1
|
El-Sherbiny GM, Alluqmani AJ, Elsehemy IA, Kalaba MH. Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Sci Rep 2024; 14:30485. [PMID: 39681592 DOI: 10.1038/s41598-024-80700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial resistance to antibiotics remains a significant clinical challenge, contributing to persistently high rates of morbidity and mortality. Achieving treatment success is increasingly difficult, necessitating the evaluation of new antibiotics and complementary approaches, including source control and alternative therapies. This study aimed to investigate the antibacterial, antioxidant, cytotoxic, and phytochemical properties of Moringa oleifera leaf extract using high-performance liquid chromatography (HPLC), and to evaluate the pharmacokinetic properties of its major compound. The extract demonstrated strong antibacterial activity against standard strains and foodborne bacterial species. It also showed significant antioxidant potential, supported by the presence of high concentrations of phenolic and flavonoid compounds. HPLC analysis identified multiple bioactive compounds, with quercetin as the predominant component. The cytotoxicity study confirmed the safety of the extract at low and moderate concentrations, and ADMET analysis indicated favorable pharmacokinetic characteristics of quercetin. In conclusion, Moringa oleifera exhibits promising potential for medical and food industry applications due to its significant antibacterial and antioxidant activities, combined with a strong safety profile and rich phytochemical content.
Collapse
Affiliation(s)
- Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Amira J Alluqmani
- Biology Department, Umm Al-Qura University, 21421, Makkah, Saudi Arabia
| | - Islam A Elsehemy
- Chemistry of Natural and Microbial Products, National Research Centre, Giza, Egypt
| | - Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
2
|
Bai X, Li L, Wu Y, Jie B. Flavonoids of Euphorbia hirta inhibit inflammatory mechanisms via Nrf2 and NF-κB pathways. Cell Biochem Biophys 2024:10.1007/s12013-024-01551-y. [PMID: 39505796 DOI: 10.1007/s12013-024-01551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 11/08/2024]
Abstract
Euphorbia hirta has anti-inflammatory effects in traditional medicine, but its anti-inflammatory mechanism has not been explored at the cellular and molecular levels. To unravel these mechanisms, the main active components in the 65 and 95% ethanol extracts of Euphorbia hirta were first identified by UPLC-Q-TOF/MS. Subsequently, potential anti-inflammatory targets and signaling pathways were predicted using network pharmacology and experimentally validated using RT-PCR and flow cytometry in a lipopolysaccharide (LPS)-induced inflammation model of RAW264.7 cells. The results revealed flavonoids as the key active components. Network pharmacology uncovered 71 potential anti-inflammation targets, with a protein-protein interaction (PPI) network highlighting 8 cores targets, including IL-6, TNF, NFκB and Nrf2 et al. Furthermore, Euphorbia hirta exerts anti-inflammation effects through modulation of Nrf2 and NF-κB signaling pathways. Specifically, the 65% ethanol extract of Euphorbia hirta (EE65) and quercitrin (HPG) exerted anti-inflammatory activity by inhibiting the expression of inflammatory genes associated with the NF-κB signaling pathway, whereas baicalein (HCS) suppressed cellular inflammation by promoting Nrf2-mediated antioxidant gene expression and enhancing apoptosis of inflammatory cells. The results of the study suggest that Euphorbia hirta has potential for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiaolin Bai
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Lijun Li
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuning Wu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Bai Jie
- College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Jiamboonsri P, Sangkhun W, Wanwong S. Electrospun Cellulose Acetate/Poly(Vinyl Alcohol) Nanofibers Loaded with Methyl Gallate and Gallic Acid for Anti- Staphylococcus aureus Applications. Polymers (Basel) 2024; 16:2971. [PMID: 39518181 PMCID: PMC11548512 DOI: 10.3390/polym16212971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Methyl gallate (MG) and gallic acid (GA) are natural compounds with potent activity against methicillin-resistant Staphylococcus aureus (MRSA), a significant global health concern. In this study, MG and GA were incorporated into cellulose acetate (CA) blended with poly(vinyl alcohol) (PVA) to create electrospun nanofibers aimed at combating both methicillin-susceptible S. aureus (MSSA) and MRSA. Key electrospinning parameters-DC voltage, injection flow rate, and syringe tip-collector distance-were optimized, with the best conditions being a 1.5 mL/h flow rate, 30 cm distance, and 20 kV voltage. The resulting nanofiber mats were characterized by SEM, FTIR, DSC, tensile strength testing, contact angle measurement, swelling behavior, and release profiling. Antibacterial properties were assessed using the agar diffusion test. The obtained nanofibers had diameters ranging from 879.33 to 906.13 nm. Among the samples, MG-GA-CA/PVA exhibited the highest tensile strength, good flexibility, and improved stiffness, which was related to enhanced thermal stability and chemical interactions as shown by DSC and FTIR analyses. This formulation also displayed excellent hydrophilicity, swelling properties, and a consistent release profile over 8 to 24 h. Furthermore, MG-GA-CA/PVA showed superior antibacterial activity against both MSSA and MRSA, suggesting its potential as a strong, flexible, and effective anti-S. aureus material.
