1
|
Po-Chun C, Su HK, Liu SC, Thuong LHH, Wu YC, Chen HT, Wu TY, Tang CH. Antrodia cinnamomea prevents ovariectomized-promoted bone loss by inhibiting osteoclast formation. ENVIRONMENTAL TOXICOLOGY 2024; 39:3381-3388. [PMID: 38445413 DOI: 10.1002/tox.24212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Osteoporosis is a common bone disease in aging populations, particularly in postmenopausal women. Anti-resorptive and anabolic drugs have been applied to prevent and cure osteoporosis and are linked with a variety of adverse effects. Antrodia cinnamomea extracts (ACE) are highly renowned for their anticancer, antioxidative, and anti-inflammatory properties. However, whether ACE-enriched anti-osteoporosis functions are largely unknown. In a preclinical animal model, we found that ovariectomy significantly decreased bone volume in the ovariectomized (OVX) rats. Administration of ACE antagonized OVX-induced bone loss. In addition, ACE reversed OVX-reduced biomechanical properties. The serum osteoclast marker also showed improvement in the ACE-treated group. In the cellular model, it was indicated that ACE inhibits RANKL-induced osteoclast formation. Taken together, ACE seems to be a hopeful candidate for the development of novel anti-osteoporosis treatment.
Collapse
Affiliation(s)
- Chang Po-Chun
- Department of Orthopedic, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hui-Kan Su
- Department of Pathology Laboratory, Pingtung Veterans General Hospital, Pingtung County, Taiwan
| | - Shan-Chi Liu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Le Huynh Hoai Thuong
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Tung-Ying Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
2
|
Wei C, Khan MA, Du J, Cheng J, Tania M, Leung ELH, Fu J. Cordycepin Inhibits Triple-Negative Breast Cancer Cell Migration and Invasion by Regulating EMT-TFs SLUG, TWIST1, SNAIL1, and ZEB1. Front Oncol 2022; 12:898583. [PMID: 35774120 PMCID: PMC9237498 DOI: 10.3389/fonc.2022.898583] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023] Open
Abstract
Cancer metastasis is the most important cause of cancer-related death, and epithelial-to-mesenchymal transition (EMT) plays crucial roles in cancer metastasis. Cordycepin (CD) is highly enriched in the medicinally used Cordyceps mushroom. In this study, we conducted the antimetastatic activities of CD, specifically focusing on its regulatory effects on EMT-inducing transcription factors (EMT-TFs) in triple-negative breast cancer (TNBC). Our study showed CD to inhibit the growth, migration, and invasion of BT549 and 4T1 cancer cell lines, by employing cell viability assay and real-time cell analyses. The protein levels of N-Cadherin and E-Cadherin, as well as their transcription factors TWIST1, SLUG, SNAIL1, and ZEB1 in BT549 and 4T1 cells, were estimated by Western blot assays. Results from dual-luciferase reporter assays demonstrated that CD is capable of inactivating the EMT signaling pathway by inhibiting TWIST1 and SLUG expression. Furthermore, in vivo studies with mice carrying cancer cell-derived allograft tumors showed the inhibitory effect of CD on cancer cell growth and metastasis. Furthermore, the additive/synergistic anti-metastasis effect of CD and thymoquinone (TQ), another natural product with promising anticancer roles, was demonstrated by combinational treatment. The results from this research indicate that CD would be a promising therapeutic molecule against TNBC by targeting EMT-TFs, possibly in SLUG, TWIST1, SNAIL1, and ZEB1.
Collapse
Affiliation(s)
- Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Md. Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Mousumi Tania
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Junjiang Fu, ; ; Elaine Lai-Han Leung,
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Junjiang Fu, ; ; Elaine Lai-Han Leung,
| |
Collapse
|
3
|
Siewert B, Ćurak G, Hammerle F, Huymann L, Fiala J, Peintner U. The photosensitizer emodin is concentrated in the gills of the fungus Cortinarius rubrophyllus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112390. [PMID: 35123160 DOI: 10.1016/j.jphotobiol.2022.112390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/08/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
The colorful agaricoid fruiting bodies of dermocyboid Cortinarii owe their magnificent hue to a mixture of anthraquinone (AQ) pigments. Recently, it was discovered that some of these fungal anthraquinones have an impressive photopharmacological effect. The question, therefore, arises as to whether these pigments are also of ecological or functional significance. According to the optimal defense hypothesis, toxic molecules should be enriched in spore-producing structures, such as the gills of agarics. To test this hypothesis, we studied the distribution of fungal AQs in the fruiting body of Cortinarius rubrophyllus. The fungus belongs to the well-studied Cortinarius subgenus Dermocybe but has not been chemically characterized. Here, we report on the pigment profile of this beautiful fungus and focus on the distribution of anthraquinone pigments in the fruiting body for the first time. Here it is statistically confirmed that the potent photosensitizer emodin is significantly enriched in the gills. Furthermore, we show that the extract is photoactive against cancer cells and bacteria.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Gabrijela Ćurak
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Fabian Hammerle
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lesley Huymann
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria; Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Johannes Fiala
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria; Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Achudhan D, Liu SC, Lin YY, Huang CC, Tsai CH, Ko CY, Chiang IP, Kuo YH, Tang CH. Antcin K Inhibits TNF-α, IL-1β and IL-8 Expression in Synovial Fibroblasts and Ameliorates Cartilage Degradation: Implications for the Treatment of Rheumatoid Arthritis. Front Immunol 2022; 12:790925. [PMID: 34975889 PMCID: PMC8714747 DOI: 10.3389/fimmu.2021.790925] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Extracts from Taiwan’s traditional medicinal mushroom, Antrodia cinnamomea, exhibit anti-inflammatory activities in cellular and preclinical studies. However, this paper is the first to report that Antcin K, a triterpenoid isolated from A. cinnamomea, inhibits proinflammatory cytokine production in human rheumatoid synovial fibroblasts (RASFs), which are major players in rheumatoid arthritis (RA) disease. In our analysis of the mechanism of action, Antcin K inhibited the expression of three cytokines (tumor necrosis factor alpha [TNF-α], interleukin 1 beta [IL-1β] and IL-8) in human RASFs; cytokines that are crucial to RA synovial inflammation. Notably, incubation of RASFs with Antcin K reduced the phosphorylation of the focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT) and nuclear factor-κB (NF-κB) signaling cascades, all of which promote cytokine production in RA. Intraperitoneal injections of Antcin K (10 mg/kg or 30 mg/kg) attenuated paw swelling, cartilage degradation and bone erosion, and decreased serum levels of TNF-α, IL-1β, IL-8 in collagen-induced arthritis (CIA) mice; in further experiments, IL-6 levels were similarly reduced. The inhibitory effects of Antcin K upon TNF-α, IL-1β and IL-8 expression in human RASFs was achieved through the downregulation of the FAK, PI3K, AKT and NF-κB signaling cascades. Our data support clinical investigations using Antcin K in RA disease.
