1
|
Manimaran K, Yanto DHY, Sari IP, Karimah SN, Kamaraj C, Manoharadas S, Praburaman L, Suganthi S, Oh TH. Novel approaches of mycosynthesized zinc oxide nanoparticles (ZnONPs) using Pleurotus sajor-caju extract and their biological and environmental applications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:423. [PMID: 39312006 DOI: 10.1007/s10653-024-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/19/2024] [Indexed: 09/29/2024]
Abstract
In this study, mycosynthesized zinc oxide nanoparticles (ZnONPs) are fabricated via Pleurotus sajor-caju mushroom extract, and their potential medical and environmental applications are demonstrated. The biosynthesized ZnONPs were assessed for their antibacterial, anticancer, and biodecolorization potential efficiency. They were also characterized and morphologically analyzed by UV-visible spectroscopy, XRD, FT-IR, FE-SEM, EDX, HR-TEM, Zeta potential, and GC-MS analysis. The UV visible spectrum analysis of synthesized ZnONPs analyzed outcome 354 nm was the SPR peak that the nanoparticles displayed. The characteristic Zn-O bond was indicated by a strong peak in the FT-IR study at 432.05 cm-1. Based on XRD analysis, P. sajor-caju mediated ZnONPs were crystalline nature, with an average nano particle size of 14.21 nm and a polydispersity directory of 0.29. The nanoparticles exhibit modest constancy, as shown by their zeta potential value of - 33.2 mV. The presence of oxygen and zinc was verified by EDX analysis. The ZnONPs were found to be spherical in shape and crystalline nature structure, with smooth surface morphology and a mean particle size of 10 nm using HR-TEM and SAED analysis. The significant antibacterial activity against S. aureus (6.2 ± 0.1), S. mutans (5.4 ± 0.4), and B. subtilis (5.2 ± 0.1 mm) was demonstrated by the synthesized ZnONPs made using mushroom extract. It was discovered that when the concentration of mushroom extract was increased together with synthesized ZnONPs, the bactericidal activity increased considerably. A higher concentration of ZnONPs demonstrated superior antibacterial activity across the ZnONPs ratio tests. The in vitro cytotoxicity assay showed that ZnONPs, even at low doses, had a substantial number of cytotoxic effects on liver cancer cells (LC50 values 47.42 µg/mL). The effectiveness test revealed that acid blue 129 was degraded. The best decolorization of acid blue 129 at 72.57% after 3 h of soaking serves as evidence for the theory that myco-synthesized ZnONPs by P. sajor-caju mushroom can function as catalysts in reducing the dye. The mycosynthesized ZnONPs from P. sajor-caju extract, and its potential for antibacterial, anticancer, and decolorization are in this investigation. The mycosynthesized ZnONPs suggest a novel use for nanoparticles in the creation of environmental and medicinal products.
Collapse
Affiliation(s)
- Kumar Manimaran
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Ira Puspita Sari
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Silviyani Nurul Karimah
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2454, Riyadh, Saudi Arabia
| | - Loganathan Praburaman
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Sanjeevamuthu Suganthi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
2
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2024:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
3
|
Liu MH, Liu ZK, Liu F. An anti-tumor protein PFAP specifically interacts with cholesterol-enriched membrane domains of A549 cells and induces paraptosis and endoplasmic reticulum stress. Int J Biol Macromol 2024; 264:130690. [PMID: 38458297 DOI: 10.1016/j.ijbiomac.2024.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, non-small cell lung cancer (NSCLC) is still one of the most life-threatening diseases in the world. In previous studies, a fungal protein PFAP with anti-NSCLC properties was isolated and identified from Pleurotus ferulae lanzi. In this study, the amino acid sequence of PFAP was analyzed and found to be highly homologous to the aegerolysin family. PFAP, like other members of the aegerolysin family, specifically recognizes lipid raft domains rich in cholesterol and sphingomyelin, which is probably its specific anti-tumor mechanism. Previous studies have shown that PFAP can induce AMPK-mediated autophagy and G1-phase cell cycle arrest in A549 lung cancer cells. This study further revealed that PFAP can also induce paraptosis and endoplasmic reticulum stress (ERS) in A549 cells in vitro by targeting AMPK. PFAP induces multi-pathway death of A549 cells, and thus demonstrates its potential value for developing new drugs for NSCLC.
Collapse
Affiliation(s)
- Meng-Han Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhao-Kun Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Arunachalam K, Sasidharan SP, Yang X. A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. FOOD CHEMISTRY ADVANCES 2022; 1:100023. [PMID: 36686330 PMCID: PMC8887958 DOI: 10.1016/j.focha.2022.100023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 01/25/2023]
Abstract
The World Health Organization (WHO) declared COVID-19 as a pandemic on March 11, 2020, because of its widespread transmission and infection rates. The unique severe disease was found in Wuhan, China, since December 2019, and swiftly spread throughout the world. Natural chemicals derived from herbal medicines and medicinal mushrooms provide a significant resource for the development of novel antiviral drugs. Many natural drugs have been proven to have antiviral properties against a variety of virus strains, such as the coronavirus and the herpes simplex virus (HSV).. In this research, successful dietary treatments for different COVID illnesses were compared to potential of mushroom products in its therapy. In Google Scholar, Science Direct, PubMed, and Scopus, search keywords like COVID, COVID-19, SARS, MERS, mushrooms, and their compounds were utilized. In this review of the literature we foucsed popular mushrooms such as Agaricus subrufescens Peck, Agaricus blazei Murill, Cordyceps sinensis (Berk.) Sacc., Ganoderma lucidum (Curtis.) P. Karst., Grifola frondosa (Dicks.) Gray, Hericium erinaceus (Bull.) Pers., Inonotus obliquus (Arch. Ex Pers.) Pilát., Lentinula edodes (Berk.) Pegler, Pleurotus ostreatus (Jacq.) P. Kumm., Poria cocos F.A. Wolf, and Trametes versicolor (L.) Lloyd.,. Changed forms of β-Glucan seem to have a good impact on viral replication suppression and might be used in future studies. However, the results seems terpenoids, lectins, glycoproteins, lentinan, galactomannan, and polysaccharides from mushrooms are promising prophylactic or therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
Naeem M, Manzoor S, Abid MUH, Tareen MBK, Asad M, Mushtaq S, Ehsan N, Amna D, Xu B, Hazafa A. Fungal Proteases as Emerging Biocatalysts to Meet the Current Challenges and Recent Developments in Biomedical Therapies: An Updated Review. J Fungi (Basel) 2022; 8:109. [PMID: 35205863 PMCID: PMC8875690 DOI: 10.3390/jof8020109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing world population, demand for industrialization has also increased to fulfill humans' living standards. Fungi are considered a source of essential constituents to produce the biocatalytic enzymes, including amylases, proteases, lipases, and cellulases that contain broad-spectrum industrial and emerging applications. The present review discussed the origin, nature, mechanism of action, emerging aspects of genetic engineering for designing novel proteases, genome editing of fungal strains through CRISPR technology, present challenges and future recommendations of fungal proteases. The emerging evidence revealed that fungal proteases show a protective role to many environmental exposures and discovered that an imbalance of protease inhibitors and proteases in the epithelial barriers leads to the protection of chronic eosinophilic airway inflammation. Moreover, mitoproteases recently were found to execute intense proteolytic processes that are crucial for mitochondrial integrity and homeostasis function, including mitochondrial biogenesis, protein synthesis, and apoptosis. The emerging evidence revealed that CRISPR/Cas9 technology had been successfully developed in various filamentous fungi and higher fungi for editing of specific genes. In addition to medical importance, fungal proteases are extensively used in different industries such as foods to prepare butter, fruits, juices, and cheese, and to increase their shelf life. It is concluded that hydrolysis of proteins in industries is one of the most significant applications of fungal enzymes that led to massive usage of proteomics.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050025, China;