Collapse
Affiliation(s)
- Pimsumon Jiamboonsri
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Weradesh Sangkhun
- Materials Technology Program, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Bangkok 10140, Thailand; (W.S.); (S.W.)
| | - Sompit Wanwong
- Materials Technology Program, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Bangkok 10140, Thailand; (W.S.); (S.W.)
| |
Collapse
|
4
|
Ji Y, Hua H, Jia Z, Zhang A, Ding G. Therapy Targeted to the NLRP3 Inflammasome in Chronic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:369-383. [PMID: 39430292 PMCID: PMC11488838 DOI: 10.1159/000539496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/07/2024] [Indexed: 10/22/2024]
Abstract
Background The NLRP3 inflammasome is a cytoplasmic polymeric protein complex composed of the cytoplasmic sensor NLRP3, the apoptosis-related spot-like protein ASC, and the inflammatory protease caspase-1. NLRP3 activates and releases IL-1β through classical pathways, and IL-18 mediates inflammation and activates gasdermin-D protein to induce cellular pyroptosis. Numerous studies have also emphasized the non-classical pathway activated by the NLRP3 inflammasome in chronic kidney disease (CKD) and the inflammasome-independent function of NLRP3. Summary The NLRP3-targeting inflammasome and its associated pathways have thus been widely studied in models of CKD treatment, but no drug that targets NLRP3 has thus far been approved for the treatment of CKD. Key Messages We herein reviewed the current interventional methods for targeting the NLRP3 inflammasome in various CKD models, analyzed their underlying mechanisms of action, classified and compared them, and discussed the advantages and follow-up directions of various interventional methods. This review therefore provides novel ideas and a reference for the development of targeted NLRP3-inflammasome therapy in CKD.
Collapse
Affiliation(s)
- Yong Ji
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Hua
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Abilkassymova A, Aldana-Mejía JA, Katragunta K, Kozykeyeva R, Omarbekova A, Avula B, Turgumbayeva A, Datkhayev UM, Khan IA, Ross SA. Phytochemical Screening Using LC-MS to Study Antioxidant and Toxicity Potential of Methanolic Extracts of Atraphaxis pyrifolia Bunge. Molecules 2024; 29:4478. [PMID: 39339473 PMCID: PMC11434437 DOI: 10.3390/molecules29184478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Atraphaxis pyrifolia, a native medicinal plant of Central Asia, has a long history of traditional medicinal use; however, scientific research on its phytochemical and biological properties remains scarce. This paper aims to elucidate its chemical profile and assess its pharmacological potential through a comprehensive investigation of the phytochemical composition of stems and leaves using Liquid Chromatography-Mass Spectrometry (LC-MS), in conjunction with the assessment of its antioxidant (DPPH and ABTS) and cytotoxicity test on Artemia salina. Predominantly, glycosylated flavonoids were detected in stems and leaves extracts, notably including 8-Acetoxy-3',4',5,5'-tetrahydroxy-7-methoxy-3-α-L-rhamno-pyranosyloxyflavone, pyrifolin, and dehydroxypyrifolin. While the latter compound is exclusive to A. pyrifolia, the former compounds serve as shared chemical markers with other Atraphaxis species. The methanolic extracts of A. pyrifolia leaves exhibited significant antioxidant capacity without toxicity against Artemia salina. This study contributes to current research through providing valuable insights into the chemical diversity and potential medicinal properties of this plant species.
