1
|
Li S, Li S, Semde R, Teng H, Shi M, Huang L, Lou X, Jia B, Zhu H, Zhao Y. Protocatechuic Acid Improves Alzheimer's Disease by Regulating the Cholinergic Synaptic Signaling Pathway. Chem Biodivers 2025; 22:e202402771. [PMID: 39776239 DOI: 10.1002/cbdv.202402771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by memory decline and cognitive impairments. The clinical treatments for AD have numerous adverse effects; hence, the exploration of natural products for AD therapy is of significant importance. Protocatechuic acid (PA), a natural phenolic acid, has been shown to possess various pharmacological activities, including anti-inflammatory, antioxidant, and antitumor effects. However, the mechanisms underlying its therapeutic potential for AD remain elusive. This study utilized a β-amyloid (Aβ) injection into the hippocampus of mice as an AD model and L-glu-induced HT-22 cell neurotoxicity and lipopolysaccharides (LPS)-induced cellular neuroinflammation models to assess reactive oxygen species (ROS), JC-1, and relevant biochemical markers. This study examined behavioral, pathological, and inflammatory factors and investigated the molecular mechanisms through transcriptomics, western blot, and molecular docking studies. This study's findings reveal that high-dose PA (50 mg/kg) improves symptoms in AD mice through the cholinergic synaptic signaling pathway. This study indicates that PA is a potential candidate for AD treatment targeting the cholinergic synaptic signaling pathway, providing a lead compound for AD therapy.
Collapse
Affiliation(s)
- Siwen Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Songtao Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rasmané Semde
- Synthèse des médicaments, CEA-CFOREM, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Mengqi Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Liang Huang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Xinru Lou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Beining Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| |
Collapse
|
2
|
Dhungel J, Shyaula SL, Faizan M, Rathnayaka RK, Agrawal M. Computer-aided drug design approach for alkaloids isolated from Stephania glandulifera Miers as potential acetylcholinesterase inhibitors. J Biomol Struct Dyn 2025:1-14. [PMID: 40053458 DOI: 10.1080/07391102.2025.2474054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/15/2024] [Indexed: 03/09/2025]
Abstract
Considering the medicinal importance of alkaloids from Stephania glandulifera Miers, five major compounds (stepharine, stepharanine, stepholidine, palmatine and tetrahydropalmatine) from the plant were analyzed for their acetylcholinesterase activity using molecular docking, molecular dynamics simulations and in silico pharmacokinetics. As acetylcholinesterase has been significantly studied for their role in Alzheimer's disease, the enzyme from Torpedo californica (PDB ID: 1QTI) was taken as a receptor protein. AutoDock Vina was used to study the docking affinities during the initial screening of compounds where, stepharine showed promising binding energy (-10.3 kcal/mol) forming crucial interactions with active site residues (His 440, Tyr 121, and Trp 84). Molecular dynamics simulations were performed for 200 ns to analyze the stability of the docked complex. The study of trajectories obtained after simulation showed stepharine with a strong binding affinity and stability with AChE. Moreover, drug likeness and ADMET analysis conducted via Swiss ADME and pKCSM affirmed stepharine's favorable pharmacological properties. Overall, this research highlights stepharine as a potent acetylcholinesterase inhibitor which could be further developed as potential drug against Alzheimer's disease.
Collapse
Affiliation(s)
- Jhalnath Dhungel
- Nepomics Biotech Pvt. Ltd., Kathmandu, Nepal
- Department of Biotechnology, National College, Tribhuvan University, Nayabazar, Nepal
| | - Sajan L Shyaula
- Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Mishal Faizan
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Rajitha Kalum Rathnayaka
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| |
Collapse
|
3
|
Chen S, Wei B, Wen L, Wei P, Fu Y. Metabolomics analysis of bioactive compositions of Michelia macclurei Dany and its antioxidant and enzyme inhibitory activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:635-648. [PMID: 39230063 DOI: 10.1002/jsfa.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Michelia macclurei Dandy is a traditional Chinese medicinal plant, but little is understood about the bioactive compositions and biological potential of its different parts, limiting their applications. This study aims to identify the bioactive compositions and analyze differences in accumulation patterns from different parts of Michelia macclurei (heartwood, sapwood, bark, root, leaf, and fruit) using metabolomics. It also seeks to explore their biological potential and analyze the relationship between the bioactive compositions and biological potential. RESULTS A total of 63 volatile metabolites (VMs) were identified by gas chromatography-mass spectrometry (GC-MS) in six parts, and the VMs in each part were dominated by sesquiterpenes and their derivatives (71.40-88.32%). Six parts of Michelia macclurei contained structurally diverse non-volatile metabolites (NVMs) with a total of 207 bioactive compounds, including 92 alkaloids, 30 flavonoids, 19 lignans, and 18 organic acids, utilizing ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Multivariate statistical analysis showed that the accumulation patterns of bioactive compositions differed significantly among the different parts, and the 25 VMs and 72 NVMs could be considered potential markers for distinguishing the different parts of Michelia macclurei. The excellent antioxidant and enzyme inhibitory capacity of extracts of all six parts was indicated by in vitro bioactivity assays. Pearson's correlation analysis showed that the bioactive compositions in the six parts were significantly correlated with antioxidant and enzyme inhibitory activities. CONCLUSION This study offers helpful information on the distribution of bioactive compositions in different parts of Michelia macclurei and confirms the excellent antioxidant, and enzyme inhibitory potential of its extracts, which could provide scientific evidence for its potential applications in the pharmaceutical industry, cosmetics, and functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shixiang Chen
- College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Bochen Wei
- College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Lili Wen
- College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Penglian Wei
- College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Yunlin Fu
- College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Ampomah IG, Ampomah GA, Emeto TI. Integrating modern and herbal medicines in controlling malaria: experiences of orthodox healthcare providers in Ghana. Arch Public Health 2024; 82:240. [PMID: 39710695 DOI: 10.1186/s13690-024-01472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND In Ghana, the government has integrated herbal medicine into the formal healthcare system in response to widespread use of traditional remedies. However, empirical evidence supporting the contribution of integrated healthcare to malaria control remains limited. This study employed a phenomenological qualitative research design to explore the experiences of medical doctors and pharmacists from the coastal, forest and savannah regions of Ghana regarding the integration of modern and herbal medicine in the treatment and control of malaria. Donabedian's framework for evaluating the quality of healthcare served as the foundational theoretical framework for this research. METHODS Data were collected through individual in-depth interviews involving 26 participants and analysed using a framework analytical approach. RESULTS The findings revealed that inadequate political commitment to the practice of integration has led to several challenges, including the high cost of herbal anti-malaria medications, limited promotional activities surrounding integration, a shortage of qualified medical herbalists, inconsistent supply chains for herbal anti-malaria treatments, and a lack of standardisation in herbal medicine practices. Participants had divergent views regarding the impact of integration on malaria control; while medical doctors believed that the intervention has not significantly contributed to reducing malaria prevalence in Ghana, pharmacists viewed the presence of herbal clinics within government hospitals as an effective and sustainable alternative for treating malaria. CONCLUSION Reflecting on these results, it is imperative for policymakers to explore strategies that could enhance the effectiveness of an integrated health system, thereby increasing the contribution of herbal medicine towards achieving a malaria free nation. Future research could benefit from including policymakers, heads of health directorates, and community members, regarding the role of public health interventions in addressing health inequities in Ghana.
Collapse
Affiliation(s)
- Irene G Ampomah
- Department of Population and Health, University of Cape Coast, Cape Coast, UC 182, Ghana.
- Public Health and Tropical Medicine, James Cook University, Townsville, Queensland , 4811, Australia.