| | - Saba Manzoor
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan;
| | | | | | - Mirza Asad
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot 51040, Pakistan;
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Dua Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University (BNU-HKBU) United International College, Zhuhai 519087, China
| | - Abu Hazafa
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|
6
|
Ishara J, Buzera A, Mushagalusa GN, Hammam ARA, Munga J, Karanja P, Kinyuru J. Nutraceutical potential of mushroom bioactive metabolites and their food functionality. J Food Biochem 2021; 46:e14025. [PMID: 34888869 DOI: 10.1111/jfbc.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and inexpensive. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies while discussing the food functionality of mushrooms. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases. PRACTICAL APPLICATIONS: Diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity are among the world's largest life-threatening conditions and diseases. Several mushroom bioactive compounds, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been found potential in tackling these diseases through diverse cellular and physiological pathways modulation with no toxicity evidence, suggesting their use as nutraceutical foods in preventing and controlling these life-threatening conditions and diseases.
Collapse
Affiliation(s)
- Jackson Ishara
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Ariel Buzera
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Gustave N Mushagalusa
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo
| | - Ahmed R A Hammam
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Judith Munga
- Department Food Nutrition and Dietetics, Kenyatta University, Nairobi, Kenya
| | - Paul Karanja
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - John Kinyuru
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
7
|
Study on the physicochemical and emulsifying property of proteins extracted from Pleurotus tuoliensis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J Fungi (Basel) 2021; 7:jof7090728. [PMID: 34575766 PMCID: PMC8466349 DOI: 10.3390/jof7090728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Mushrooms have remained an eternal part of traditional cuisines due to their beneficial health potential and have long been recognized as a folk medicine for their broad spectrum of nutraceuticals, as well as therapeutic and prophylactic uses. Nowadays, they have been extensively investigated to explain the chemical nature and mechanisms of action of their biomedicine and nutraceuticals capacity. Mushrooms belong to the astounding dominion of Fungi and are known as a macrofungus. Significant health benefits of mushrooms, including antiviral, antibacterial, anti-parasitic, antifungal, wound healing, anticancer, immunomodulating, antioxidant, radical scavenging, detoxification, hepatoprotective cardiovascular, anti-hypercholesterolemia, and anti-diabetic effects, etc., have been reported around the globe and have attracted significant interests of its further exploration in commercial sectors. They can function as functional foods, help in the treatment and therapeutic interventions of sub-optimal health states, and prevent some consequences of life-threatening diseases. Mushrooms mainly contained low and high molecular weight polysaccharides, fatty acids, lectins, and glucans responsible for their therapeutic action. Due to the large varieties of mushrooms present, it becomes challenging to identify chemical components present in them and their beneficial action. This article highlights such therapeutic activities with their active ingredients for mushrooms.
Collapse
|
9
|
Christopher M, Kooloth-Valappil P, Sreeja-Raju A, Sukumaran RK. Repurposing proteases: An in-silico analysis of the binding potential of extracellular fungal proteases with selected viral proteins. ACTA ACUST UNITED AC 2021; 15:100756. [PMID: 34226889 PMCID: PMC8245309 DOI: 10.1016/j.biteb.2021.100756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022]
Abstract
Proteases have long been the target of many drugs, but their potential as therapeutic agents is a well-known, but under-explored area. Due to the heightened threat from new and emerging infectious agents, it is worthwhile to tap into the vast microbial protease resource to identify potential therapeutics. By docking proteases of the fungus Penicillium janthinellum NCIM 1366 with the proteins encoded by the SARS-CoV-2 virus, the enzymes that have the potential to bind with, and thereby degrade viral proteins were identified. In-silico docking analysis revealed that both fungal and commercially available proteases belonging to the A1A, M20A, S10, S8A and T1A families were able to bind the viral spike, envelope, ORF-7a and Nsp2 proteins (binding energy < -50 kJ/mol), thereby opening up the possibility of developing additional therapeutic applications for these enzymes.
Collapse
Affiliation(s)
- Meera Christopher
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prajeesh Kooloth-Valappil
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Athiraraj Sreeja-Raju
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rajeev K Sukumaran
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
10
|
Promising anticancer activity of polysaccharides and other macromolecules derived from oyster mushroom (Pleurotus sp.): An updated review. Int J Biol Macromol 2021; 182:1628-1637. [PMID: 34022311 DOI: 10.1016/j.ijbiomac.2021.05.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 11/21/2022]
Abstract
Cancer dominates among many causes of mortality worldwide. Traditional chemotherapeutic agents are powerful anti-cancer agents employed for treatment of this deadly disease. However, they are always associated with toxic side effects and immunosuppression making person more vulnerable to tumor relapse and fatalities. A promising alternative could be identification, isolation and transfer of naturally occurring bioactive macromolecules to the tumorigenic population. Oyster mushroom, a major source of nutraceuticals, belonging to class basidiomycetes of kingdom Mycota is known to have immense therapeutic properties. It is a reservoir of macromolecules like β-glucan, α-glucan, resveratrol, concanavalin A, cibacron blue affinity protein, p-hydroxybenzoic acid, ergosterol, linoleic acid etc. that are responsible for mediating anti-tumor, immunomodulatory, antioxidant, and anti-diabetic roles. Various studies have shown that extracts derived from oyster mushroom is rich in polysaccharides like β-glucan and other macro molecules which have an anti-proliferative effect against cancer cell lines, without harming the normal cells. This review presents a brief highlight of the work covering the overall significance of oyster mushroom in different types of cancer treatment. It also explores the immunomodulatory effects of polysaccharides, proteoglycans and polypeptides derived from oyster mushroom that boosts the immune system to overcome the limitation of traditional cancer therapies.