Collapse
Affiliation(s)
- Alima Abilkassymova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (A.A.); (A.T.)
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
| | - Jennyfer A. Aldana-Mejía
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
| | - Raushan Kozykeyeva
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
- Faculty of Pharmacy, South Kazakhstan Medical Academy, Shymkent 160019, Kazakhstan
| | - Ardak Omarbekova
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
- Faculty of Pharmacy, South Kazakhstan Medical Academy, Shymkent 160019, Kazakhstan
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (A.A.); (A.T.)
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
| | - Ubaidilla M. Datkhayev
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
- Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Samir A. Ross
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.O.); (U.M.D.)
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (J.A.A.-M.); (K.K.); (R.K.); (B.A.); (I.A.K.)
- Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
6
|
Zhou X, Alimu A, Zhao J, Xu X, Li X, Lin H, Lin Z. Paeonia genus: a systematic review of active ingredients, pharmacological effects and mechanisms, and clinical applications for the treatment of cancer. Arch Pharm Res 2024; 47:677-695. [PMID: 39306813 DOI: 10.1007/s12272-024-01512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
The main active constituents of plants of the Paeonia genus are known to have antitumor activity. Hundreds of compounds with a wide range of pharmacological activities, including monoterpene glycosides, flavonoids, tannins, stilbenes, triterpenoids, steroids, and phenolic compounds have been isolated. Among them, monoterpenes and their glycosides, flavonoids, phenolic acids, and other constituents have been shown to have good therapeutic effects on various cancers, with the main mechanisms including the induction of apoptosis; the inhibition of tumor cell proliferation, migration, and invasion; and the modulation of immunity. In this study, many citations related to the traditional uses, phytochemical constituents, antitumor effects, and clinical applications of the Paeonia genus were retrieved from popular and widely used databases such as Web of Science, Science Direct, Google Scholar, and PubMed using different search strings. A systematic review of the antitumor constituents of the Paeonia genus and their therapeutic effects on various cancers was conducted and the mechanisms of action and pathways of these phytochemicals were summarised to provide a further basis for antitumor research.
Collapse
Affiliation(s)
- Xinrui Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Aikebaier Alimu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinyi Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaowen Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
7
|
Ebede GR, Okoro EE, Ngo Mbing J, Diboue Betote PH, Pegnyemb DE, Choudhary MI, Siwe-Noundou X, Ndongo JT. Potential anti-HIV and antitrypanosomal components revealed in Sorindeia nitidula via LC-ESI-QTOF-MS/MS. Sci Rep 2024; 14:18211. [PMID: 39107384 PMCID: PMC11303703 DOI: 10.1038/s41598-024-68364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Sorindeia nitidula (Anacardiaceae) is used by traditional practitioners to treat influenza illnesses with cephalgia and febrile aches. However, the potential active ingredients for its remarkable antioxidant, anti-HIV and antitrypanosomal activities remain unexplored. The present study aims to evaluate the antioxidant, anti-HIV and antitrypanosomal activities of the ethyl acetate extract of S. nitidula (SN) in order to screen out the bioactive compounds and to analyze their possible mechanisms of action. Overall, 21 phenolic compounds were annotated, by using the MS and MS/MS information provided by the QTOF-MS. In vitro assays on the extract revealed potent antioxidant (IC50 = 0.0129 ± 0.0001 mg/mL), anti-HIV (IC50 = 1.736 ± 0.036 µM), antitrypanosomal (IC50 = 1.040 ± 0.010 µM) activities. Furthermore, SN did not present cytotoxic effect on HeLa cancer cell lines. The integrated strategy based on LC-ESI-QTOF-MS/MS provided a powerful tool and a multidimensional perspective for further exploration of active ingredients in S. nitidula responsible for the antioxidant, anti-HIV and antitrypanosomal activities.