| | - Genevieve A Ampomah
- Department of Sociology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Theophilus I Emeto
- Public Health and Tropical Medicine, James Cook University, Townsville, Queensland , 4811, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
5
|
Mahajan K, Sharma S, Gautam RK, Goyal R, Mishra DK, Singla RK. Insights on therapeutic approaches of natural anti-Alzheimer's agents in the management of Alzheimer's disease: A future perspective. J Alzheimers Dis 2024; 102:897-923. [PMID: 39523509 DOI: 10.1177/13872877241296557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the current scenario, Alzheimer's disease is a complex, challenging, and arduous health issue, and its prevalence, together with comorbidities, is accelerating around the universe. Alzheimer's disease is becoming a primary concern that significantly impacts an individual's status in life. The traditional treatment of Alzheimer's disease includes some synthetic drugs, which have numerous dangerous side effects, a high risk of recurrence, lower bioavailability, and limited treatment. Hence, the current article is a detailed study and review of all known information on plant-derived compounds as natural anti-Alzheimer's agents, including their biological sources, active phytochemical ingredients, and a possible mode of action. With the help of a scientific data search engine, including the National Center for Biotechnology Information (NCBI/PubMed), Science Direct, and Google Scholar, analysis from 2001 to 2024 has been completed. This article also described clinical studies on phytoconstituents used to treat Alzheimer's disease. Plant-derived compounds offer promising alternatives to synthetic drugs in treating Alzheimer's disease, with the potential for improving cognitive function and slowing down the progression of the disease. Further research and clinical trials are needed to fully explore their therapeutic potential and develop effective strategies for managing this complex condition.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Rau, Indore, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Koni, Bilaspur (C.G.), India
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Rezaul Islam M, Akash S, Murshedul Islam M, Sarkar N, Kumer A, Chakraborty S, Dhama K, Ahmed Al-Shaeri M, Anwar Y, Wilairatana P, Rauf A, Halawani IF, Alzahrani FM, Khan H. Alkaloids as drug leads in Alzheimer's treatment: Mechanistic and therapeutic insights. Brain Res 2024; 1834:148886. [PMID: 38582413 DOI: 10.1016/j.brainres.2024.148886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Alzheimer's disease (AD) has few effective treatment options and continues to be a major global health concern. AD is a neurodegenerative disease that typically affects elderly people. Alkaloids have potential sources for novel drug discovery due to their diverse chemical structures and pharmacological activities. Alkaloids, natural products with heterocyclic nitrogen-containing structures, are considered potential treatments for AD. This review explores the neuroprotective properties of alkaloids in AD, focusing on their ability to regulate pathways such as amyloid-beta aggregation, oxidative stress, synaptic dysfunction, tau hyperphosphorylation, and neuroinflammation. The FDA has approved alkaloids such as acetylcholinesterase inhibitors like galantamine and rivastigmine. This article explores AD's origins, current market medications, and clinical applications of alkaloids in AD therapy. This review explores the development of alkaloid-based drugs for AD, focusing on pharmacokinetics, blood-brain barrier penetration, and potential adverse effects. Future research should focus on the clinical evaluation of promising alkaloids, developing recently discovered alkaloids, and the ongoing search for novel alkaloids for medical treatment. A pharmaceutical option containing an alkaloid may potentially slow down the progression of AD while enhancing its symptoms. This review highlights the potential of alkaloids as valuable drug leads in treating AD, providing a comprehensive understanding of their mechanisms of action and therapeutic implications.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mohammed Murshedul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10, Uttara Model Town, Dhaka 1230, Bangladesh; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sandip Chakraborty
- State Disease Investigation Laboratory, ARDD, Abhoynagar, Agartala, West Tripura, Pin-799005, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI) Izatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Majed Ahmed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan.
| |
Collapse
|
7
|
Pishgouii F, Lotfi S, Sedaghati E. Anti-AChE and Anti-BuChE Screening of the Fermentation Broth Extracts from Twelve Aspergillus Isolates and GC-MS and Molecular Docking Studies of the Most Active Extracts. Appl Biochem Biotechnol 2023; 195:5199-5216. [PMID: 37129742 DOI: 10.1007/s12010-023-04548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Nowadays, the administration of cholinesterase enzyme (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE) inhibitors is very common for the symptomatic treatment of Alzheimer's disease and the other forms of dementia and CNS disorders. In this paper, the anti-AChE and anti-BuChE activities of the fermentation broth ethyl acetate extracts from twelve Aspergillus isolates were evaluated by Ellman method. The results showed that A1 (Aspergillus flavus) and A5 (Aspergillus tubingensis, isolate 1) extracts with IC50 values of 46.77 μg/mL and 75.85 μg/mL possess the greatest ability to inhibit AChE and BuChE, respectively. GC-MS analysis of the extracts (A1 and A5) demonstrated that two alkaloids named 14-methyl-16-azabicyclo[10.3.1]hexadeca-1(15),12(16),13-triene (MAHT) and 6-chloro-2-methyl-7,8,9,10-tetrahydro-phenanthridine (CMTP) account for the highest percentage of A1 (26.95%) and A5 (25.5%) extracts, respectively. A 2-pyrazoline derivative, 5-hydroxy-3-(4-pyridinyl)-5-trifluoromethyl-1-(2,4,6-trimethylphenoxyacetyl)- (PHPTT), also constituted the high percentage (9.54%) of A5 extract. The anticholinesterase and neuroprotective effects of some 2-pyrazoline derivatives have been previously reported. The interaction study of MAHT with human AChE and CMTP and PHPTT with human BuChE using molecular docking indicated that these alkaloids bind to the active site gorge of the enzymes with high affinity. The best docking scores of MAHT, CMTP, and PHPTT were -7.1, -8.2, and -9.7 kcal/mol, respectively.
Collapse
Affiliation(s)
- Fatemeh Pishgouii
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Ebrahim Sedaghati
- Department of Plant Protection, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
8
|
Chen S, Wei B, Fu Y. A Study of the Chemical Composition and Biological Activity of Michelia macclurei Dandy Heartwood: New Sources of Natural Antioxidants, Enzyme Inhibitors and Bacterial Inhibitors. Int J Mol Sci 2023; 24:ijms24097972. [PMID: 37175683 PMCID: PMC10177984 DOI: 10.3390/ijms24097972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The wood of Michelia macclurei Dandy (MD) is an excellent material that is widely used in the furniture, handicraft, and construction industries. However, less research has been conducted on the chemical composition and biological activity of heartwood, which is the main valuable part of the wood. This study aimed to investigate the chemical composition and biological activities of the heartwood of Michelia macclurei Dandy (MDHW) and to confirm the active ingredients. Triple quadrupole gas chromatography-mass spectrometry (GC-MS) was used to characterize the volatile components of MDHW, while ultra-performance liquid chromatography-mass spectrometry was used to analyze the non-volatile components (UPLC-MS). The total reducing power, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assays, acetylcholinesterase and α-glucosidase inhibition assays, and an antimicrobial test of 4 gram bacteria were used to describe the in vitro bioactivities. The GC-MS analysis showed that the volatile components of MDHW were mainly fatty compounds and terpenoids, with sesquiterpenes and their derivatives dominating the terpene composition. β-elemene was the main terpene component in the steam distillation (11.88%) and ultrasonic extraction (8.2%) methods. A total of 67 compounds, comprising 45 alkaloids, 9 flavonoids, 6 lignans, and others, were found by UPLC-MS analysis. The primary structural kinds of the non-volatile components were 35 isoquinoline alkaloids. Alkaloids were the predominant active constituent in all MDHW extracts, including crude extracts, alkaloid fractions, and non-alkaloid fractions. These extracts all demonstrate some biological effects in terms of antioxidant, enzyme inhibition, and bacterial inhibition. The findings of this study show that MDHW is abundant in chemical structure types, has great bioactivity assessment, and has the potential to be used to create natural antioxidants, products that postpone Alzheimer's disease and lower blood sugar levels and antibacterial agents.
Collapse
Affiliation(s)
- Shixiang Chen
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Bochen Wei
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Yunlin Fu
- College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Choudhir G, Sharma S, Hariprasad P. A combinatorial approach to screen structurally diverse acetylcholinesterase inhibitory plant secondary metabolites targeting Alzheimer's disease. J Biomol Struct Dyn 2022; 40:11705-11718. [PMID: 34351840 DOI: 10.1080/07391102.2021.1962408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a form of Dementia known to diminish the brain's function by perturbating its structural and functional components. Though cholinesterase inhibitors are widely used to treat AD, they are limited by numbers and side effects. Hence, present study aims to identify structurally diverse Acetylcholinesterase (AChE) inhibitory plant secondary metabolites (PSM) by employing high throughput screening and computational studies. AChE inhibitory activity was performed using 390 crude extracts from 63 plant parts belongs to 58 plants. The lowest IC50 value was recorded by acetone extract of Cyperus rotundus rhizome at 0.5 mg/ml, followed by methanol extract of Terminalia arjuna bark (0.95 mg/ml) and water extract Acacia catechu stem (0.95 mg/ml). A virtual library containing 487 PSM belongs to 18 plants found positive for AChE inhibition (IC50≤5 mg/ml) was prepared. Through ADMET analysis, 78 PSM fulfilling selected drug-likeness parameters were selected for further analysis. Molecular docking studies of selected PSM against AChE recorded a wide range of binding energy from -3.40 to -10.90 Kcal/mol. Further molecular dynamics simulation studies also recorded stabilized interactions of AChE-ligand complexes in the term of RMSD, RMSF, Rg, SASA, and hydrogen bond interaction. MMPBSA analysis revealed the binding energy of selected PSM ranging from -123.757 to -261.697 kJ/mol. Our study demonstrated the potential of 12 PSM (Sugiol, Margolone, 7-Hydroxy-3',4'-(Methylenedioxy) flavan, Beta-cyprone, Ethenone, Isomargolonone, Serpentine, Cryptolepine, Rotundone, Strictamin, Rotundenol and Nootkatone) as AChE inhibitors. Further in vitro and in vivo experimental evaluations with pure PSM could be beneficial for therapeutic uses.
