1
|
Xie LY, Yang Z, Wang Y, Hu JN, Lu YW, Zhang H, Jiang S, Li W. 1- O-Actylbritannilactone Ameliorates Alcohol-Induced Hepatotoxicity through Regulation of ROS/Akt/NF-κB-Mediated Apoptosis and Inflammation. ACS OMEGA 2022; 7:18122-18130. [PMID: 35664604 PMCID: PMC9161245 DOI: 10.1021/acsomega.2c01681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/04/2022] [Indexed: 05/20/2023]
Abstract
1-O-Acetylbritannilactone (ABL) is a marker component of Inula britannica L. and is reported to exhibit multiple pharmacological activities, including antiaging, anti-inflammatory, and antidiabetic properties. Although the protective effect of Inula britannica L. on animal models of liver injury has been widely reported, the effect of ABL on alcohol-induced liver damage has not been confirmed. The present study was designed to investigate the protective effect of ABL against alcohol-induced LO2 human normal liver cell injury and to further clarify the underlying mechanism. Our results revealed that ABL at concentrations of 0.5, 1, and 2 μM could remarkably suppress the decreased viability of LO2 cells stimulated by alcohol. In addition, ABL pretreatment improved alcohol-induced oxidative damage by decreasing the level of reactive oxygen species (ROS) and the excessive consumption of glutathione peroxidase (GSH-Px), while increasing the level of catalase (CAT) in LO2 cells. Moreover, Western blotting analysis showed that ABL pretreatment activated protein kinase B (Akt) phosphorylation, increased downstream antiapoptotic protein Bcl-2 expression, and decreased the phosphorylation level of the caspase family including caspase 9 and caspase 3 proteins, thereby attenuating LO2 cell apoptosis. Importantly, we also found that ABL significantly inhibits the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the secretion of proinflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin (IL-1β). In conclusion, the current research clearly suggests that the protective effect of ABL on alcohol-induced hepatotoxicity may be achieved in part through regulation of the ROS/Akt/NF-κB signaling pathway to inhibit inflammation and apoptosis in LO2 cells. (The article path map has not been seen.).
Collapse
Affiliation(s)
- Li-ya Xie
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Zhen Yang
- Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
| | - Ying Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jun-nan Hu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Ya-wei Lu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Hao Zhang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shuang Jiang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- E-mail: . Phone/Fax: +86-431-84533304
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- E-mail: . Phone/Fax: +86-431-84533304
| |
Collapse
|
2
|
Tang JJ, Huang LF, Deng JL, Wang YM, Guo C, Peng XN, Liu Z, Gao JM. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model. Redox Biol 2022; 50:102229. [PMID: 35026701 PMCID: PMC8760418 DOI: 10.1016/j.redox.2022.102229] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in which oxidative stress and neuroinflammation were demonstrated to be associated with neuronal loss and cognitive deficits. However, there are still no specific treatments that can prevent the progression of AD. In this study, a screening of anti-inflammatory hits from 4207 natural compounds of two different molecular libraries indicated 1,6-O,O-diacetylbritannilactone (OABL), a 1,10-seco-eudesmane sesquiterpene lactone isolated from the herb Inula britannica L., exhibited strong anti-inflammatory activity in vitro as well as favorable BBB penetration property. OABL reduced LPS-induced neuroinflammation in BV-2 microglial cells as assessed by effects on the levels of inflammatory mediators including NO, PGE2, TNF-α, iNOS, and COX-2, as well as the translocation of NF-κB. Besides, OABL also exhibited pronounced neuroprotective effects against oxytosis and ferroptosis in the rat pheochromocytoma PC12 cell line. For in vivo research, OABL (20 mg/kg B.W., i.p.) for 21 d attenuated the impairments in cognitive function observed in 6-month-old 5xFAD mice, as assessed with the Morris water maze test. OABL restored neuronal damage and postsynaptic density protein 95 (PSD95) expression in the hippocampus. OABL also significantly reduced the accumulation of amyloid plaques, the Aβ expression, the phosphorylation of Tau protein, and the expression of BACE1 in AD mice brain. In addition, OABL attenuated the overactivation of microglia and astrocytes by suppressing the expressions of inflammatory cytokines, and increased glutathione (GSH) and reduced malondialdehyde (MDA) and super oxide dismutase (SOD) levels in the 5xFAD mice brain. In conclusion, these results highlight the beneficial effects of the natural product OABL as a novel treatment with potential application for drug discovery in AD due to its pharmacological profile.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jia-Le Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yi-Meng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Tang JJ, Guo C, Peng XN, Guo XC, Zhang Q, Tian JM, Gao JM. Chemical characterization and multifunctional neuroprotective effects of sesquiterpenoid-enriched Inula britannica flowers extract. Bioorg Chem 2021; 116:105389. [PMID: 34601295 DOI: 10.1016/j.bioorg.2021.105389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/05/2023]
