease. J Mol Med (Berl) 2022; 100:1017-1026. [PMID: 35704060 DOI: 10.1007/s00109-022-02218-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Kidney disease affects more than 10% of the worldwide population and causes significant morbidity and mortality. Epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs (ncRNAs) play a pivotal role in the progression of kidney disease. These epigenetic mechanisms are reversible and majorly involved in regulating gene expression of inflammatory, fibrotic, and apoptotic proteins. Emerging data suggest that the Toll-like receptor 2 and Toll-like receptor 4 (TLR2 and TLR4) are expressed by almost all types of kidney cells and known for promoting inflammation by recognizing damage-associated molecular proteins (DAMPs). Epigenetic mechanisms regulate TLR2 and TLR4 signaling in various forms of kidney disease where different histone modifications promote the transcription of the TLR2 and TLR4 gene and its ligand high mobility group box protein 1 (HMGB1). Moreover, numerous long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) modulate TLR2 and TLR4 signaling in kidney disease. However, the precise mechanisms behind this regulation are still enigmatic. Studying the epigenetic mechanisms involved in the regulation of TLR2 and TLR4 signaling in the development of kidney disease may help in understanding and finding novel therapeutic strategies. This review discusses the intricate relationship of epigenetic mechanisms with TLR2 and TLR4 in different forms of kidney diseases. In addition, we discuss the different lncRNAs and miRNAs that regulate TLR2 and TLR4 as potential therapeutic targets in kidney disease.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333 031, Rajasthan, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333 031, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, 80336, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333 031, Rajasthan, India.
| |
Collapse
|
18
|
Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, Scaglione R, Pinto A, Tuttolomondo A. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci 2022; 23:ijms23052445. [PMID: 35269587 PMCID: PMC8910319 DOI: 10.3390/ijms23052445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.
Collapse
|