Collapse
Affiliation(s)
- Gourav Choudhir
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Satyawati Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
10
|
Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, Calina D, Cho WC. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int 2022; 22:206. [PMID: 35655306 PMCID: PMC9161525 DOI: 10.1186/s12935-022-02624-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
Cancer, one of the leading illnesses, accounts for about 10 million deaths worldwide. The treatment of cancer includes surgery, chemotherapy, radiation therapy, and drug therapy, along with others, which not only put a tremendous economic effect on patients but also develop drug resistance in patients with time. A significant number of cancer cases can be prevented/treated by implementing evidence-based preventive strategies. Plant-based drugs have evolved as promising preventive chemo options both in developing and developed nations. The secondary plant metabolites such as alkaloids have proven efficacy and acceptability for cancer treatment. Apropos, this review deals with a spectrum of promising alkaloids such as colchicine, vinblastine, vincristine, vindesine, vinorelbine, and vincamine within different domains of comprehensive information on these molecules such as their medical applications (contemporary/traditional), mechanism of antitumor action, and potential scale-up biotechnological studies on an in-vitro scale. The comprehensive information provided in the review will be a valuable resource to develop an effective, affordable, and cost effective cancer management program using these alkaloids.
Collapse
Affiliation(s)
- Praveen Dhyani
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand 263 136 India
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143 005 India
| | - Amit Bahukhandi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand 248 001 India
| | - Dharam Chand Attri
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ileana Mardare
- Department of Public Health and Management, Carol Davila University of Medicine and Pharmacy Bucharest, 050463 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong People’s Republic of China
| |
Collapse
|
11
|
João KG, Videira RA, Paiva-Martins F, Valentão P, Pereira DM, Andrade PB. Homarine Alkyl Ester Derivatives as Promising Acetylcholinesterase Inhibitors. ChemMedChem 2021; 16:3315-3325. [PMID: 34342141 DOI: 10.1002/cmdc.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Reversible acetylcholinesterase (AChE) inhibitors are key therapeutic tools to modulate the cholinergic connectivity compromised in several degenerative pathologies. In this work, four alkyl esters of homarine were synthesized and screened by using Electrophorus electricus AChE and rat brain AChE-rich fraction. Results showed that all homarine alkyl esters are able to inhibit AChE by a competitive inhibition mode. The effectiveness of AChE inhibition increases with the alkyl side chain length of the homarine esters, being HO-C16 (IC50 =7.57±3.32 μM and Ki =18.96±2.28 μM) the most potent inhibitor. The fluorescence quenching studies confirmed that HO-C16 is the compound with higher selectivity and affinity for the tryptophan residues in the catalytic active site of AChE. Preliminary cell viability studies showed that homarine esters display no toxicity for human neuronal SH-SY5Y cells. Thus, the long-chain homarine esters emerge as new anti-cholinesterase agents, with potential to be considered for therapeutic applications development.
Collapse
Affiliation(s)
- Karen G João
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| |
Collapse
|
12
|
Chaichompoo W, Rojsitthisak P, Pabuprapap W, Siriwattanasathien Y, Yotmanee P, Haritakun W, Suksamrarn A. Stephapierrines A-H, new tetrahydroprotoberberine and aporphine alkaloids from the tubers of Stephania pierrei Diels and their anti-cholinesterase activities. RSC Adv 2021; 11:21153-21169. [PMID: 35479350 PMCID: PMC9034021 DOI: 10.1039/d1ra03276c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Eight new alkaloids, which are four new tetrahydroprotoberberine alkaloids, stephapierrines A-D (1-4), and four new aporphine alkaloids, stephapierrines E-H (5-8), together with three new naturally occurring alkaloids (9-11) and thirty-four known alkaloids (12-45) were isolated from the tubers of Stephania pierrei Diels. The structures of the new compounds were elucidated by spectroscopic analysis and physical properties. The structures of the known compounds were characterized by comparison of their spectroscopic data with those previously reported. Compound 42 exhibited the strongest acetylcholinesterase (AChE) inhibitory activity, which was more active than galanthamine, the reference drug. Compound 23 showed the highest butyrylcholinesterase (BuChE) inhibitory activity, which was also more active than galanthamine. Molecular docking studies are in good agreement with the experimental results.
Collapse
Affiliation(s)
- Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand +66-2-254-5195 +66-2-218-8310
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand +66-2-254-5195 +66-2-218-8310
- Natural Products for Aging and Chronic Diseases Research Unit, Chulalongkorn University Bangkok 10330 Thailand
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| | - Yuttana Siriwattanasathien
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| | - Pathumwadee Yotmanee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| | - Woraphot Haritakun
- Program in Chemical Technology, Faculty of Science and Technology, Suan Dusit University Bangkok 10700 Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| |
Collapse
|
13
|
Dhage PA, Sharbidre AA, Dakua SP, Balakrishnan S. Leveraging hallmark Alzheimer's molecular targets using phytoconstituents: Current perspective and emerging trends. Biomed Pharmacother 2021; 139:111634. [PMID: 33965726 DOI: 10.1016/j.biopha.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD), a type of dementia, severely distresses different brain regions. Characterized by various neuropathologies, it interferes with cognitive functions and neuropsychiatrical controls. This progressive deterioration has negative impacts not only on an individual's daily activity but also on social and occupational life. The pharmacological approach has always remained in the limelight for the treatment of AD. However, this approach is condemned with several side effects. Henceforth, a change in treatment approach has become crucial. Plant-based natural products are garnering special attention due to lesser side effects associated with their use. The current review emphasizes the anti-AD properties of phytoconstituents, throws light on those under clinical trials, and compiles information on their specific mode of actions against AD-related different neuropathologies. The phytoconstituents alone or in combinations will surely help discover new potent drugs for the effective treatment of AD with lesser side effects than the currently available pharmacological treatment.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sarada P Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
14
|
Mayer S, Keglevich P, Keglevich A, Hazai L. New Anticancer Vinca Alkaloids in the Last Decade - A Mini-Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210216123256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chemistry and pharmacology of the important Vinca alkaloids such as vinblastine
and vincristine used in anticancer therapy are still investigated widely. Several new
derivatives, e.g., vinflunine, vinorelbine, and vindesine, have been synthesized and become
successful medicines in anti-cancer therapy. In 2012, we published a paper that reviewed the
Vinca derivatives. Nevertheless, the interest in the preparation of new modified structures is
not decreasing either in recent years. In this review, the vinblastine-type molecules with several
substituents, e.g., amide, nitrile, hydrazide, substituted side chains, etc. in different positions
of catharanthine and/or vindoline cores are presented. An important part of the review is
the derivatization of the monomer alkaloid vindoline, which possesses no antitumor effect.
Additionally, new hybrid molecules of these alkaloids are also discussed in this mini-review.
Collapse
Affiliation(s)
- Szabolcs Mayer
- Department of Organic Chemistry and Technology, University of Technology and Economics, Budapest, Hungary, H-1111 Budapest, Gellert ter 4,Hungary
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, University of Technology and Economics, Budapest, Hungary, H-1111 Budapest, Gellert ter 4,Hungary
| | - András Keglevich
- Department of Organic Chemistry and Technology, University of Technology and Economics, Budapest, Hungary, H-1111 Budapest, Gellert ter 4,Hungary
| | - László Hazai
- Department of Organic Chemistry and Technology, University of Technology and Economics, Budapest, Hungary, H-1111 Budapest, Gellert ter 4,Hungary
| |
Collapse
|
15
|
Birsan RI, Wilde P, Waldron KW, Rai DK. Anticholinesterase Activities of Different Solvent Extracts of Brewer's Spent Grain. Foods 2021; 10:foods10050930. [PMID: 33922726 PMCID: PMC8145039 DOI: 10.3390/foods10050930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/17/2023] Open
Abstract
Cholinesterases, involved in acetylcholine catabolism in the central and peripheral nervous system, have been strongly linked with neurodegenerative diseases. Current therapeutic approaches using synthetic drugs present several side effects. Hence, there is an increasing research interest in naturally-occurring dietary polyphenols, which are also considered efficacious. Food processing by-products such as brewer’s spent grain (BSG) would be a potential bio-source of polyphenols. In this study, polyphenol-rich BSG extracts using 60% acetone and 0.75% NaOH solutions were generated, which were further subjected to liquid–liquid partitioning using various organic solvents. The water-partitioned fractions of the saponified extracts had the highest total polyphenol content (6.2 ± 2.8 mgGAE/g dw) as determined by Folin–Ciocalteu reagent, while the LC-MS/MS showed ethyl acetate fraction with the highest phenolics (2.9 ± 0.3 mg/g BSG dw). The best inhibitions of acetyl- (37.9 ± 2.9%) and butyryl- (53.6 ± 7.7%) cholinesterases were shown by the diethyl ether fraction of the saponified extract. This fraction contained the highest sum of quantified phenolics (99 ± 21.2 µg/mg of extract), and with significant (p < 0.01) inhibitory contribution of decarboxylated-diferulic acid. Amongst the standards, caffeic acid presented the highest inhibition for both cholinesterases, 25.5 ± 0.2% for acetyl- and 52.3 ± 0.8% for butyryl-cholinesterase, respectively, whilst the blends insignificantly inhibited both cholinesterases. The results showed that polyphenol-rich BSG fractions have potentials as natural anti-cholinesterase agents.