Abstract
Dried flowers of Inula britannica commercially serve as pharmaceutical/nutraceutical herbs in the manufacture of medicinal products and functional tea that has been reported to possess extensive biological property. However, the neuroprotective constituents in I. britannica flowers are not known. In the current study, phytochemicals of sesquiterpenoid-enriched I. britannica flowers extract and their potential multifunctional neuroprotective effects were investigated. Nineteen structurally diverse sesquiterpenoids, including two new sesquiterpenoid dimers, namely, inubritanolides A and B (1, 2), and four new sesquiterpenoid monomers (3-6), namely, 1-O-acetyl-6-O-chloracetylbritannilactone (3), 6-methoxybritannilactone (4), 1-hydroxy-10β-methoxy-4αH-1,10-secoeudesma-5(6),11(13)-dien-12,8β-olide (5) and 1-hydroxy-4αH-1,10-secoeudesma-5(6),10(14),11(13)-trien-12,8β-olide (6), as well as 13 known congeners (7-19) were isolated from this source. The structures of compounds 1-6 were elucidated by 1D- and 2D- NMR and HR-ESI-MS data, and their absolute configurations were discerned by electronic circular dichroism (ECD) data analysis and single crystal X-ray diffraction. Interestingly, inubritannolide A (1) is a new type [4 + 2] Diels-Alder dimer featuring a hepta-membered cycloether skeleton. Most of the compounds showed potential multifunctional neuroprotective effects, including antioxidative, anti-neuroinflammatory, and microglial polarization properties. Specifically, 1 and 6 displayed slight strong neuroprotective potency against different types of neuronal cells mediated by various inducers including H2O2, 6-hydroxydopamine (6-OHDA), and lipopolysaccharide (LPS). Overall, this is the first report on multifunctional neuroprotective effects of sesquiterpenoid-enriched I. britannica flowers extract, which supports its potential pharmaceutical/nutraceutical application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Chen Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Jun-Mian Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
4
|
Tang JJ, Wang MR, Dong S, Huang LF, He QR, Gao JM. 1,10-Seco-Eudesmane sesquiterpenoids as a new type of anti-neuroinflammatory agents by suppressing TLR4/NF-κB/MAPK pathways. Eur J Med Chem 2021; 224:113713. [PMID: 34315042 DOI: 10.1016/j.ejmech.2021.113713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022]
Abstract
Dysregulation of neuroinflammation is a key pathological factor in the progressive neuronal damage of neurodegenerative diseases. An in-house natural products library of 1407 compounds were screened against neuroinflammation in lipopolysaccharide (LPS)-activated microglia cells to identify a novel hit 1,6-O,O-diacetylbritannilactone (OABL) with anti-neuroinflammatory activity. Furthermore, a 1,10-seco-eudesmane sesquiterpenoid library containing 33 compounds was constructed by semisynthesis of a major component 1-O-acetylbritannilactone (ABL) from the traditional Chinese medicinal herb Inula Britannica L. Compound 15 was identified as a promising anti-neuroinflammatory agent by nitrite oxide (NO) production screening. 15 could attenuate tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) productions, and inhibit the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at a submicromolar level. Mechanistic study revealed that 15 significantly modulated TLR4/NF-kB and p38 MAPK pathways, and upregulated the anti-oxidant response HO-1. Besides, 15 promoted the conversion of the microglia from M1 to M2 phenotype by increasing levels of arginase-1 and IL-10. The structure-activity relationships (SARs) analysis indicated that the α-methylene-γ-lactone motifs, epoxidation of C5=C10 bond and bromination of C14 were important to the activity. Parallel artificial membrane permeation assay (PAMPA) also demonstrated that 15 and OABL can overcome the blood-brain barrier (BBB). In all, compound 15 is a promising anti-neuroinflammatory lead with potent anti-inflammatory effects via the blockage of TLR4/NF-κB/MAPK pathways, favorable BBB penetration property, and low cytotoxicity.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China.