Collapse
|
11
|
Seo DJ, Choi C. Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: A Review. Viruses 2021; 13:350. [PMID: 33672228 PMCID: PMC7926341 DOI: 10.3390/v13020350] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/03/2022] Open
Abstract
Mushrooms are used in their natural form as a food supplement and food additive. In addition, several bioactive compounds beneficial for human health have been derived from mushrooms. Among them, polysaccharides, carbohydrate-binding protein, peptides, proteins, enzymes, polyphenols, triterpenes, triterpenoids, and several other compounds exert antiviral activity against DNA and RNA viruses. Their antiviral targets were mostly virus entry, viral genome replication, viral proteins, and cellular proteins and influenced immune modulation, which was evaluated through pre-, simultaneous-, co-, and post-treatment in vitro and in vivo studies. In particular, they treated and relieved the viral diseases caused by herpes simplex virus, influenza virus, and human immunodeficiency virus (HIV). Some mushroom compounds that act against HIV, influenza A virus, and hepatitis C virus showed antiviral effects comparable to those of antiviral drugs. Therefore, bioactive compounds from mushrooms could be candidates for treating viral infections.
Collapse
Affiliation(s)
- Dong Joo Seo
- Department of Food Science and Nutrition, College of Health and Welfare and Education, Gwangju University 277 Hyodeok-ro, Nam-gu, Gwangju 61743, Korea;
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daeduck-myun, Anseong-si, Gyeonggi-do 17546, Korea
| |
Collapse
|
12
|
Rezvani V, Pourianfar HR, Mohammadnejad S, Madjid Ansari A, Farahmand L. Anticancer potentiality and mode of action of low-carbohydrate proteins and peptides from mushrooms. Appl Microbiol Biotechnol 2020; 104:6855-6871. [PMID: 32556413 DOI: 10.1007/s00253-020-10707-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
Severe side effects of chemotherapy as well as drug resistance highlight the ongoing need to discover novel natural bioactive compounds with anticancer potentiality. Mushroom-derived proteins are among the naturally occurring compounds that have been the subject of a body of research on their potentiality in cancer therapy. The greatest attention in relevant review articles has been paid to well-known mushroom-derived glycoproteins such as lectins and protein-bound polysaccharide complexes such as polysaccharide-K (PSK) or krestin and polysaccharopeptide (PSP), which contain substantial amounts of carbohydrates (50-90%). These complex compounds exert their anticancer activity mainly by binding to cell membranes leading to extrinsic (death receptor) apoptosis or intrinsic (mitochondrial) apoptotic pathways. However, several other research studies have reported pure, well-characterized, proteins or peptides from mushrooms, which are carbohydrate-free or have very low amounts of carbohydrate. These proteins may fall into four categories including fungal immunomodulatory proteins, ubiquitin-like proteins, enzymes, and unclassified proteins. Well-defined chemical structure, elucidated full amino acid or N-terminal sequences, purity, and having some distinct and specific pathways compared to glycoproteins have made these low-carbohydrate proteins attractive for cancer research. The aim of this review was therefore to improve the current understanding of mushroom-derived low-carbohydrate proteins and to consolidate the existing knowledge of the most promising mushroom species from which low-carbohydrate proteins have been derived, characterized, and examined for their anticancer activity. In addition, molecular targets and mechanisms of action of these proteins have been discussed. Key points • Mushroom-derived low-carbohydrate proteins lack or have low carbohydrate. • Low-carbohydrate proteins show potent anticancer activities in vitro and in vivo. • There are specific pathways for low-carbohydrate proteins to inhibit cancer cells.
Collapse
Affiliation(s)
- Vala Rezvani
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Hamid R Pourianfar
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran.
| | - Safoora Mohammadnejad
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
13
|
Sharma S, Deep A, Rana AC, Yadav M, Sharma AK. Possible Biomarkers and Therapeutic Targets for the Management of Cervical Cancer. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666190126142508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction:
Cervical cancer is the most prevalent cancer in the world due to unusual
extension of cervical cell. Cervical cancer occurs due to exposure of HPV (Human papillomavirus).
According to WHO, it is the 4th most ordinary cancer in women. In 2018, approx 6.6% of
population was affected around the world and 570,000 new cases were reported. In low and
middle-income countries, 90% of cervical cancer deaths occur.
Methods:
Despite various factors that cause cervical cancer are included exposure to HPV,
dysregulation of CASPASE enzyme, elevated expression of IAPs (Inhibitor apoptotic protein), E6
and E7 gene of HPV, inhibition of p53, BAK, p16 upregulation, CDK-inactivation causing cervical
cancer, role of VEGF, role of estrogen and its receptor in cervical cancer.
Results:
Cervical cancer can be screened by Pep test. There are various therapies that can be used
to treat cervical cancer. As these therapies have various side effects, so the world is moving to
herbal formulations to treat cervical cancer.
Conclusion:
In this study, we will discuss cervical cancer, its cause, symptoms, pathophysiology
and treatments. Early screening and detection can help in reducing the overall burden of cervical
cancer in the near future.