Collapse
Affiliation(s)
- Rares I. Birsan
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland;
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, UK;
| | - Peter Wilde
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, UK;
| | - Keith W. Waldron
- Anglia Science Writing Ltd., Wramplingham, Norfolk NR18 0RU, UK;
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland;
- Correspondence: ; Tel.: +353-018-059-500
| |
Collapse
|
16
|
Major Bioactive Alkaloids and Biological Activities of Tabernaemontana Species (Apocynaceae). PLANTS 2021; 10:plants10020313. [PMID: 33562893 PMCID: PMC7915066 DOI: 10.3390/plants10020313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 01/28/2023]
Abstract
Several species belonging to the genus Tabernaemontana have been well researched and utilized for their wide-ranging biological activities. A few of the most prominent species include Tabernaemontana divaricata, Tabernaemontana catharinensis, Tabernaemontana crassa, and Tabernaemontana elegans. These species and many others within the genus often display pharmacological importance, which is habitually related to their chemical constituents. The secondary metabolites within the genus have demonstrated huge medicinal potential for the treatment of infections, pain, injuries, and various diseases. Regardless of the indispensable reports and properties displayed by Tabernaemontana spp., there remains a wide variety of plants that are yet to be considered or examined. Thus, an additional inclusive study on species within this genus is essential. The current review aimed to extensively analyze, collate, and describe an updated report of the current literature related to the major alkaloidal components and biological activities of species within the genus Tabernaemontana.
Collapse
|
17
|
Beato A, Gori A, Boucherle B, Peuchmaur M, Haudecoeur R. β-Carboline as a Privileged Scaffold for Multitarget Strategies in Alzheimer's Disease Therapy. J Med Chem 2021; 64:1392-1422. [PMID: 33528252 DOI: 10.1021/acs.jmedchem.0c01887] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural β-carboline alkaloids display similarities with neurotransmitters that can be favorably exploited to design bioactive and bioavailable drugs for Alzheimer's disease (AD) therapy. Several AD targets are currently and intensively being investigated, divided in different hypotheses: mainly the cholinergic, the amyloid β (Aβ), and the Tau hypotheses. To date, only symptomatic treatments are available involving acetylcholinesterase and NMDA inhibitors. On the basis of plethoric single-target structure-activity relationship studies, the β-carboline scaffold was identified as a powerful tool for fostering activity and molecular interactions with a wide range of AD-related targets. This knowledge can undoubtedly be used to design multitarget-directed ligands, a highly relevant strategy preferred in the context of multifactorial pathology with intricate etiology such as AD. In this review, we first individually discuss the AD targets of the β-carbolines, and then we focus on the multitarget strategies dedicated to the deliberate design of new efficient scaffolds.
Collapse
Affiliation(s)
| | - Anthonin Gori
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France.,CHANEL Parfums Beauté, F-93500 Pantin, France
| | | | | | | |
Collapse
|
18
|
Mahomoodally F, Abdallah HH, Suroowan S, Jugreet S, Zhang Y, Hu X. In silico Exploration of Bioactive Phytochemicals Against Neurodegenerative Diseases Via Inhibition of Cholinesterases. Curr Pharm Des 2021; 26:4151-4162. [PMID: 32178608 DOI: 10.2174/1381612826666200316125517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders are estimated to become the second leading cause of death worldwide by 2040. Despite the widespread use of diverse allopathic drugs, these brain-associated disorders can only be partially addressed and long term treatment is often linked with dependency and other unwanted side effects. Nature, believed to be an arsenal of remedies for any illness, presents an interesting avenue for the development of novel neuroprotective agents. Interestingly, inhibition of cholinesterases, involved in the breakdown of acetylcholine in the synaptic cleft, has been proposed to be neuroprotective. This review therefore aims to provide additional insight via docking studies of previously studied compounds that have shown potent activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro. Indeed, the determination of potent plant-based ligands for this purpose through in silico methods enables the elimination of lengthy and costly traditional methods of drug discovery. Herein, a literature search was conducted to identify active phytochemicals which are cholinesterase inhibitors. Following which in silico docking methods were applied to obtain docking scores. Compound structures were extracted from online ZINC database and optimized using AM1 implemented in gaussian09 software. Noteworthy ligands against AChE highlighted in this study include: 19,20-dihydroervahanine A and 19, 20-dihydrotabernamine. Regarding BChE inhibition, the best ligands were found to be 8-Clavandurylkaempferol, Na-methylepipachysamine D; ebeiedinone; and dictyophlebine. Thus, ligand optimization between such phytochemicals and cholinesterases coupled with in vitro, in vivo studies and randomized clinical trials can lead to the development of novel drugs against neurodegenerative disorders.
Collapse
Affiliation(s)
- Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Hassan H Abdallah
- Chemistry Department, College of Education, Salahaddin University, 44002 Erbil, Iraq
| | - Shanoo Suroowan
- Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xuebo Hu
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Tuzimski T, Petruczynik A. Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts. Molecules 2021; 26:molecules26010230. [PMID: 33466254 PMCID: PMC7796366 DOI: 10.3390/molecules26010230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/17/2022] Open
Abstract
Isoquinoline alkaloids may have a wide range of pharmacological activities. Some of them have acetylcholinesterase activity inhibition. Nowadays, neurodegenerative disorders such as Alzheimer’s disease have become a serious public health problem. Searching for new effective compounds with inhibited acetylcholinesterase activity is one of the most significant challenges of modern scientific research. The aim of this study was the in vitro investigation of acetylcholinesterase activity inhibition of extracts obtained from Sanguinaria canadensis collected before, during and after flowering. The acetylcholinesterase activity inhibition of these extracts has not been previously tested. The aim was also to quantify selected alkaloids in the investigated extracts by high performance liquid chromatography (HPLC). The analyses of alkaloid content were performed using HPLC in reversed phase (RP) mode using Polar RP column and mobile phase containing acetonitrile, water and ionic liquid (IL). The acetylcholinesterase activity inhibition of the tested plant extracts and respective alkaloid standards were examined using high performance liquid chromatography with diode-array detector (HPLC-DAD) for the quantification of 5-thio-2-nitro-benzoic acid, which is the product of the reaction between the thiocholine (product of the hydrolysis of acetylthiocholine reaction) with Ellman reagent. The application of the HPLC method allowed for elimination of absorption of interfering components, for example, alkaloids such as sanguinarine and berberine. It is revealed that the HPLC method can be successfully used for the evaluation of the acetylcholinesterase inhibitory activity in samples such as plant extracts, especially those containing colored components adsorbing at wavelength in the range 405–412 nm. The acetylcholinesterase inhibition activity synergy of pairs of alkaloid standards and mixture of all investigated alkaloids was also determined. Most investigated alkaloids and all Sanguinaria canadensis extracts exhibited very high acetylcholinesterase activity inhibition. IC50 values obtained for alkaloid standards were from 0.36 for berberine to 23.13 µg/mL for protopine and from 61.24 to 89.14 µg/mL for Sanguinaria canadensis extracts. Our investigations demonstrated that these plant extracts can be recommended for further in vivo experiments to confirm their acetylcholinesterase activity inhibition.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.); Tel.: +48-664772307 (T.T.); +48-510664914 (A.P.)
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.); Tel.: +48-664772307 (T.T.); +48-510664914 (A.P.)
| |
Collapse
|
20
|
Barrales-Cureño HJ, Montiel-Montoya J, Espinoza-Pérez J, Cortez-Ruiz JA, Lucho-Constantino GG, Zaragoza-Martínez F, Salazar-Magallón JA, Reyes C, Lorenzo-Laureano J, López-Valdez LG. Metabolomics and fluxomics studies in the medicinal plant Catharanthus roseus. MEDICINAL AND AROMATIC PLANTS 2021:61-86. [DOI: 10.1016/b978-0-12-819590-1.00003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Abstract
Catharanthus roseus (C. roseus) is an important medicinal plant distributed in many countries. It has attracted increasing attention due to it being shown to possess a range of phytochemicals with various biological activities such as antioxidant, antibacterial, antifungal, antidiabetic and anticancer properties. Remarkably, vinblastine and vincristine isolated from this plant were the first plant-derived anticancer agents deployed for clinical use. Recently, new isolated indole alkaloids from this plant including catharoseumine, 14′,15′-didehydrocyclovinblastine, 17-deacetoxycyclovinblastine and 17-deacetoxyvinamidine effectively inhibited human cancer cell lines in vitro. Moreover, vindoline, vindolidine, vindolicine and vindolinine isolated from C. roseus leaf exhibited in vitro antidiabetic property. These findings strongly indicate that this plant is still a promising source of bioactive compounds, which should be further investigated. This paper provides an overview of the traditional use and phytochemical profiles of C. roseus, and summarises updated techniques of the preparation of dried material, extraction and isolation of bioactive compounds from this plant. In addition, purported health benefits of the extracts and bioactive compounds derived from this plant were also addressed to support their potential as therapeutic agents.