Collapse
Affiliation(s)
- Guy Roland Ebede
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Department of Chemistry, Higher Teacher Training College, University of Yaounde I, P.O. Box 47, Yaounde, Cameroon
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Emeka Emea Okoro
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, England
| | - Josephine Ngo Mbing
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Patrick Herve Diboue Betote
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O Box 13033, Yaounde, Cameroon
| | - Dieudonne Emmanuel Pegnyemb
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria, 0204, South Africa.
| | - Joseph Thierry Ndongo
- Department of Chemistry, Higher Teacher Training College, University of Yaounde I, P.O. Box 47, Yaounde, Cameroon.
| |
Collapse
|
8
|
Cai Y, Zhao D, Pan Y, Chen B, Cao Y, Han S, Lian F, Zhang Y, Yan X. Gallic Acid Attenuates Sepsis-Induced Liver Injury through C/EBPβ-Dependent MAPK Signaling Pathway. Mol Nutr Food Res 2024; 68:e2400123. [PMID: 38809052 DOI: 10.1002/mnfr.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Indexed: 05/30/2024]
Abstract
SCOPE Liver injury is a major complication associated with sepsis. Together with others, the study has shown that gallic acid (GA) exerts anti-inflammatory and antioxidant effects in vivo. However, the role of GA in sepsis-mediated hepatic impairment and the underlying mechanisms remains to be elucidated. METHODS AND RESULTS C57BL/6J mice are pretreated with saline or GA and subjected to sham or cecal ligation and puncture (CLP). The pathological alterations are assessed by hematoxylin and eosin staining as well as immunohistochemical staining. RNA sequencing is employed to analyze hepatic transcriptome modifications. The study finds that GA supplementation significantly ameliorates CLP-induced mortality, liver dysfunction, and inflammation. RNA sequencing reveals that 1324 genes are markedly differentially regulated in livers of saline- or GA-treated sham or CLP mice. Gene ontology analysis demonstrates that the differentially expressed genes regulated by GA are predominantly correlated with the immune system process, oxidation-reduction process, and inflammatory response. Furthermore, mitogen-activated protein kinase (MAPK) signaling is localized in the center of the GA-mediated pathway network. Notably, activation of MAPK by C16-PAF significantly blocks GA-mediated protective effects on hepatic injury, inflammation, as well as CCAAT/enhancer-binding protein-β (C/EBPβ) dependent extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) signaling. CONCLUSION Therefore, this study indicates that GA may offer a promising therapeutic opportunity for sepsis-associated liver injury.
Collapse
Affiliation(s)
- Yuwei Cai
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China, 311121
| | - Denghui Zhao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China, 311121
| | - Yu Pan
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China, 311121
| | - Bingqi Chen
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China, 311121
| | - Yifei Cao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China, 311121
| | - Shufen Han
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China, 311121
| | - Fuzhi Lian
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China, 311121
| | - Yunlong Zhang
- Department of Cardiology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Xiao Yan
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China, 311121
| |
Collapse
|
9
|
Wen X, Song Y, Zhang M, Kang Y, Chen D, Ma H, Nan F, Duan Y, Li J. Polyphenol Compound 18a Modulates UCP1-Dependent Thermogenesis to Counteract Obesity. Biomolecules 2024; 14:618. [PMID: 38927022 PMCID: PMC11201655 DOI: 10.3390/biom14060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies increasingly suggest that targeting brown/beige adipose tissues to enhance energy expenditure offers a novel therapeutic approach for treating metabolic diseases. Brown/beige adipocytes exhibit elevated expression of uncoupling protein 1 (UCP1), which is a thermogenic protein that efficiently converts energy into heat, particularly in response to cold stimulation. Polyphenols possess potential anti-obesity properties, but their pharmacological effects are limited by their bioavailability and distribution within tissue. This study discovered 18a, a polyphenol compound with a favorable distribution within adipose tissues, which transcriptionally activates UCP1, thereby promoting thermogenesis and enhancing mitochondrial respiration in brown adipocytes. Furthermore, in vivo studies demonstrated that 18a prevents high-fat-diet-induced weight gain and improves insulin sensitivity. Our research provides strong mechanistic evidence that UCP1 is a complex mediator of 18a-induced thermogenesis, which is a critical process in obesity mitigation. Brown adipose thermogenesis is triggered by 18a via the AMPK-PGC-1α pathway. As a result, our research highlights a thermogenic controlled polyphenol compound 18a and clarifies its underlying mechanisms, thus offering a potential strategy for the thermogenic targeting of adipose tissue to reduce the incidence of obesity and its related metabolic problems.