Collapse
Affiliation(s)
- Sombeer Sharma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Avtar C. Rana
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Monu Yadav
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Arun K. Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122051, India
| |
Collapse
|
14
|
Kumar K. Nutraceutical Potential and Processing Aspects of Oyster Mushrooms (PleurotusSpecies). CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401314666181015111724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Oyster mushrooms (Pleurotus species) have gained considerable attention of food technologist and nutritionist for their nutraceutical properties. Oyster mushrooms are considered as functional foods due to their richness in functional food ingredients. In recent times, consumption of these mushrooms has increased considerably due to their numerous health benefits. These are potential sources of bioactive components, which are sufficient enough for prevention and treatment of various lifestyle diseases. There are about 200 different species in the genus Pleurotus and these are commonly referred to as “oyster mushrooms”.Objective:The study aimed to grasp a collective information on nutraceutical and processing aspects of highly perishable but nutritious oyster mushroomResults:Pleurotus ostreatus is the most commonly consumed species all over the world due to its superior flavor, taste and nutraceutical properties. It acts as a source of natural antioxidants which might be beneficial for human health in preventing or reducing oxidative damage. Nutritionally, these species are rich sources of proteins, dietary fibres, β-glucan, vitamin B-complex, vitamin C and minerals. They contain higher proportions of certain amino acids such as methionine, cystine and aspartic acid than other edible mushrooms. Oyster mushrooms have been reported to possess hypocholesterolemic, anti-bacterial, anti-diabetic, anti-oxidant, anti-arthritic, anti-carcinogenic, hepatoprotective, anti-viral activities and act as natural resources of immunotherapy activities. The use of these mushrooms can overcome the deficiency of protein in the developing countries where there is unavailability or unacceptability of good quality proteins from animal sources because of religious restrictions.Conclusion:Because of the occurrence of abundant nutritional ingredients and other bioactive components in P. ostreatus, they have a great scope as a potential source for the development of functional or specialty foods for value addition of deficient foods so as to alleviate the nutritional deficiency diseases from society.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, HP-173101, India
| |
Collapse
|
15
|
Ellan K, Thayan R, Raman J, Hidari KIPJ, Ismail N, Sabaratnam V. Anti-viral activity of culinary and medicinal mushroom extracts against dengue virus serotype 2: an in-vitro study. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:260. [PMID: 31533688 PMCID: PMC6751638 DOI: 10.1186/s12906-019-2629-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Dengue is a mosquito-borne viral infection that has become a major public health concern worldwide. Presently, there is no specific vaccine or treatment available for dengue viral infection. METHODS Lignosus rhinocerotis, Pleurotus giganteus, Hericium erinaceus, Schizophyllum commune and Ganoderma lucidium were selected for evaluation of their in-vitro anti-dengue virus serotype 2 (DENV-2) activities. Hot aqueous extracts (HAEs), ethanol extracts (EEs), hexane soluble extracts (HSEs), ethyl acetate soluble extracts (ESEs) and aqueous soluble extracts (ASEs) were prepared from the selected mushrooms. The cytotoxic effects of the extracts were evaluated by the MTT assay. The anti-DENV-2 activities of the extracts were evaluated in three different assays: simultaneous, attachment and penetration assays were perfomed using plaque reduction assays and RT-qPCR assays. The effect of the addition time on viral replication was assessed by the time of addition assay, and a virucidal assay was carried out to evaluate the direct effect of each mushroom extract on DENV-2. The chemical composition of glucans, and the protein and phenolic acid contents in the extracts were estimated. RESULTS We found that the HAEs and ASEs of L. rhinocerotis, P. giganteus, H. erinaceus and S. commune were the least toxic to Vero cells and showed very prominent anti-DENV2 activity. The 50% inhibitory concentration (IC50) values of the ASEs ranged between 399.2-637.9 μg/ml, while for the HAEs the range was 312.9-680.6 μg/ml during simultaneous treatment. Significant anti-dengue activity was also detected in the penetration assay of ASEs (IC50: 226.3-315.4 μg/ml) and HAEs (IC50: 943.1-2080.2 μg/ml). Similarly, we observed a marked reduction in the expression levels of the ENV and NS5 genes in the simultaneous and penetration assays of the ASEs and HAEs. Time-of-addition experiments showed that the highest percent of anti-DENV2 activity was observed when the mushroom extracts were added immediately after virus adsorption. None of the extracts exhibited virucidal effect. Chemical composition analysis showed that the major components in the mushroom HAEs and ASEs were glucan (beta D-glucan) and proteins, however, there was no significant correlation between the anti-dengue activity and the concentration of glucans and proteins. CONCLUSION These findings demonstrated the potential of mushroom extracts as anti-dengue therapeutic agents with less toxic effects.
Collapse
Affiliation(s)
- Kavithambigai Ellan
- 0000 0001 0690 5255grid.415759.bVirology Unit, Infectious Disease Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
- 0000 0001 2308 5949grid.10347.31Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravindran Thayan
- 0000 0001 0690 5255grid.415759.bVirology Unit, Infectious Disease Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Jegadeesh Raman
- 0000 0004 0636 2782grid.420186.9Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumsung, Republic of Korea
| | - Kazuya I. P. J. Hidari
- 0000 0004 1763 0236grid.265880.1Department of Food and Nutrition, Junior College Division, University of Aizu, Fukushima, Japan
| | - Norizah Ismail
- 0000 0001 0690 5255grid.415759.bVirology Unit, Disease Department, National Public Health Laboratory, Ministry of Health, Sungai Buloh, Selangor Malaysia
| | - Vikineswary Sabaratnam
- 0000 0001 2308 5949grid.10347.31Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Sillapachaiyaporn C, Chuchawankul S. HIV-1 protease and reverse transcriptase inhibition by tiger milk mushroom ( Lignosus rhinocerus) sclerotium extracts: In vitro and in silico studies. J Tradit Complement Med 2019; 10:396-404. [PMID: 32695657 PMCID: PMC7365780 DOI: 10.1016/j.jtcme.2019.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Background and aim Lignosus rhinocerus (LR) is an edible mushroom with a variety of medicinal properties such as neurostimulation, immunomodulation, anti-inflammation, anti-oxidation, anti-proliferation, anti-diabetes and especially antiviral activity. Human immunodeficiency virus type-1 (HIV-1) needs the HIV-1 protease (PR) and reverse transcriptase (RT) for its replication. Therefore, both HIV-1 PR and RT are important targets for antiretroviral drug development. Experimental procedure The crude hexane (LRH), ethanol (LRE) and water (LRW) extracts of LR were in vitro screened for inhibitory activity against HIV-1 PR and RT, then anti-HIV-1 activity on the infected MOLT-4 cells were determined. Chemical constituents of the extracts were identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC)-MS. The identified compounds were in silico analysed for drug-likeness property and molecular modelling. Results and conclusion According to our screening assays, LRE and LRW significantly inhibited both enzymes (25–55%), while LRH suppressed only the HIV-1 PR activity (88.97%). At 0.5 mg/ml of LRW showed significant inhibition of HIV-1 induced syncytial formation and p24 production in the infected MOLT-4 cells. Investigation of chemical analysis revealed that major groups of identified constituents found in the extracts were fatty acids, peptides and terpenoids. In silico analysis showed that heliantriol F and 6 alpha-fluoroprogesterone displayed great binding energies with HIV-1 PR and HIV-1 RT, respectively. These findings suggest that LR could be a potential source of compounds to inhibit HIV-1 PR and/or RT activities in vitro. Furthermore, our results provide beneficial data for the development of novel HIV-1 PR and RT inhibitors. The hexane extract of L. rhinocerus strongly inhibited HIV-1 PR activity. The ethanol and water extracts of L. rhinocerus showed HIV-1 PR and RT inhibitions. Chemical constituents of L. rhinocerus could block HIV-1 PR and RT in silico studies.