Collapse
|
22
|
Lee ON, Ak G, Zengin G, Cziáky Z, Jekő J, Rengasamy KR, Park HY, Kim DH, Sivanesan I. Phytochemical Composition, Antioxidant Capacity, and Enzyme Inhibitory Activity in Callus, Somaclonal Variant, and Normal Green Shoot Tissues of Catharanthus roseus (L) G. Don. Molecules 2020; 25:molecules25214945. [PMID: 33114628 PMCID: PMC7663286 DOI: 10.3390/molecules25214945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the impact of plant growth regulators, sucrose concentration, and the number of subcultures on axillary shoot multiplication, in vitro flowering, and somaclonal variation and to assess the phytochemical composition, antioxidant capacity, and enzyme inhibitory potential of in vitro-established callus, somaclonal variant, and normal green shoots of Catharanthus roseus. The highest shoot induction rate (95.8%) and highest number of shoots (23.6), with a mean length of 4.5 cm, were attained when the C. roseus nodal explants (0.6-1 cm in length) were cultivated in Murashige and Skoog (MS) medium with 2 µM thidiazuron, 1 µM 2-(1-naphthyl) acetic acid (NAA), and 4% sucrose. The in vitro flowering of C. roseus was affected by sucrose, and the number of subcultures had a significant effect on shoot multiplication and somaclonal variation. The highest levels of phenolics and flavonoids were found in normal green shoots, followed by those in somaclonal variant shoots and callus. The phytochemicals in C. roseus extracts were qualified using liquid chromatography-tandem mass spectrometry. A total of 39, 55, and 59 compounds were identified in the callus, somaclonal variant shoot, and normal green shoot tissues, respectively. The normal green shoot extracts exhibited the best free radical scavenging ability and reducing power activity. The strongest acetylcholinesterase inhibitory effects were found in the callus, with an IC50 of 0.65 mg/mL.
Collapse
Affiliation(s)
- O. New Lee
- Department of Bioindustry and Bioresource Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea; (O.N.L.); (H.Y.P.)
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University, Konya 42130, Turkey; (G.A.); (G.Z.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya 42130, Turkey; (G.A.); (G.Z.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - Kannan R.R. Rengasamy
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West, South Africa;
| | - Han Yong Park
- Department of Bioindustry and Bioresource Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea; (O.N.L.); (H.Y.P.)
| | - Doo Hwan Kim
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Korea;
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2450-0576
| |
Collapse
|
23
|
Fang Z, Tang Y, Ying J, Tang C, Wang Q. Traditional Chinese medicine for anti-Alzheimer's disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med 2020; 15:82. [PMID: 32774447 PMCID: PMC7409421 DOI: 10.1186/s13020-020-00359-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common diseases in elderly people with a high incidence of dementia at approximately 60-80%. The pathogenesis of AD was quite complicated and currently there is no unified conclusion in the academic community, so no efficiently clinical treatment is available. In recent years, with the development of traditional Chinese medicine (TCM), researchers have proposed the idea of relying on TCM to prevent and treat AD based on the characteristic of multiple targets of TCM. This study reviewed the pathological hypothesis of AD and the potential biomarkers found in the current researches. And the potential targets of berberine and evodiamine from Evodia rutaecarpa in AD were summarized and further analyzed. A compound-targets-pathway network was carried out to clarify the mechanism of action of berberine and evodiamine for AD. Furthermore, the limitations of current researches on the TCM and AD were discussed. It is hoped that this review will provide some references for development of TCM in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhiling Fang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Yuqing Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Jiaming Ying
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Chunlan Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Qinwen Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| |
Collapse
|
24
|
Oboh G, Adedayo BC, Adetola MB, Oyeleye IS, Ogunsuyi OB. Characterization and neuroprotective properties of alkaloid extract ofVernonia amygdalinaDelile in experimental models of Alzheimer’s disease. Drug Chem Toxicol 2020; 45:731-740. [DOI: 10.1080/01480545.2020.1773845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Bukola Christiana Adedayo
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Mayowa Blessing Adetola
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Idowu Sunday Oyeleye
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
25
|
Anand U, Nandy S, Mundhra A, Das N, Pandey DK, Dey A. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resist Updat 2020; 51:100695. [PMID: 32442892 DOI: 10.1016/j.drup.2020.100695] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/03/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
Accelerated emergence of drug- resistant pathogenic microbes, their unbeatable virulence and a gradual loss of efficacy of currently used antimicrobial agents over the last decade, have expanded the scope of herbal medicine to combat this emerging challenge to have a wide spectrum of activity to develop effective medicines with lesser untoward side effects. Plant-based natural products should be of utmost interest to today's pharmaceutical industries since they are a primary source of new chemical entities directed at new drug targets. Apocynaceae or 'Dogbane' family has attained a global reputation as a source of some life-saving plant-derived products and novel compounds. Members of this family have also been extensively investigated against several nosocomial pathogenic microbes through in vitro and in vivo experimental settings. Several plant-derived components obtained from members of this family have also exhibited remarkable microbial growth inhibitory properties. Popular and widely accepted international databases such as PubMed, Science Direct, ResearchGate, Scopus, Google Scholar, JSTOR and more were searched using the various search strings such as Apocynaceae, antimicrobials, multidrug resistance, resistance modifying agents and pathogenic microorganisms were used in various combinations to retrieve several citations related to the topic. The current review encompasses recent developments in experimental studies and phytochemical analyses which correlates with antimicrobial efficacy of selected Apocynaceous plants along with synergistic mechanism and structural details. The present review recognizes and leverages the importance of Apocynaceae plants, which could be of significant interest in the development of more effective and less toxic antimicrobial drugs which may surmount multidrug resistance. Three different paradigm models harnessing clinical antimicrobial resistance (AMR) including the plant family Apocynaceae, Gram-positive and Gram-negative bacterial species have been broadly discussed in this review. In a nutshell, the present review represents a comprehensive account on the antimicrobials and resistance modifying agents obtained from the members of the plant family Apocynaceae and derived phytochemicals. It also gives an insight into the underlying mode of action of these phytochemicals against an array of pathogenic bacteria, their mechanism of antibiosis, plant parts from which the phytochemicals were isolated or the extracts was prepared with a critical discussion on the botanically-derived antibiotics as a template for antimicrobial drug development.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Samapika Nandy
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Avinash Mundhra
- Department of Botany, Rishi Bankim Chandra College, Naihati, 743165, North 24 Parganas, West Bengal, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College, Naihati, 743165, North 24 Parganas, West Bengal, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, 144402, Punjab, India.
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
26
|
Xu W, Ying Z, Tao X, Ying X, Yang G. Two new amide alkaloids from Portulaca oleracea L. and their anticholinesterase activities. Nat Prod Res 2020; 35:3794-3800. [DOI: 10.1080/14786419.2020.1739040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Zheming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P.R. China
| | - Xiaojun Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P.R. China
| |
Collapse
|
27
|
Martins N, Heleno SA, Ferreira ICFR. An Upcoming Approach to Alzheimer's Disease: Ethnopharmacological Potential of Plant Bioactive Molecules. Curr Med Chem 2020; 27:4344-4371. [PMID: 32072889 DOI: 10.2174/0929867327666200219120806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders have achieved epidemic levels in the last decades; not only the elderly but also adult individuals have been increasingly affected. Among them, Alzheimer's disease is one of the most prevalent and crippling diseases, associated with high rates of multi-morbidities and dependency. Despite the existence of a wide variety of drugs used as the symptomatic treatment, they have some side effects and toxicity, apart from their limited effectiveness. Botanical preparations have a secular use, being widely recommended for a multitude of purposes, such as for the improvement of brain health. OBJECTIVE The aim of the present report is to systematize the knowledge on plant-food derived bioactive molecules with promising in vitro enzymatic inhibitory activities. RESULTS Alkaloids, phenolic compounds and terpenes are the most studied phytochemicals, both derived from natural and commercial sources. In spite of their efficient activity as enzymatic inhibitors, the number of in vivo studies and even clinical trials have confirmed that their real bioactive potential remains scarce. CONCLUSION Thus, it is of the utmost importance to deepen knowledge in this area, once those relevant and informative tools can significantly contribute to the promising advances in the field of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Natália Martins
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Sandrina A Heleno
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| |
Collapse
|
28
|
Adedayo BC, Ogunsuyi OB, Akinniyi ST, Oboh G. Effect ofAndrographis paniculataandPhyllanthus amarusleaf extracts on selected biochemical indices inDrosophila melanogastermodel of neurotoxicity. Drug Chem Toxicol 2020; 45:407-416. [DOI: 10.1080/01480545.2019.1708377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Bukola Christiana Adedayo
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Stephanie Tolulope Akinniyi
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
29
|
Synthesis and biological evaluation of indoloquinoline alkaloid cryptolepine and its bromo-derivative as dual cholinesterase inhibitors. Bioorg Chem 2019; 90:103062. [DOI: 10.1016/j.bioorg.2019.103062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022]
|
30
|
Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol 2019; 93:2491-2513. [DOI: 10.1007/s00204-019-02538-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
|
31
|
Zhao C, Zhang C, He F, Zhang W, Leng A, Ying X. Two new alkaloids from Portulaca oleracea L. and their bioactivities. Fitoterapia 2019; 136:104166. [DOI: 10.1016/j.fitote.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
|
32
|
Ma Y, Li X, Zhang W, Ying X, Stien D. A trace alkaloid, oleraisoindole A from Portulaca oleracea L. and its anticholinesterase effect. Nat Prod Res 2019; 35:350-353. [PMID: 31180242 DOI: 10.1080/14786419.2019.1627356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new trace alkaloid possessing the lignan structure, named oleraisoindole A, was obtained from the extract of the Portulaca oleracea L.. The structure of oleraisoindole A was elucidated by 1D and 2D NMR and high resolution electrospray ionization time-of-flight mass spectroscopic methods. The compound presented an anticholinesterase effect with the IC50 value of 60.4 μM.