| | - Min-Ran Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China
| | - Shuai Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China
| | - Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
5
|
Zhou Q, Yan H, Li R, Li X, Wei J. A Sensitive LC-MS-MS Method for Quantification of 1,6-O,O-Diacetylbritannilactone in Rat Plasma and its Application in a Pharmacokinetic Study. J Chromatogr Sci 2018; 56:242-247. [PMID: 29300894 DOI: 10.1093/chromsci/bmx106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/29/2017] [Indexed: 11/14/2022]
Abstract
1,6-O,O-Diacetylbritannilactone is a natural sesquiterpene lactone isolated from Inula britannica that has displayed cytotoxic effects against several human cancer cell lines. In this study, a selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed for determination of 1,6-O,O-diacetylbritannilactone in rat plasma. Chromatographic separation was achieved on an Agilent C18 column (4.6 mm × 75 mm, 3.5 μm) with methanol and water (80:20, v/v) as the mobile phase. An ESI source was applied and operated in positive ion mode; selected-reaction monitoring was used for quantification using target fragment ions m/z 373.2→312.9 for 1,6-O,O-diacetylbritannilactone and m/z 331.2→144.1 for the IS. Calibration plots were linear in the range of 1.5-1350 ng/mL for 1,6-O,O-diacetylbritannilactone in rat plasma. Intra- and inter-day precisions were <8.5%, and the accuracy ranged from -2.7 to 12.8%. The LC-MS-MS method was successfully applied in a pharmacokinetic study of 1,6-O,O-diacetylbritannilactone in rats.
Collapse
Affiliation(s)
- Qiang Zhou
- College of Pharmaceutical Science, Jilin University, Xinmin Street No. 1163, Changchun 130021, China
| | - He Yan
- Department of Emergency, The First Hospital of Jilin University, Xinmin Street No. 71, Changchun 130021, China
| | - Rui Li
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingliang Li
- Department of Emergency, The First Hospital of Jilin University, Xinmin Street No. 71, Changchun 130021, China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Xinmin Street No. 1163, Changchun 130021, China
| |
Collapse
|
6
|
Gao X, Ma Y, Wang Z, Bia R, Zhang P, Hu F. Identification of anti-inflammatory active ingredients from Tumuxiang by ultra-performance liquid chromatography/quadrupole time-of-flight-MSE. Biomed Chromatogr 2018; 32:e4179. [DOI: 10.1002/bmc.4179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xia Gao
- School of Pharmacy; Lanzhou University; Lanzhou People's Republic of China
| | - Yuling Ma
- School of Pharmacy; Lanzhou University; Lanzhou People's Republic of China
| | - Zhuowei Wang
- Waters Corporation; Beijing Office; People's Republic of China
| | - Ruibin Bia
- School of Pharmacy; Lanzhou University; Lanzhou People's Republic of China
| | - Pei Zhang
- School of Pharmacy; Lanzhou University; Lanzhou People's Republic of China
| | - Fangdi Hu
- School of Pharmacy; Lanzhou University; Lanzhou People's Republic of China
| |
Collapse
|
7
|
Chen X, Ji N, Qin N, Tang SA, Wang R, Qiu Y, Duan H, Kong D, Jin M. 1,6-O,O-Diacetylbritannilactone Inhibits Eotaxin-1 and ALOX15 Expression Through Inactivation of STAT6 in A549 Cells. Inflammation 2017; 40:1967-1974. [DOI: 10.1007/s10753-017-0637-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Jin M, Kim S, Qin N, Chen X, Ji N, Tang SA, Kong D, Lee E, Duan H. 1,6-O,O-Diacetylbritannilactone suppresses activation of mast cell and airway hyper-responsiveness. Immunopharmacol Immunotoxicol 2017; 39:173-179. [PMID: 28447503 DOI: 10.1080/08923973.2017.1318911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mast cells play critical roles in allergic disorders such as atopic dermatitis and allergic asthma. The aim of this study was to investigate the anti-inflammatory and anti-asthmatic activities of 1,6-O,O-diacetylbritannilactone (OODBL) isolated from Inula japonica Thunb. (I. japonica) in a murine asthma model and bone marrow-derived mast cells (BMMCs). In an ovalbumin-induced asthma model, OODBL administration attenuated the airway hyper-responsiveness induced by aerosolized methacholine and serum IgE level in asthmatic mice. In vitro system, we found that OODBL reduced leukotriene C4 production and degranulation through the suppression of cytosolic phospholipase A2 phosphorylation and phospholipase Cγ-mediated Ca2+ influx in IgE/antigen-stimulated BMMCs. Taken together, OODBL may have therapeutic potential in the treatment of allergic diseases such as asthma.