Collapse
Affiliation(s)
- Chanin Sillapachaiyaporn
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.,Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Oda Y, Saito K, Nakata M. Structural analyses of a hemolytic compound found in an extract of Hypsizygus marmoreus fruiting bodies at a low pH. Biosci Trends 2019; 13:86-90. [PMID: 30700653 DOI: 10.5582/bst.2019.01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current study determined the structure of a hemolytic compound found in an extract from the fruiting bodies of the edible mushroom Hypsizygus marmoreus when its pH was lowered. The hemolytic compound was purified using the modified Bligh and Dyer method followed by chromatography using reversed phase and silica gel columns. Structural analyses of the purified hemolytic compound were performed using NMR and ESI-MS. The deduced structure indicated a trans,trans-5,8-docosadienoic acid calcium salt. Although numerous proteinous hemolysins from various mushrooms have been described, the current study is the first to report on a low-molecular-weight hemolytic compound derived from an H. marmoreus extract.
Collapse
Affiliation(s)
- Yoshiki Oda
- Technology Joint Management Office, Research Promotion Division, Tokai University
| | - Kohsuke Saito
- Department of Applied Biochemistry, Tokai University
| | | |
Collapse
|
18
|
Gao Z, Lai Q, Yang Q, Xu N, Liu W, Zhao F, Liu X, Zhang C, Zhang J, Jia L. The characteristic, antioxidative and multiple organ protective of acidic-extractable mycelium polysaccharides by Pleurotus eryngii var. tuoliensis on high-fat emulsion induced-hypertriglyceridemic mice. Sci Rep 2018; 8:17500. [PMID: 30504780 PMCID: PMC6269502 DOI: 10.1038/s41598-018-35706-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022] Open
Abstract
The antioxidant and multiple organ protection effects of acid- extracted mycelia polysaccharides (Ac-MPS) from Pleurotus eryngii var. tuoliensis on HFE-induced hypertriglyceridemic mice were investigated. The results showed that Ac-MPS have potential ability to relieve the hypertriglyceridemia and preventing oxidative stress by decreasing levels of TG, TC LDL-C, elevating contents of HDL-C in serum, increasing the activities of SOD, GSH-Px, CAT and T-AOC, and the down regulating MDA and LPO contents in liver, heart, kidney and spleen. And the histopathological observations also displayed that Ac-MPS could alleviate organ damage. Moreover, the GC, HPGPC, FT-IR and AFM analyses revealed the Ac-MPS possessed the typical polysaccharides structure with the molecular weights (Mw) of 2.712 × 105 Da. These conclusions indicated that the Ac-MPS had the potential to develop new drugs for hypertriglyceridemia-induced multiple organ failure.
Collapse
Affiliation(s)
- Zheng Gao
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Qiangqiang Lai
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Qihang Yang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Nuo Xu
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Wenbo Liu
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Fulan Zhao
- The First People's Hospital of Taian, Taian, 271000, PR China
| | - Xinchao Liu
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Chen Zhang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
19
|
Enzymatic gene expression by Pleurotus tuoliensis (Bailinggu): differential regulation under low temperature induction conditions. World J Microbiol Biotechnol 2018; 34:160. [PMID: 30341455 DOI: 10.1007/s11274-018-2487-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
Pleurotus tuoliensis is a valuable, rare and edible mushroom that is been commercially cultivated and is rapidly developing in China markets. Low temperatures are required to induces primordia initiation for the successful production of fruiting bodies (basidiomes) during commercial cultivation. In this work, we investigated the enzymatic activities and performed transcription profiling analysis of enzymatic genes under different low temperature conditions. The results suggest that the enzymatic activities and transcription levels decrease or increase significantly at 4 and 13 °C. Lacc10 and mnp6 seems to play a dominant role during nutrition growth. Furthermore, the expression of laccase and peroxidase genes was highly correlated to the detected extracellular enzymatic activity. Cold stress genes expression profiles were upregulated under 4 °C/13 °C (3 days), while only the Hsp70 gene was downregulated (at the stage of fruiting bodies production) at 13 °C (12 days). Our results showed that the transcriptional regulation of laccase and ligninolytic peroxidase genes plays an important role in the fruiting bodies of Bailinggu under low temperature induction (4 °C). Induction at low temperatures was a highly important cultivation condition in Bailinggu.
Collapse
|
20
|
Saito K, Hazama S, Oda Y, Nakata M. pH-Dependent exhibition of hemolytic activity by an extract of Hypsizygus marmoreus fruiting bodies. Biosci Trends 2018; 12:325-329. [PMID: 29848881 DOI: 10.5582/bst.2018.01108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current study found that an extract from the fruiting bodies of the edible mushroom Hypsizygus marmoreus exhibited hemolytic activity against sheep red blood cells when its pH was lowered. Although hemolytic activity was not detected when an extract had a neutral pH, an extract with a low pH exhibited potent hemolytic activity. The maximal hemolytic activity was exhibited by an extract with a pH of 5.5. A heat-treated extract did not exhibit hemolytic activity before its pH was lowered, and that activity was inhibited in the presence of PMSF and EDTA. The turbidity of the extract increased during lowering of its pH, and the precipitate fraction exhibited hemolytic activity. Fractionation by a modified Bligh and Dyer method and TLC analyses suggested that a hemolytic compound in the extract might be a type of lipid. These results suggest that a hemolytic lipid-like compound in an extract of H. marmoreus fruiting bodies may be released by a non-active precursor substance(s) through metalloenzyme(s) while the extract has a low pH.
Collapse
Affiliation(s)
- Kohsuke Saito
- Department of Applied Biochemistry, Tokai University
| | - Syohto Hazama
- Department of Applied Biochemistry, Tokai University
| | - Yoshiki Oda
- Technology Joint Management Office, Research Promotion Division, Tokai University
| | | |
Collapse
|
21
|
Carrasco-González JA, Serna-Saldívar SO, Gutiérrez-Uribe JA. Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Xu N, Gao Z, Zhang J, Jing H, Li S, Ren Z, Wang S, Jia L. Hepatoprotection of enzymatic-extractable mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis. Carbohydr Polym 2017; 157:196-206. [DOI: 10.1016/j.carbpol.2016.09.082] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/28/2022]
|
23
|
Antioxidant and anti-hyperlipidemic effects of mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis. Int J Biol Macromol 2017; 95:204-214. [DOI: 10.1016/j.ijbiomac.2016.11.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/31/2022]
|
24
|
The famous cultivated mushroom Bailinggu is a separate species of the Pleurotus eryngii species complex. Sci Rep 2016; 6:33066. [PMID: 27629112 PMCID: PMC5024158 DOI: 10.1038/srep33066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/21/2016] [Indexed: 12/02/2022] Open
Abstract
The mushroom of the genus Pleurotus in western China, called Bailinggu, is a precious edible fungus with high economic value. However, its taxonomical position is unclear. Some researchers regard it as a variety of P. eryngii, namely P. eryngii var. tuoliensis, whereas others consider it to be a subspecies of P. eryngii, viz. P. eryngii subsp. tuoliensis. A total of 51 samples representing seven genetic groups of the genus Pleurotus were subjected to a phylogenetic analysis of partial sequences of the translation elongation factor 1 alpha gene (ef1a), the RNA polymerase II largest subunit gene (rpb1), the RNA polymerase II second largest subunit gene (rpb2) and nuc rDNA internal transcribed spacers (ITS). Our data indicate that the mushroom Bailinggu is a lineage independent of P. eryngii and should be lifted as its own species, namely P. tuoliensis. In addition, its known distribution range consists of both western China and Iran.