Collapse
Affiliation(s)
- Xueping Wen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufei Song
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yiping Kang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Dandan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Hui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Fajun Nan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yanan Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| |
Collapse
|
10
|
Batinić P, Jovanović A, Stojković D, Zengin G, Cvijetić I, Gašić U, Čutović N, Pešić MB, Milinčić DD, Carević T, Marinković A, Bugarski B, Marković T. Phytochemical Analysis, Biological Activities, and Molecular Docking Studies of Root Extracts from Paeonia Species in Serbia. Pharmaceuticals (Basel) 2024; 17:518. [PMID: 38675478 PMCID: PMC11054981 DOI: 10.3390/ph17040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Without being aware of their chemical composition, many cultures have used herbaceous peony roots for medicinal purposes. Modern phytopreparations intended for use in human therapy require specific knowledge about the chemistry of peony roots and their biological activities. In this study, ethanol-water extracts were prepared by maceration and microwave- and ultrasound-assisted extractions (MAE and UAE, respectively) in order to obtain bioactive molecules from the roots of Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L. wild growing in Serbia. Chemical characterization; polyphenol and flavonoid content; antioxidant, multianti-enzymatic, and antibacterial activities of extracts; and in vitro gastrointestinal digestion (GID) of hot water extracts were performed. The strongest anti-cholinesterase activity was observed in PT extracts. The highest anti-ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical potential was observed in PP extracts, whereas against DPPH (2,2-diphenyl-1-picrylhydrazyl radicals), the best results were achieved with PO extracts. Regarding antibacterial activity, extracts were strongly potent against Bacillus cereus. A molecular docking simulation was conducted to gather insights into the binding affinity and interactions of polyphenols and other Paeonia-specific molecules in the active sites of tested enzymes. In vitro GID of Paeonia teas showed a different recovery and behavior of the individual bioactives, with an increased recovery of methyl gallate and digallate and a decreased recovery of paeoniflorin and its derivatives. PT (Gulenovci) and PP (Pirot) extracts obtained by UAE and M were more efficient in the majority of the bioactivity assays. This study represents an initial step toward the possible application of Paeonia root extracts in pharmacy, medicine, and food technologies.
Collapse
Affiliation(s)
- Petar Batinić
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Č.); (T.M.)
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| | - Dejan Stojković
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.S.); (U.G.); (T.C.)
| | - Gökhan Zengin
- Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Ilija Cvijetić
- Faculty of Chemistry, University of Belgrade, Students Square 10-13, 11000 Belgrade, Serbia;
| | - Uroš Gašić
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.S.); (U.G.); (T.C.)
| | - Natalija Čutović
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Č.); (T.M.)
| | - Mirjana B. Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia; (M.B.P.); (D.D.M.)
| | - Danijel D. Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia; (M.B.P.); (D.D.M.)
| | - Tamara Carević
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.S.); (U.G.); (T.C.)
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (A.M.); (B.B.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (A.M.); (B.B.)
| | - Tatjana Marković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Č.); (T.M.)
| |
Collapse
|
11
|
Abilkassymova A, Turgumbayeva A, Sarsenova L, Tastambek K, Altynbay N, Ziyaeva G, Blatov R, Altynbayeva G, Bekesheva K, Abdieva G, Ualieva P, Shynykul Z, Kalykova A. Exploring Four Atraphaxis Species: Traditional Medicinal Uses, Phytochemistry, and Pharmacological Activities. Molecules 2024; 29:910. [PMID: 38398660 PMCID: PMC10891555 DOI: 10.3390/molecules29040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Atraphaxis is a genus of flowering plants in the family Polygonaceae, with approximately 60 species. Species of Atraphaxis are much-branched woody plants, forming shrubs or shrubby tufts, primarily inhabiting arid zones across the temperate steppe and desert regions of Central Asia, America, and Australia. Atraphaxis species have been used by diverse groups of people all over the world for the treatment of various diseases. However, their biologically active compounds with therapeutic properties have not been investigated well. Studying the biologically active components of Atraphaxis laetevirens, Atraphaxis frutescens, Atraphaxis spinosa L., and Atraphaxis pyrifolia is crucial for several reasons. Firstly, it can unveil the therapeutic potential of these plants, aiding in the development of novel medicines or natural remedies for various health conditions. Understanding their bioactive compounds enables scientists to explore their pharmacological properties, potentially leading to the discovery of new drugs or treatments. Additionally, investigating these components contributes to preserving traditional knowledge and validating the historical uses of these plants in ethnomedicine, thus supporting their conservation and sustainable utilization. These herbs have been used as an anti-inflammatory and hypertension remedies since the dawn of time. Moreover, they have been used to treat a variety of gastrointestinal disorders and problems related to skin in traditional Kazakh medicine. Hence, the genus Atraphaxis can be considered as a potential medicinal plant source that is very rich in biologically active compounds that may exhibit great pharmacological properties, such as antioxidant, antibacterial, antiulcer, hypoglycemic, wound healing, neuroprotective, antidiabetic, and so on. This study aims to provide a collection of publications on the species of Atraphaxis, along with a critical review of the literature data. This review will constitute support for further investigations on the pharmacological activity of these medicinal plant species.