Collapse
Affiliation(s)
- Meihua Jin
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China
| | - Sungun Kim
- b Traditional Korean Medicine Technology Division, National Development Institute of Korean Medicine , Gyeongsan , Republic of Korea
| | - Nan Qin
- c Research Center of Basic Medical Sciences, Tianjin Medical University , Tianjin , People's Republic of China
| | - Xi Chen
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China.,d Tianjin Key Laboratory of Ophthalmology and Visual Science , Tianjin Eye Hospital , Tianjin , People's Republic of China
| | - Ning Ji
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China
| | - Sheng-An Tang
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China
| | - Dexin Kong
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China.,c Research Center of Basic Medical Sciences, Tianjin Medical University , Tianjin , People's Republic of China
| | - Eunkyung Lee
- b Traditional Korean Medicine Technology Division, National Development Institute of Korean Medicine , Gyeongsan , Republic of Korea
| | - Hongquan Duan
- a Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin , People's Republic of China.,c Research Center of Basic Medical Sciences, Tianjin Medical University , Tianjin , People's Republic of China
| |
Collapse
|
9
|
A new semisynthetic 1- O -acetyl-6- O -lauroylbritannilactone induces apoptosis of human laryngocarcinoma cells through p53-dependent pathway. Toxicol In Vitro 2016; 35:112-20. [DOI: 10.1016/j.tiv.2016.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 12/12/2022]
|
10
|
(S)-4-[(3aR,4S,7aR)-4-Methoxy-6-methyl-3-methylene-2-oxo-2,3,3a,4,7,7a-hexahydrobenzofuran-5-yl]pentyl Acetate. MOLBANK 2016. [DOI: 10.3390/m890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Zhengfu H, Hu Z, Huiwen M, Zhijun L, Jiaojie Z, Xiaoyi Y, Xiujun C. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling. Biochem Biophys Res Commun 2015; 464:422-7. [DOI: 10.1016/j.bbrc.2015.06.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/24/2022]
|
12
|
Li H, Li W, Yu M, Jiang L. LC-MS/MS determination of 1-O-acetylbritannilactone in rat plasma and its application to a preclinical pharmacokinetic study. Biomed Chromatogr 2015; 30:419-25. [PMID: 26179842 DOI: 10.1002/bmc.3564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 01/06/2023]
Abstract
A novel, rapid and sensitive LC-MS/MS method for the determination of 1-O-Acetylbritannilactone (ABL), a sesquiterpene lactone abundant in Inula britannica, was developed and validated using heteroclitin D as internal standard. Separation was achieved on a reversed phase Hypersil Gold C18 column (50 × 4.6 mm, i.d., 3.0 µm) using isocratic elution with methanol-5 mM ammonium acetate buffer aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min. Calibration curve was linear (r > 0.99) in a concentration range of 1.60-800 ng/mL with the lower limit of quantification of 1.60 ng/mL. Intra- and inter-day accuracy and precision were validated by relative error (RE) and relative standard deviation (RSD) values, respectively, which were both less than ±15%. The validated method has been successfully applied to a pharmacokinetic study of ABL in rats. The elimination half-lives were 0.412 ± 0.068, 0.415 ± 0.092 and 0.453 ± 0.071 h after a single intravenous administration of 0.14, 0.42, and 1.26 mg/kg ABL, respectively. The area under the plasma concentration-time curve from time zero to the last quantifiable time point and from time zero to infinity and the plasma concentrations at 2 min were linearly related to the doses tested.