Collapse
|
25
|
Corrêa RCG, Brugnari T, Bracht A, Peralta RM, Ferreira IC. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.01.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Inácio FD, Ferreira RO, de Araujo CAV, Brugnari T, Castoldi R, Peralta RM, de Souza CGM. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:290161. [PMID: 26180792 PMCID: PMC4477095 DOI: 10.1155/2015/290161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/20/2014] [Indexed: 01/28/2023]
Abstract
Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine.
Collapse
Affiliation(s)
- Fabíola Dorneles Inácio
- Laboratory of Biochemistry of Microorganisms, Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, 87015-900 Maringá, PR, Brazil
- Federal Institute of Paraná, Campus Jacarezinho, Avenue Doutor Tito s/n, Jardim Panorama, 86400-000 Jacarezinho, PR, Brazil
| | - Roselene Oliveira Ferreira
- Laboratory of Biochemistry of Microorganisms, Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, 87015-900 Maringá, PR, Brazil
| | - Caroline Aparecida Vaz de Araujo
- Laboratory of Biochemistry of Microorganisms, Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, 87015-900 Maringá, PR, Brazil
| | - Tatiane Brugnari
- Laboratory of Biochemistry of Microorganisms, Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, 87015-900 Maringá, PR, Brazil
| | - Rafael Castoldi
- Laboratory of Biochemistry of Microorganisms, Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, 87015-900 Maringá, PR, Brazil
| | - Rosane Marina Peralta
- Laboratory of Biochemistry of Microorganisms, Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, 87015-900 Maringá, PR, Brazil
| | - Cristina Giatti Marques de Souza
- Laboratory of Biochemistry of Microorganisms, Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, 87015-900 Maringá, PR, Brazil
| |
Collapse
|
27
|
Mycosynthesis and characterization of silver nanoparticles from Pleurotus djamor var. roseus and their in vitro cytotoxicity effect on PC3 cells. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol Sin 2014; 29:284-90. [PMID: 25358999 DOI: 10.1007/s12250-014-3486-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022] Open
Abstract
In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A (serotype H1N1) and herpes simplex virus type 2 (HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47 (H1N1) in MDCK cells reducing the infectious titer by 2.0-6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species-Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes-this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index (324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes (amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.
Collapse
|
29
|
Mariga AM, Pei F, Yang WJ, Zhao LY, Shao YN, Mugambi DK, Hu QH. Immunopotentiation of Pleurotus eryngii (DC. ex Fr.) Quel. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:604-614. [PMID: 24650999 DOI: 10.1016/j.jep.2014.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/19/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pleurotus eryngii (DC. ex Fr.) Quel has been collected from the wild, cultivated and used in traditional medicines to treat various disorders and diseases since antiquity. In traditional Chinese medicine, the powdered fruiting bodies of Pleurotus eryngii were used for immunostimulation, skin-care, wound-healing, cancer and lumbago treatment. In the current study, we investigated the antiproliferative activity of Pleurotus eryngii powder on A549, BGC-823, HepG2 and HGC-27 cancer cells and its immunomodulating activity on macrophage, RAW 264.7 cells based on its active compound. MATERIALS AND METHODS A novel bioactive protein (PEP) was extracted from Pleurotus eryngii fruiting bodies powder and purified on DEAE-52, CM-52 and Superdex 75 column chromatographies using an ÄKTA purifier. Its cytotoxicity on A549, BGC-823, HepG2, HGC-27 and RAW 267.4 cell lines was then evaluated using MTT, alamar blue (AB), trypan blue (TB), neutral red (NR), lactate dehydrogenase (LDH), Annexin V FITC/PI and morphological change assays. Moreover, lysosomal enzyme activity, pinocytosis, nitric oxide (NO) and hydrogen peroxide (H₂O₂) production assays were used to examine immunomostimulatory activity of PEP on RAW 267.4 cells. RESULTS Based on high performance gel permeation chromatography (HPGPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) analyses, the isolated protein (PEP) had a molecular weight of 63 kDa, a secondary (α-helical) structure and was mainly composed of arginine, serine and glycine. PEP significantly (P<0.05) inhibited A549, BGC-823, HepG2 and HGC-27 tumor cells proliferation dose-dependently with an IC₅₀ range of 36.5 ± 0.84 to 229.0 ± 1.24 µg/ml. Contrarily, PEP stimulated the proliferation of macrophages. CONCLUSION Pleurotus eryngii fruiting bodies powder has a potential application as a natural antitumor agent with immunomodulatory activity, proposedly, by targeting the lysosomes of cancerous cells and stimulating macrophage-mediated immune responses.
Collapse
Affiliation(s)
- Alfred Mugambi Mariga
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China; Department of Dairy and Food Science and Technology, Egerton University, Egerton 536, Kenya
| | - Fei Pei
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China
| | - Wen-jian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing 210046, PR China
| | - Li-yan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China
| | - Ya-ni Shao
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China
| | - Dorothy Kemuma Mugambi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China
| | - Qiu-hui Hu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China.
| |
Collapse
|
30
|
Induction of apoptotic effects of antiproliferative protein from the seeds of Borreria hispida on lung cancer (A549) and cervical cancer (HeLa) cell lines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:179836. [PMID: 24605320 PMCID: PMC3925513 DOI: 10.1155/2014/179836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 11/18/2022]
Abstract
A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3) on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3) exhibited significant cytotoxic activity against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549) and cervical (HeLa) cancer cells.