Collapse
Affiliation(s)
- Yifei Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xuetao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Wenjie Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Didier Stien
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France
| |
Collapse
|
33
|
Al Omairi NE, Al-Brakati AY, Kassab RB, Lokman MS, Elmahallawy EK, Amin HK, Abdel Moneim AE. Soursop fruit extract mitigates scopolamine-induced amnesia and oxidative stress via activating cholinergic and Nrf2/HO-1 pathways. Metab Brain Dis 2019; 34:853-864. [PMID: 30919246 DOI: 10.1007/s11011-019-00407-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Current therapeutic interventions for memory loss are inadequate and are associated with numerous adverse effects. There is an urgent need for new alternative agents for the treatment of memory loss and related disorders. Here, we investigated the potential neuroprotective role of soursop fruit extract (SSFE) in scopolamine (SCO)-induced amnesia and oxidative damage in the hippocampus of rats. Thirty-five rats were randomly allocated into 5 groups: control, SCO, SSFE, SCO, SSFE+SCO and N-acetylcysteine (NAC) + SCO. SCO-treatment increased acetylcholine esterase activity and decreased hippocampal levels of acetylcholine, serotonin, dopamine, norepinephrine, and histamine. The level of ATP increased. SCO-treated rats showed a disturbance in oxidative status, which was evident through the increase in malondialdehyde, and nitrites/nitrates and a decrease in cellular antioxidant molecules including glutathione, superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase. A disturbance was also observed via downregulation of the nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 defense pathways. SCO-treatment enhances a neuroinflammatory state, as indicated by the release of tumor necrosis factor- α and interleukin-1β and increased inducible nitric oxide synthase and mRNA expression. SCO-treatment decreased the expression of the anti-apoptotic protein, B cell lymphoma 2 and increased the expression of the pro-apoptotic protein, Bcl-2 associated X protein, caspase-3 and cytochrome c in hippocampal neurons. SSFE pretreatment markedly ameliorated hippocampal changes. Our findings revealed that SSFE exerts its potential anti-amnestic effect mainly through the activation of the cholinergic system and Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Naif E Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ashraf Y Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Maha S Lokman
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Ehab Kotb Elmahallawy
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Hatem K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
34
|
Dos Santos TC, Gomes TM, Pinto BAS, Camara AL, Paes AMDA. Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease Therapy. Front Pharmacol 2018; 9:1192. [PMID: 30405413 PMCID: PMC6201143 DOI: 10.3389/fphar.2018.01192] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/28/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is a main cause of dementia, accounting for up to 75% of all dementia cases. Pathophysiological processes described for AD progression involve neurons and synapses degeneration, mainly characterized by cholinergic impairment. This feature makes acetylcholinesterase inhibitors (AChEi) the main class of drugs currently used for the treatment of AD dementia phase, among which galantamine is the only naturally occurring substance. However, several plant species producing diverse classes of alkaloids, coumarins, terpenes, and polyphenols have been assessed for their anti-AChE activity, becoming potential candidates for new anti-AD drugs. Therefore, this mini-review aimed to recapitulate last decade studies on the anti-AChE activity of plant species, their respective extracts, as well as isolated compounds. The anti-AChE activity of extracts prepared from 54 plant species pertaining 29 families, as well as 36 isolated compounds were classified and discussed according to their anti-AChE pharmacological potency to highlight the most prominent ones. Besides, relevant limitations, such as proper antioxidant assessment, and scarcity of toxicological and clinical studies were also discussed in order to help researchers out with the bioprospection of potentially new AChEi.
Collapse
Affiliation(s)
- Thaiane Coelho Dos Santos
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil.,Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Thaís Mota Gomes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil.,Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Adriana Leandro Camara
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil.,Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
35
|
Basavan D, Chalichem NSS, Kumar MKS. Phytoconstituents and their Possible Mechanistic Profile for Alzheimer's Disease - A Literature Review. Curr Drug Targets 2018; 20:263-291. [PMID: 30101703 DOI: 10.2174/1389450119666180813095637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 11/22/2022]
Abstract
Memory is an associated part of life without which livelihood of a human being becomes miserable. As the global aged population is increasing tremendously, time has come to concentrate on tail end life stage diseases. Alzheimer's disease (AD) is one of such diseases whose origin is enigmatic, having an impact on later stage of life drastically due to irreparable damage of cognition, characterised by the presence of neurotoxic amyloid-beta (Aβ) plaques and hyper phosphorylated Tau protein as fibrillary tangles. Existing therapeutic regimen mainly focuses on symptomatic relief by targeting neurotransmitters that are secondary to AD pathology. Plant derived licensed drugs, Galantamine and Huperzine-A were studied extensively due to their AChE inhibitory action for mild to moderate cases of AD. Although many studies have proved the efficacy of AChEIs as a preferable symptom reliever, they cannot offer long term protection. The future generation drugs of AD is expected to alter various factors that underlie the disease course with a symptomatic benefit promise. As AD involves complex pathology, it is essential to consider several molecular divergent factors apart from the events that result in the production of toxic plaques and neurofibrillary tangles. Even though several herbals have shown neuroprotective actions, we have mentioned about the phytoconstituents that have been tested experimentally against different Alzheimer's pathology models. These phytoconstituents need to be considered by the researchers for further drug development process to make them viable clinically, which is currently a lacuna.
Collapse
Affiliation(s)
- Duraiswamy Basavan
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Nehru S S Chalichem
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Mohan K S Kumar
- TIFAC CORE Herbal drugs, Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), ooty-643001, India
| |
Collapse
|
36
|
Bhadane BS, Patil MP, Maheshwari VL, Patil RH. Ethnopharmacology, phytochemistry, and biotechnological advances of family Apocynaceae: A review. Phytother Res 2018; 32:1181-1210. [PMID: 29575195 DOI: 10.1002/ptr.6066] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 11/06/2022]
Abstract
The family Apocynaceae is one of the largest and important families in angiosperm. Several members of this family have medicinal properties and have been in the treatment of various ailments. Most of them are consumed as food by tribal people whereas a few plants are used as source of poison. Members of family Apocynaceae are rich in alkaloids, terpenoids, steroids, flavonoids, glycosides, simple phenols, lactones, and hydrocarbons. Other compounds such as sterols, lignans, sugars, lignans, and lactones have been isolated and systematically studied. Few studies have reported antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities of crude extracts as well as single compound(s) isolated from various members of the family Apocynaceae. Holarrhena antidysenterica, Rauvolfia serpentina, Carissa carandas, and Tabernaemontana divaricata are the extensively studied plants in this family. The present review provides a detailed outlook on ethnopharmacology, phytochemistry, and biological activities of selected members of this family. Moreover, it also covers the biotechnological advances used for large-scale production of bioactive compounds of therapeutic interest along with plant tissue culture-based approaches for conservation of this medicinally valuable family.