Collapse
Affiliation(s)
- Huajun Li
- Cadres Ward, Air Force General Hospital, PLA, Beijing, 100142, China
| | - Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, 132011, China
| | - Min Yu
- Health Center, 9524 Command, PLA, Beijing, 100195, China
| | - Ligang Jiang
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, 132011, China
| |
Collapse
|
13
|
Seca AML, Grigore A, Pinto DCGA, Silva AMS. The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:286-310. [PMID: 24754913 DOI: 10.1016/j.jep.2014.04.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Inula comprises more than one hundred species widespread in temperate regions of Europe and Asia. Uses of this genus as herbal medicines have been first recorded by the Greek and Roman ancient physicians. In the Chinese Pharmacopoeia, from the 20 Inula spp. distributed in China, three are used as Traditional Chinese medicines, named Tumuxiang, Xuanfuhua and Jinfeicao. These medicines are used as expectorants, antitussives, diaphoretics, antiemetics, and bactericides. Moreover, Inula helenium L. which is mentioned in Minoan, Mycenaean, Egyptian/Assyrian pharmacotherapy and Chilandar Medical Codex, is good to treat neoplasm, wound, freckles and dandruff. Many other Inula spp. are used in Ayurvedic and Tibetan traditional medicinal systems for the treatment of diseases such as bronchitis, diabetes, fever, hypertension and several types of inflammation. This review is a critical evaluation of the published data on the more relevant ethnopharmacological and medicinal uses of Inula spp. and on their metabolites biological activities. This study allows the identification of the ethnopharmacological knowledge of this genus and will provide insight into the emerging pharmacological applications of Inula spp. facilitating the prioritirization of future investigations. The corroboration of the ethnopharmacological applications described in the literature with proved biological activities of Inula spp. secondary metabolites will also be explored. MATERIALS AND METHODS The major scientific databases including ScienceDirect, Medline, Scopus and Web of Science were queried for information on the genus Inula using various keyword combinations, more than 180 papers and patents related to the genus Inula were consulted. The International Plant Name Index was also used to confirm the species names. RESULTS Although the benefits of Inula spp. are known for centuries, there are insufficient scientific studies to certify it. Most of the patents are registered by Chinese researchers, proving the traditional use of these plants in their country. Although a total of sixteen Inula species were reported in the literature to have ethnopharmacological applications, the species Inula cappa (Buch.-Ham. ex D.Don) DC., Inula racemosa Hook.f., Inula viscosa (L.) Aiton [actually the accepted name is Dittrichia viscosa (L.) Greuter], Inula helenium, Inula britannica L. and Inula japonica Thunb. are the most frequently cited ones since their ethnopharmacological applications are vast. They are used to treat a large spectrum of disorders, mainly respiratory, digestive, inflammatory, dermatological, cancer and microbial diseases. Fifteen Inula spp. crude extracts were investigated and showed interesting biological activities. From these, only 7 involved extracts of the reported spp. used in traditional medicine and 6 of these were studied to isolate the bioactive compounds. Furthermore, 90 bioactive compounds were isolated from 16 Inula spp. The characteristic compounds of the genus, sesquiterpene lactones, are involved in a network of biological effects, and in consequence, the majority of the experimental studies are focused on these products, especially on their cytotoxic and anti-inflammatory activities. The review shows the chemical composition of the genus Inula and presents the pharmacological effects proved by in vitro and in vivo experiments, namely the cytotoxic, anti-inflammatory (with focus on nitric oxide, arachidonic acid and NF-κB pathways), antimicrobial, antidiabetic and insecticidal activities. CONCLUSIONS Although there are ca. 100 species in the genus Inula, only a few species have been investigated so far. Eight of the sixteen Inula spp. with ethnopharmacological application had been subjected to biological evaluations and/or phytochemical studies. Despite Inula royleana DC. and Inula obtusifolia A. Kerner are being used in traditional medicine, as far as we are aware, these species were not subjected to phytochemical or pharmacological studies. The biological activities exhibited by the compounds isolated from Inula spp., mainly anti-inflammatory and cytotoxic, support some of the described ethnopharmacological applications. Sesquiterpene lactone derivatives were identified as the most studied class, being britannilactone derivatives the most active ones and present high potential as anti-inflammatory drugs, although, their pharmacological effects, dose-response relationship and toxicological investigations to assess potential for acute or chronic adverse effects should be further investigated. The experimental results are promising, but the precise mechanism of action, the compound or extract toxicity, and the dose to be administrated for an optimal effect need to be investigated. Also human trials (some preclinical studies proved to be remarkable) should be further investigated. The genus Inula comprises species useful not only in medicine but also in other domains which makes it a high value-added plant.