Collapse
|
31
|
Abstract
Proteins with membrane-attack complex/perforin (MACPF) domains are found in almost all kingdoms of life, and they have a variety of biological roles, including defence and attack, organism development, and cell adhesion and signalling. The distribution of these proteins in fungi appears to be restricted to some Pezizomycotina and Basidiomycota species only, in correlation with another group of proteins with unknown biological function, known as aegerolysins. These two protein groups coincide in only a few species, and they might operate in concert as cytolytic bi-component pore-forming agents. Representative proteins here include pleurotolysin B, which has a MACPF domain, and the aegerolysin-like protein pleurotolysin A, and the very similar ostreolysin A, which have been purified from oyster mushroom (Pleurotus ostreatus). These have been shown to act in concert to perforate natural and artificial lipid membranes with high cholesterol and sphingomyelin content. The aegerolysin-like proteins provide the membrane cholesterol/sphingomyelin selectivity and recruit oligomerised pleurotolysin B molecules, to create a membrane-inserted pore complex. The resulting protein structure has been imaged with electron microscopy, and it has a 13-meric rosette-like structure, with a central lumen that is ~4-5 nm in diameter. The opened transmembrane pore is non-selectively permeable for ions and smaller neutral solutes, and is a cause of cytolysis of a colloid-osmotic type. The biological significance of these proteins for the fungal life-style is discussed.
Collapse
|
32
|
Zhao M, Huang C, Chen Q, Wu X, Qu J, Zhang J. Genetic variability and population structure of the mushroom Pleurotus eryngii var. tuoliensis. PLoS One 2013; 8:e83253. [PMID: 24349475 PMCID: PMC3861475 DOI: 10.1371/journal.pone.0083253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/30/2013] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of 123 wild strains of Pleurotus eryngii var. tuoliensis, which were collected from nine geographical locations in Yumin, Tuoli, and Qinghe counties in the Xinjiang Autonomous Region of China, was analysed using two molecular marker systems (inter-simple sequence repeat and start codon targeted). At the variety level, the percentage of polymorphic loci and Nei’s gene diversity index for P. eryngii var. tuoliensis was 96.32% and 0.238, respectively. At the population level, Nei’s gene diversity index ranged from 0.149 to 0.218 with an average of 0.186, and Shannon's information index ranged from 0.213 to 0.339 with an average of 0.284. These results revealed the abundant genetic variability in the wild resources of P. eryngii var. tuoliensis. Nei’s gene diversity analysis indicated that the genetic variance was mainly found within individual geographical populations, and the analysis of molecular variance revealed low but significant genetic differentiation among local and regional populations. The limited gene flow (Nm = 1.794) was inferred as a major reason for the extent of genetic differentiation of P. eryngii var. tuoliensis. The results of Mantel tests showed that the genetic distance among geographical populations of P. eryngii var. tuoliensis was positively correlated with the geographical distance and the longitudinal distances (rGo = 0.789 and rLn = 0.873, respectively), which indicates that geographical isolation is an important factor for the observed genetic differentiation. Nine geographical populations of P. eryngii var. tuoliensis were divided into three groups according to their geographical origins, which revealed that the genetic diversity was closely related to the geographical distribution of this wild fungus.
Collapse
Affiliation(s)
- Mengran Zhao
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Chenyang Huang
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Qiang Chen
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xiangli Wu
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jibin Qu
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jinxia Zhang
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
33
|
Wang SJ, Zheng CJ, Peng C, Zhang H, Jiang YP, Han T, Qin LP. Plants and cervical cancer: an overview. Expert Opin Investig Drugs 2013; 22:1133-56. [PMID: 23789984 DOI: 10.1517/13543784.2013.811486] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cervical cancer, the second most common gynecological malignant tumor seriously harmful to the health of women, remains a leading cause of cancer-related death for women in developing countries. Although a large amount of scientific research has been reported on plants as a natural source of treatment agents for cervical cancer, it is currently scattered across various publications. A systematic summary and knowledge of future prospects are necessary to facilitate further plant studies for anti-cervical cancer agents. AREAS COVERED This review generalizes and analyzes the current knowledge on the anti-cervical cancer properties and mechanisms involved for plants, and discusses the future prospects for the application of these plants. EXPERT OPINION This review mainly focuses on the plants which have been scientifically tested in vitro and/or in vivo and proved as potential agents for the treatment of cervical cancer. The failure of conventional chemotherapy to reduce mortality as well as serious side effects involved makes natural products ideal candidates for exerting synergism and attenuation effects on anticancer drugs. Although the chemical components and mechanisms of action of natural plants with anti-cervical cancer potential have been investigated, many others remain unknown. More investigations and clinical trials are necessary to make use of these medical plants reasonably.
Collapse
Affiliation(s)
- Su-Juan Wang
- Second Military Medical University, School of Pharmacy, Department of Pharmacognosy, Shanghai 200433, P. R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more recently in fungi. Within the last decade, a number of studies have characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology and health are additionally presented.
Collapse
Affiliation(s)
- Ajay P Nayak
- Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
35
|
Roupas P, Keogh J, Noakes M, Margetts C, Taylor P. The role of edible mushrooms in health: Evaluation of the evidence. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.05.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Khan MA, Tania M. Nutritional and Medicinal Importance ofPleurotusMushrooms: An Overview. FOOD REVIEWS INTERNATIONAL 2012. [DOI: 10.1080/87559129.2011.637267] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genet Biol 2012; 49:15-20. [DOI: 10.1016/j.fgb.2011.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 10/01/2011] [Accepted: 12/12/2011] [Indexed: 11/30/2022]
|
38
|
Yang Y, Xu HL, Zhang ZT, Liu JJ, Li WW, Ming H, Bao JK. Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:748-755. [PMID: 21146383 DOI: 10.1016/j.phymed.2010.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 09/21/2010] [Accepted: 11/07/2010] [Indexed: 05/30/2023]
Abstract
Polygonatum odoratum lectin (POL), a novel mannose-binding lectin with anti-viral and apoptosis-inducing activities, was isolated from rhizomes of Polygonatum odoratum (Mill.) Druce. POL was a homo-tetramer with molecular weight of 11953.623Da per subunits as determined by gel filtration, SDS-PAGE and mass spectrometry. Based on its N-terminal 29-amino acid sequence the full-length cDNA sequence of POL was cloned. Subsequent phylogenetic analysis and molecular modeling revealed that POL belonged to the Galanthus nivalis agglutinin (GNA)-related lectin family, which acquired unique mannose-binding specificity. The hemagglutinating activities of POL were metal ion-independent, and were stable within certain range of pH and temperature alterations. Moreover, POL showed remarkable anti-HSV-II activity towards Vero cells, cytotoxicity towards human melanoma A375 cells and induced apoptosis in a caspase-dependent manner.