Collapse
Affiliation(s)
- Alima Abilkassymova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Lazzat Sarsenova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
| | - Kuanysh Tastambek
- Institute of Ecology, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Nazym Altynbay
- Institute of Ecological Problems, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan;
| | - Gulnar Ziyaeva
- Department of Biology, Taraz Regional University Named after M.Kh.Dulaty, Taraz 080000, Kazakhstan;
| | - Ravil Blatov
- Department of Pharmacy, Kazakh-Russian Medical University, Almaty 050000, Kazakhstan;
| | - Gulmira Altynbayeva
- School of Pharmacy, JSC “S.D. Asfendiyarov Kazakh National Medical University”, Almaty 050000, Kazakhstan;
- Neonatology and Neonatal Surgery Department, JSC “Scientific Center of Pediatrics and Pediatric Surgery”, Almaty 050060, Kazakhstan
| | - Kuralay Bekesheva
- JSC “Scientific Centre for Anti-Infectious Drugs”, Almaty 010000, Kazakhstan;
| | - Gulzhamal Abdieva
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (G.A.); (P.U.)
| | - Perizat Ualieva
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (G.A.); (P.U.)
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
| | - Assem Kalykova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (L.S.); (Z.S.); (A.K.)
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| |
Collapse
|
12
|
Jiamboonsri P, Eurtivong C, Wanwong S. Assessing the Potential of Gallic Acid and Methyl Gallate to Enhance the Efficacy of β-Lactam Antibiotics against Methicillin-Resistant Staphylococcus aureus by Targeting β-Lactamase: In Silico and In Vitro Studies. Antibiotics (Basel) 2023; 12:1622. [PMID: 37998824 PMCID: PMC10669207 DOI: 10.3390/antibiotics12111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a global health concern, has prompted research into antibiotic adjuvants as a potential solution. Although our group previously reported the enhancing effects of gallic acid (GA) and methyl gallate (MG) on penicillin G activity against MRSA, the synergistic potential with other β-lactam antibiotics and the underlying mechanism have not been fully explored. Therefore, this study primarily aimed to investigate the antibacterial synergism with β-lactam antibiotics through disc diffusion, checkerboard, and time-kill assays. The β-lactamase inhibition was also examined through both molecular modeling and in vitro experiments. Additionally, bacterial morphology changes were studied using a scanning electron microscopy (SEM). The results revealed that both GA and MG exhibited anti-MRSA activity and showed indifferent effects when combined with β-lactam antibiotics against methicillin susceptible S. aureus (MSSA). Interestingly, MG demonstrated synergism with only the β-lactamase-unstable antibiotics against MRSA with the lowest fractional inhibitory concentration (FIC) indexes of ≤3.75. However, GA and MG exhibited weak β-lactamase inhibition. Furthermore, GA, MG, and the combination with ampicillin induced the morphological changes in MRSA, suggesting a possible mechanism affecting the cell membrane. These findings suggest that MG could potentially serve as an adjunct to β-lactam antibiotics to combat MRSA infections.
Collapse
Affiliation(s)
- Pimsumon Jiamboonsri
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Si Ayutthaya Road, Ratchathewi, Bangkok 10400, Thailand;
| | - Sompit Wanwong
- Materials Technology Program, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Thung Khru, Bangkok 10140, Thailand;
| |
Collapse
|