Collapse
Affiliation(s)
- Ana M L Seca
- DCTD, University of Azores, 9501-801 Ponta Delgada, Portugal; Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Alice Grigore
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical-Pharmaceutical R&D, 112 Vitan Av., Bucharest, Romania.
| | - Diana C G A Pinto
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Dong S, Tang JJ, Zhang CC, Tian JM, Guo JT, Zhang Q, Li H, Gao JM. Semisynthesis and in vitro cytotoxic evaluation of new analogues of 1-O-acetylbritannilactone, a sesquiterpene from Inula britannica. Eur J Med Chem 2014; 80:71-82. [DOI: 10.1016/j.ejmech.2014.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/06/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
15
|
Zhao JS, Chen LX, Liu YL, Li AY. Rapid Detection of Acetylbritannilactone from Inula britannica in Plasma of Rats by Online Sweeping-Micellar Electrokinetic Chromatography. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60007-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Park HH, Kim SG, Kim MJ, Lee J, Choi BK, Jin MH, Lee E. Suppressive Effect of Tomentosin on the Production of Inflammatory Mediators in RAW264.7 Cells. Biol Pharm Bull 2014; 37:1177-83. [DOI: 10.1248/bpb.b14-00050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyo-Hyun Park
- Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry
| | - Sun-Gun Kim
- Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry
| | - Mi Jin Kim
- College of Pharmacy, Yeungnam University
| | - Jiean Lee
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University
| | - Bong-Keun Choi
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University
| | | | - Eunkyung Lee
- Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry
| |
Collapse
|
17
|
Merten J, Wang Y, Krause T, Kataeva O, Metz P. Total Synthesis of the Cytotoxic 1,10-seco-Eudesmanolides Britannilactone and 1,6-O,O-Diacetylbritannilactone. Chemistry 2011; 17:3332-4. [DOI: 10.1002/chem.201002927] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Indexed: 11/11/2022]
|
18
|
Qin JJ, Jin HZ, Zhu JX, Fu JJ, Zeng Q, Cheng XR, Zhu Y, Shan L, Zhang SD, Pan YX, Zhang WD. New sesquiterpenes from Inula japonica Thunb. with their inhibitory activities against LPS-induced NO production in RAW264.7 macrophages. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.091] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Khan AL, Hussain J, Hamayun M, Gilani SA, Ahmad S, Rehman G, Kim YH, Kang SM, Lee IJ. Secondary metabolites from Inula britannica L. and their biological activities. Molecules 2010; 15:1562-77. [PMID: 20336001 PMCID: PMC6257271 DOI: 10.3390/molecules15031562] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 11/17/2022] Open
Abstract
Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids) and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica.
Collapse
Affiliation(s)
- Abdul Latif Khan
- School of Applied Biosciences, Kyungpook National University, Korea
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Javid Hussain
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Muhammad Hamayun
- School of Applied Biosciences, Kyungpook National University, Korea
| | - Syed Abdullah Gilani
- Department of Biotechnology, Kohat University of Science & Technology, Kohat, Pakistan
| | - Shabir Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Gauhar Rehman
- Department of Genetic Engineering, School of Life Sciences & Biotechnology, Kyungpook National University, Korea
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Korea
| |
Collapse
|