Collapse
Affiliation(s)
- Yun Yang
- School of Life Sciences & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Lam SK, Ng TB. First report of an anti-tumor, anti-fungal, anti-yeast and anti-bacterial hemolysin from Albizia lebbeck seeds. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:601-608. [PMID: 20850957 DOI: 10.1016/j.phymed.2010.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 06/11/2010] [Accepted: 08/11/2010] [Indexed: 05/29/2023]
Abstract
A monomeric 5.5-kDa protein with hemolytic activity toward rabbit erythrocytes was isolated from seeds of Albizia lebbeck by using a protocol that involved ion-exchange chromatography on Q-Sepharose and SP-Sepharose, hydrophobic interaction chromatography on Phenyl-Sepharose, and gel filtration on Superdex 75. It was unadsorbed on both Q-Sepharose and SP-Sepharose, but adsorbed on Phenyl-Sepharose. Its hemolytic activity was fully preserved in the pH range 0-14 and in the temperature range 0-100 °C, and unaffected in the presence of a variety of metal ions and carbohydrates. The hemolysin reduced viability of murine splenocytes and inhibited proliferation of MCF-7 breast cancer cells and HepG2 hepatoma cells with an IC₅₀ of 0.21, 0.97, and 1.37 μM, respectively. It impeded mycelial growth in the fungi Rhizoctonia solani with an IC₅₀ of 39 μM but there was no effect on a variety of other filamentous fungi, including Fusarium oxysporum, Helminthosporium maydis, Valsa mali and Mycosphaerella arachidicola. Lebbeckalysin inhibited growth of Escherichia coli with an IC₅₀ of 0.52 μM.
Collapse
Affiliation(s)
- Sze Kwan Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
40
|
Tang J, Wang CK, Pan X, Yan H, Zeng G, Xu W, He W, Daly NL, Craik DJ, Tan N. Isolation and characterization of cytotoxic cyclotides from Viola tricolor. Peptides 2010; 31:1434-40. [PMID: 20580652 DOI: 10.1016/j.peptides.2010.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 11/27/2022]
Abstract
Many plants of the Violaceae plant family have been used in traditional remedies, and these plants often contain cyclotides, a particular type of plant cyclopeptide that is distinguished by a cyclic cystine knot motif. In general, bioactive plant cyclopeptides are interesting candidates for drug development. In the current study, a suite of 14 cyclotides, which includes seven novel cyclotides [vitri B, C, D, E, F, varv Hm, and He], together with seven known cyclotides [varv A, D, E, F, H, vitri A, and cycloviolacin O2], was isolated from Viola tricolor, a common flower. A chromatography-based method was used to isolate the cyclotides, which were characterized using tandem mass spectrometry and NMR spectroscopy. Several of the cyclotides showed cytotoxic activities against five cancer cell lines, U251, MDA-MB-231, A549, DU145, and BEL-7402. Three cyclotides, vitri A, vitri F, and cycloviolacin O2, were the most cytotoxic. The cytotoxic activity of the cyclotides did not correlate well with their hemolytic activity, indicating that different interactions, most likely with membranes, are involved for cytotoxic and hemolytic activities. Homology modeling of the structures was used in deriving structure-activity relationships.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Heilongtan, Kunming 650204, Yunnan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yao Q, Wu CF, Luo P, Xiang XC, Liu JJ, Mou L, Bao JK. A new chitin-binding lectin from rhizome of Setcreasea purpurea with antifungal, antiviral and apoptosis-inducing activities. Process Biochem 2010; 45:1477-1485. [PMID: 32362765 PMCID: PMC7185743 DOI: 10.1016/j.procbio.2010.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 11/15/2022]
Abstract
A 48 kDa, chitin-binding lectin with antifungal, antiviral and apoptosis-inducing activities was isolated from the rhizomes of Setcreasea purpurea Boom, a member of family Commelinaceae. Setcreasea purpurea lectin (designated as SPL) is a homotetrameric protein consisting of 12031.9 Da subunits linked by non-covalent bonds as determined by SDS-PAGE, gel filtration and MS. The N-terminal 25 amino-acid sequence of SPL, NVLGRDAYCGSQNPGATCPGLCCSK was determined and homology analysis suggested that SPL belongs to the family of chitin-binding plant lectins composed of hevein domains. The lectin exhibited strong hemagglutinating activity towards rabbit erythrocytes at 0.95 μg/ml and the activity could be reversed exclusively by chitin hydrolysate (oligomers of GlcNAc). Its hemagglutinating activity was stable in pH range of 2.0-9.0 and it showed excellent thermal tolerance. SPL showed antifungal activity against Rhizoctonia solani, Sclerotinia sclerotiorum, Penicillium italicum and Helminthosporiun maydis. It also exhibited inhibitory effect on HIV-1 (IIIB) and HIV-2 (ROD), with an EC50 of 13.8 ± 1.3 and 57.1 ± 15 μg/ml, respectively. Subsequently, MTT method, cell morphological analysis and LDH activity-based cytotoxicity assays demonstrated that SPL was highly cytotoxic to CNE-1 cells and induced apoptosis in a dose-dependent manner. Moreover, due to the caspase inhibitors analyses, caspase was also found to play an important role in the potential apoptotic mechanism of SPL.
Collapse
Affiliation(s)
- Qing Yao
- School of Life Science & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Chuan-Fang Wu
- School of Life Science & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Ping Luo
- School of Life Science & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Xiao-Cong Xiang
- School of Life Science & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Jun-Jie Liu
- School of Life Science & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Lin Mou
- School of Life Science & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Jin-Ku Bao
- School of Life Science & State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| |
Collapse
|
42
|
Han CH, Zhang GQ, Wang HX, Ng TB. Schizolysin, a hemolysin from the split gill mushroom Schizophyllum commune. FEMS Microbiol Lett 2010; 309:115-21. [PMID: 20618854 DOI: 10.1111/j.1574-6968.2010.02022.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Abstract A monomeric hemolysin with a molecular mass of 29 kDa was isolated from fresh fruiting bodies of the split gill mushroom Schizophyllum commune. The hemolysin was purified by successive adsorption on DEAE-cellulose, carboxymethyl-cellulose and Q-Sepharose and finally gel filtration on Superdex 75. This demonstrated the N-terminal sequence ATNYNKCPGA, different from those of previously reported fungal and bacterial hemolysins. The hemolysin was stable up to 40 degrees C. Only partial activity remained at 50 and 60 degrees C. Activity was indiscernible at 70 degrees C. A pH of 6.0 was optimal for activity. The hemolytic activity was most potently inhibited by dithiothreitol, sucrose and raffinose, followed by cellobiose, maltose, rhamnose, inulin, lactose, fructose and inositol. The metal ions Cu(2+), Mg(2+), Zn(2+), Al(3+) and Fe(3+) significantly, and Pb(2+) to a lesser extent, curtailed the activity of the hemolysin. The hemolysin inhibited HIV-1 reverse transcriptase with an IC(50) of 1.8 microM.
Collapse
Affiliation(s)
- Chun-Hua Han
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|