Collapse
Affiliation(s)
- Bhushan S Bhadane
- Department of Microbiology and Biotechnology, R. C. Patel ACS College, Shirpur, (MS), 425405, India
| | - Mohini P Patil
- Department of Microbiology and Biotechnology, R. C. Patel ACS College, Shirpur, (MS), 425405, India
| | - Vijay L Maheshwari
- Department of Biochemistry, School of Life Sciences, North Maharashtra University, Jalgaon, (MS), 425001, India
| | - Ravindra H Patil
- Department of Microbiology and Biotechnology, R. C. Patel ACS College, Shirpur, (MS), 425405, India
| |
Collapse
|
37
|
Momtaz S, Hassani S, Khan F, Ziaee M, Abdollahi M. Cinnamon, a promising prospect towards Alzheimer's disease. Pharmacol Res 2017; 130:241-258. [PMID: 29258915 DOI: 10.1016/j.phrs.2017.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
Over the last decades, an exponential increase of efforts concerning the treatment of Alzheimer's disease (AD) has been practiced. Phytochemicals preparations have a millenary background to combat various pathological conditions. Various cinnamon species and their biologically active ingredients have renewed the interest towards the treatment of patients with mild-to-moderate AD through the inhibition of tau protein aggregation and prevention of the formation and accumulation of amyloid-β peptides into the neurotoxic oligomeric inclusions, both of which are considered to be the AD trademarks. In this review, we presented comprehensive data on the interactions of a number of cinnamon polyphenols (PPs) with oxidative stress and pro-inflammatory signaling pathways in the brain. In addition, we discussed the potential association between AD and diabetes mellitus (DM), vis-à-vis the effluence of cinnamon PPs. Further, an upcoming prospect of AD epigenetic pathophysiological conditions and cinnamon has been sighted. Data was retrieved from the scientific databases such as PubMed database of the National Library of Medicine, Scopus and Google Scholar without any time limitation. The extract of cinnamon efficiently inhibits tau accumulations, Aβ aggregation and toxicity in vivo and in vitro models. Indeed, cinnamon possesses neuroprotective effects interfering multiple oxidative stress and pro-inflammatory pathways. Besides, cinnamon modulates endothelial functions and attenuates the vascular cell adhesion molecules. Cinnamon PPs may induce AD epigenetic modifications. Cinnamon and in particular, cinnamaldehyde seem to be effective and safe approaches for treatment and prevention of AD onset and/or progression. However, further molecular and translational research studies as well as prolonged clinical trials are required to establish the therapeutic safety and efficacy in different cinnamon spp.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran.
| |
Collapse
|
38
|
Dey A, Mukherjee A, Chaudhury M. Alkaloids From Apocynaceae. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00010-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Saha MR, Dey P, Begum S, De B, Chaudhuri TK, Sarker DD, Das AP, Sen A. Effect of Acacia catechu (L.f.) Willd. on Oxidative Stress with Possible Implications in Alleviating Selected Cognitive Disorders. PLoS One 2016; 11:e0150574. [PMID: 26949964 PMCID: PMC4780764 DOI: 10.1371/journal.pone.0150574] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/17/2016] [Indexed: 01/16/2023] Open
Abstract
In human body, several categories of degenerative processes are largely determined by free radicals originating in cell. Free radicals are also known to have correlated with a variety of cognitive disorders (CDs) resulting in neuronal injury and eventually to death. Alzheimer's disease (AD) and Parkinson's disease (PD) are such kind of killer CDs that occur due to dysfunction of cholinergic and dopaminergic neurons. Plant parts of Ginkgo biloba, Bacopa monnieri etc. are being used for the treatment of cognitive disorders in several countries. The present study was aimed to explore the detailed antioxidant and anti-cholinesterase activity of Acaciacatechu leaf (ACL) over CDs. Gas chromatography-Mass spectroscopy (GC-MS) analysis and Nuclear Magnetic Resonance (NMR) were employed to identify the bioactive components present in ACL. Furthermore, the extract was evaluated to check the cytotoxic effects of ACL on normal cells. Amongst several antioxidant assays, DPPH assay, hydroxyl radical, nitric oxide radical and hypochlorous acid inhibitory activities were found to be greater in ACL than that of the respective standards while other assays exhibited a moderate or at per inhibitory activity with standards. Total phenolic and flavonoid content were also found to be present in decent amount. In addition, we found, a greater acetylcholinesterase (AChE) inhibitory activity of ACL when compared to other medicinally important plants, indicating its positive effect over CDs. Forty one bioactive components were explored through GC-MS. Of these, gallic acid, epicatechin, catechin, isoquercitrin etc. were found, which are potent antioxidant and a few of them have anti-neurodegenerative properties. Eventually, ACL was found to be nontoxic and safer to consume. Further studies with animal or human model however, would determine its efficacy as a potential anti-schizophrenic drug.
Collapse
Affiliation(s)
- Manas Ranjan Saha
- Molecular Cytogenetics Laboratory, Department of Botany, University of North Bengal, Siliguri, 734013, India
| | - Priyankar Dey
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Siliguri, 734013, India
| | - Sainiara Begum
- Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Bratati De
- Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Tapas Kr. Chaudhuri
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Siliguri, 734013, India
| | - Dilip De Sarker
- Department of Botany, Raiganj University, Raiganj, 733134, India
| | - Abhaya Prasad Das
- Taxonomy and Envioronmental Biology Laboratory, Department of Botany, University of North Bengal, Siliguri, 734013, India
| | - Arnab Sen
- Molecular Cytogenetics Laboratory, Department of Botany, University of North Bengal, Siliguri, 734013, India
| |
Collapse
|
40
|
In Vitro Acetylcholinesterase-Inhibitory Properties of Enzymatic Hemp Seed Protein Hydrolysates. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2779-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Phenolic profile and biological potential of Endopleura uchi extracts. ASIAN PAC J TROP MED 2015; 8:889-897. [DOI: 10.1016/j.apjtm.2015.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/20/2022] Open
|
42
|
Sun C, Duan W, Wang X, Geng Y, Li J, Wang D. Combinative Application of pH-Zone-Refining Counter-Current Chromatography and Preparative HPLC for the Separation of Alkaloids From Lycoris radiata. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2014.982868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Changlei Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjuan Duan
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| | - Xiao Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| | - Yanling Geng
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| | - Jia Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daijie Wang
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
43
|
Nejat N, Valdiani A, Cahill D, Tan YH, Maziah M, Abiri R. Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. ScientificWorldJournal 2015; 2015:982412. [PMID: 25667940 PMCID: PMC4312627 DOI: 10.1155/2015/982412] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Catharanthus roseus (L.) known as Madagascar periwinkle (MP) is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs), vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spiroplasmas, and serves as a model for their study. Botanical information with respect to synonyms, vernacular names, cultivars, floral morphology, and reproduction adds to understanding of the plant while the geography and ecology of periwinkle illustrate the organism's ubiquity. Good agronomic practices ensure generous propagation of healthy plants that serve as a source of bioactive compounds and multitudinous horticultural applications. The correlation between genetic diversity, variants, and TIA production exists. MP is afflicted with a whole range of diseases that have to be properly managed. The ethnobotanical significance of MP is exemplified by its international usage as a traditional remedy for abundant ailments and not only for cancer. TIAs are present only in micro quantities in the plant and are highly poisonous per se rendering a challenge for researchers to increase yield and reduce toxicity.
Collapse
Affiliation(s)
- Naghmeh Nejat
- Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| | - Alireza Valdiani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| | - David Cahill
- School of Life and Environmental Sciences, Faculty of Science Engineering & Built Environment, Deakin University, Melbourne, VIC 3220, Australia
| | - Yee-How Tan
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| | - Mahmood Maziah
- Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| | - Rambod Abiri
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| |
Collapse
|
44
|
Beatty JW, Stephenson CRJ. Synthesis of (-)-pseudotabersonine, (-)-pseudovincadifformine, and (+)-coronaridine enabled by photoredox catalysis in flow. J Am Chem Soc 2014; 136:10270-3. [PMID: 25003992 PMCID: PMC4233208 DOI: 10.1021/ja506170g] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Indexed: 12/20/2022]
Abstract
Natural product modification with photoredox catalysis allows for mild, chemoselective access to a wide array of related structures in complex areas of chemical space, providing the possibility for novel structural motifs as well as useful quantities of less abundant congeners. While amine additives have been used extensively as stoichiometric electron donors for photocatalysis, the controlled modification of amine substrates through single-electron oxidation is ideal for the synthesis and modification of alkaloids. Here, we report the conversion of the amine (+)-catharanthine into the natural products (-)-pseudotabersonine, (-)-pseudovincadifformine, and (+)-coronaridine utilizing visible light photoredox catalysis.
Collapse
Affiliation(s)
- Joel W. Beatty
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Corey R. J. Stephenson
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
45
|
Mootoosamy A, Fawzi Mahomoodally M. Ethnomedicinal application of native remedies used against diabetes and related complications in Mauritius. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:413-444. [PMID: 24231070 DOI: 10.1016/j.jep.2013.10.069] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/27/2013] [Accepted: 10/27/2013] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Notoriously, the tropical island of Mauritius has one of the highest prevalence of diabetes worldwide and the economic burden associated with it is alarming. The use of native remedies (NRs) is well anchored in the local culture and it continues to be the cornerstone of therapy for diabetic patients. However, there is currently a dearth of updated primary data on NRs used by Mauritians against diabetes and diabetes related complications (DRCs). This study was therefore designed to record, analyze and document orally transmitted ethnopharmacological knowledge from diabetic patients and traditional medicine practitioners (TMPs) in Mauritius concerning NRs commonly used against diabetes and DRCs which might open new avenues to initiate novel antidiabetic drugs discovery. MATERIALS AND METHODS Data was collected following interviews from diabetic patients (n=328) and TMPs (n=20). Eleven quantitative indexes, namely informant consensus factor (FIC), fidelity level (FL), use value (UV), relative frequency of citation (RFC), relative importance (RI), cultural importance index (CII), index of agreement on remedies (IAR), cultural agreement index (CAI), quality use value (QUV), quality use agreement value (QUAV) and ethnobotanicity index (EI) were calculated. Statistical analysis such as Pearson correlation and Chi-squared test were performed to determine any association. RESULTS A total of 111 plant species distributed over 56 families, 30 polyherbal formulations and 16 animal species were documented to be traditionally used against diabetes and DRCs. For the first time 8 endemic plants have been recorded to be used against diabetes and DRCs from Mauritius. The most encountered medicinal plant family was Asteraceae. According to the EI, 16.2% of the native plants in Mauritius were used against diabetes and DRCs. As far as we know, Vangueria madagascariensis, Apium graveolens, Petroselinum crispum and Rubus alceifolius with high RFC values are recorded against diabetes and DRCs for the first time. Sociodemographic characteristics (age, gender, income, religious belief, education and residence) were found to significantly (p<0.05) influence the use of NRs. The average FIC for all ailments for plant and animal products were 0.94 and 0.87 respectively. Bryophyllum pinnatum, a native plant to Mauritius scored a high FL value (100%) used against diabetic neuropathy, Allium sativum had the highest RI value (2.00) due to its versatility, Aloe vera had the highest RFC (0.61), the CII (0.640) and the highest CAI value (0.635), Psidium guajava had the highest QUAV (0.961) which indicates its high bioactivity and Allium cepa was reported as the most effective plant species (QUV=0.965). According to UV, the most important species was Morinda citrifolia (1.21). Panoply of animal products were reported whereby fish (39.7%) was recorded as the most utilised zootherapy and Salmo salar scored the highest FL (100%) for diabetes. Some animal species (n=14) not previously documented against diabetes and DRCs are reported in the present study. CONCLUSION Our present investigation revealed that the use of NRs constitutes the common legacy of Mauritians and despite the penetration of allopathic medicine; NRs continue to play a crucial role in the primary health care system of Mauritius. To this effect, it is of uttermost importance to record this knowledge before it disappears. In addition, further experimental investigations are required to elucidate the pharmacological properties of the reported medicinal flora and fauna of Mauritius.
Collapse
Affiliation(s)
- Anushka Mootoosamy
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit 230, Mauritius
| | - M Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit 230, Mauritius.
| |
Collapse
|
46
|
Chen Q, Zhang W, Zhang Y, Chen J, Chen Z. Identification and quantification of active alkaloids in Catharanthus roseus by liquid chromatography–ion trap mass spectrometry. Food Chem 2013; 139:845-52. [DOI: 10.1016/j.foodchem.2013.01.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 10/31/2012] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
|
47
|
Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer's Disease Therapy. Curr Neuropharmacol 2013; 11:388-413. [PMID: 24381530 PMCID: PMC3744903 DOI: 10.2174/1570159x11311040004] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 12/20/2022] Open
Abstract
As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer's disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer's disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
- Research Member of CONICET
| | - María Belén Faraoni
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
- Research Member of CIC
| | - María Julia Castro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Natalia Paola Alza
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
48
|
Konrath EL, Passos CDS, Klein-Júnior LC, Henriques AT. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease. J Pharm Pharmacol 2013; 65:1701-25. [DOI: 10.1111/jphp.12090] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/12/2013] [Indexed: 01/06/2023]
Abstract
Abstract
Objectives
The inhibition of acetylcholinesterase (AChE), the key enzyme in the breakdown of acetylcholine, is currently the main pharmacological strategy available for Alzheimer's disease (AD). In this sense, many alkaloids isolated from natural sources, such as physostigmine, have been long recognized as acetyl- and butyrylcholinesterase (BChE) inhibitors. Since the approval of galantamine for the treatment of AD patients, the search for new anticholinesterase alkaloids has escalated, leading to promising candidates such as huperzine A. This review aims to summarize recent advances in current knowledge on alkaloids as AChE and BChE inhibitors, highlighting structure–activity relationship (SAR) and docking studies.
Key findings
Natural alkaloids belonging to the steroidal/triterpenoidal, quinolizidine, isoquinoline and indole classes, mainly distributed within Buxaceae, Amaryllidaceae and Lycopodiaceae, are considered important sources of alkaloids with anti-enzymatic properties. Investigations into the possible SARs for some active compounds are based on molecular modelling studies, predicting the mode of interaction of the molecules with amino acid residues in the active site of the enzymes. Following this view, an increasing interest in achieving more potent and effective analogues makes alkaloids good chemical templates for the development of new cholinesterase inhibitors.
Summary
The anticholinesterase activity of alkaloids, together with their structural diversity and physicochemical properties, makes them good candidate agents for the treatment of AD.
Collapse
Affiliation(s)
- Eduardo Luis Konrath
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina dos Santos Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz Carlos Klein-Júnior
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amélia T Henriques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
49
|
Zhang Y, Chen Z. Nonaqueous CE ESI-IT-MS analysis of Amaryllidaceae alkaloids. J Sep Sci 2013; 36:1078-84. [PMID: 23436771 DOI: 10.1002/jssc.201201083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 01/14/2023]
Abstract
The Amaryllidaceae are widely distributed medical plants. Lycorine, lycoramine, lycoremine, and lycobetaine are the major active alkaloids in Amaryllidaceae plants. A nonaqueous CE ESI-IT-MS method for separation, identification, and quantification of the Amaryllidaceae alkaloids has been developed. The MS(1-3) behavior has been studied and the fragmentation pathways of main fragment ions have been proposed. The effects of several factors such as composition and concentration of buffer, applied voltage, composition, and flow rate of the sheath liquid, nebulizing gas pressure, flow rate, and temperature of drying gas were investigated. Under the optimal conditions, the linear concentration range of these compounds was wide with the correlation coefficient (R(2) ) >0.99. RSDs of migration time and peak areas were <10%. The LODs were <240 ng/mL. The proposed method can be successfully applied to the determination of the related alkaloids in the Lycoris radiata roots.
Collapse
Affiliation(s)
- Yulin Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P R China
| | | |
Collapse
|
50
|
Semenya S, Potgieter M, Tshisikhawe M, Shava S, Maroyi A. Medicinal utilization of exotic plants by Bapedi traditional healers to treat human ailments in Limpopo province, South Africa. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:646-55. [PMID: 23069942 DOI: 10.1016/j.jep.2012.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Most exotic plants are usually labelled as alien invasives and targeted for eradication. However, some of these exotic plants play an important role in the traditional primary healthcare sector of the Bapedi culture in the Limpopo Province of South Africa. The medicinal uses of most of these species have neither been documented nor their biological activity evaluated. AIM OF THE STUDY To make an inventory of exotic species employed by Bapedi traditional healers to treat different human ailments in the Limpopo Province, South Africa. MATERIALS AND METHODS Semi-structured interviews, observation and guided field walks with 52 traditional healers were employed to obtain ethnobotanical data during first half of 2011 on the use of exotic plant species by Bapedi healers to treat human ailments. Based on ethnobotanical information provided by these healers, specimens were collected, numbered, pressed, and dried for identification. RESULTS A total of 35 exotics species belonging to 21 families and 34 genera, mostly from the Fabaceae and Solanaceae (11.4% for each), Apocynaceae and Asteraceae (8.5% for each) were used by Bapedi healers to treat 20 human ailments. Trees (45.7%) and herbs (37.1%) are the primary source of medicinal plants. Species most frequently reported were used for the treatment of hypertension (35%), diabetes mellitus, erectile dysfunction and gonorrhoea (25% for each). The highest consensus from individual accounts of the traditional healers on the use of exotic plant remedies in this study was noted for the three ailments. These were for Catharanthus roseus (gonorrhoea, 60%), Punica granatum (diarrhoea, 38.4%) and Ricinus communis (sores, 21.5%). Of the 35 exotic plant species recorded, 34.2% are regulated by the Conservation of Agricultural Resources Act (1983) (CARA) No. 43 of 1983 either as worst weeds or invaders. CONCLUSION The present study demonstrated that exotic plant species play an important part as medicinal remedies employed by Bapedi healers to treat different human diseases in the Limpopo Province. The use of these species as alternative sources of medicinal remedies could alleviate harvesting pressure of wild indigenous plants, thereby enhance biodiversity's region. However, there is a need to formulate an appropriate policy to retain some of the useful medicinal exotics (listed under CARA No. 43 of 1983) within the environment before their medicinal value vanishes as they are eradicated through management strategies adopted by the South African government.
Collapse
Affiliation(s)
- Sebua Semenya
- Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa.
| | | | | | | | | |
Collapse
|