Collapse
Affiliation(s)
- David Achudhan
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Chung Huang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - I-Ping Chiang
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo. Acta Pharm Sin B 2022; 12:890-906. [PMID: 35256953 PMCID: PMC8897033 DOI: 10.1016/j.apsb.2021.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Antrodia cinnamomea is extensively used as a traditional medicine to prevention and treatment of liver cancer. However, its comprehensive chemical fingerprint is uncertain, and the mechanisms, especially the potential therapeutic target for anti-hepatocellular carcinoma (HCC) are still unclear. Using UPLC‒Q-TOF/MS, 139 chemical components were identified in A. cinnamomea dropping pills (ACDPs). Based on these chemical components, network pharmacology demonstrated that the targets of active components were significantly enriched in the pathways in cancer, which were closely related with cell proliferation regulation. Next, HCC data was downloaded from Gene Expression Omnibus database (GEO). The Cancer Genome Atlas (TCGA) and DisGeNET were analyzed by bioinformatics, and 79 biomarkers were obtained. Furtherly, nine targets of ACDP active components were revealed, and they were significantly enriched in PI3K/AKT and cell cycle signaling pathways. The affinity between these targets and their corresponding active ingredients was predicted by molecular docking. Finally, in vivo and in vitro experiments showed that ACDPs could reduce the activity of PI3K/AKT signaling pathway and downregulate the expression of cell cycle-related proteins, contributing to the decreased growth of liver cancer. Altogether, PI3K/AKT-cell cycle appears as the significant central node in anti-liver cancer of A. Cinnamomea.
Collapse
|
6
|
Anticancer Activities of Mushrooms: A Neglected Source for Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15020176. [PMID: 35215289 PMCID: PMC8876642 DOI: 10.3390/ph15020176] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
Approximately 270 species of mushrooms have been reported as potentially useful for human health. However, few mushrooms have been studied for bioactive compounds that can be helpful in treating various diseases. Like other natural regimens, the mushroom treatment appears safe, as could be expected from their long culinary and medicinal use. This review aims to provide a critical discussion on clinical trial evidence for mushrooms to treat patients with diverse types of cancer. In addition, the review also highlights the identified bioactive compounds and corresponding mechanisms of action among the explored mushrooms. Furthermore, it also discusses mushrooms with anticancer properties, demonstrated either in vitro and/or in vivo models, which have never been tested in clinical studies. Several mushrooms have been tested in phase I or II clinical trials, mostly for treating breast cancer (18.6%), followed by colorectal (14%) and prostate cancer (11.6%). The majority of clinical studies were carried out with just 3 species: Lentinula edodes (22.2%), Coriolus versicolor, and Ganoderma lucidum (both 13.9%); followed by two other species: Agaricus bisporus and Grifola frondosa (both 11.1%). Most in vitro cell studies use breast cancer cell lines (43.9%), followed by lung (14%) and colorectal cancer cell lines (13.1%), while most in vivo animal studies are performed in mice tumor models (58.7%). Although 32 species of mushrooms at least show some promise for the treatment of cancer, only 11 species have been tested clinically thus far. Moreover, most clinical studies have investigated fewer numbers of patients, and have been limited to phase III or IV. Therefore, despite the promising preclinical and clinical data publication, more solid scientific efforts are required to clarify the therapeutic value of mushrooms in oncology.
Collapse
|
7
|
Tsai YT, Ruan JW, Chang CS, Ko ML, Chou HC, Lin CC, Lin CM, Huang CT, Wei YS, Liao EC, Chen HY, Lin LH, Lin MW, Kao CY, Chan HL. Proteomic and microbial assessments on the effect of Antrodia cinnamomea in C57BL/6 mice. Arch Biochem Biophys 2021; 713:109058. [PMID: 34627749 DOI: 10.1016/j.abb.2021.109058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023]
Abstract
Antrodia cinnamomea (AC) is a nutraceutical fungus and studies have suggested that AC has the potential to prevent or alleviate diseases. However, little is known about the AC-induced phenotypes on the intestine-liver axis and gut microbial alterations. Here, we performed two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-Biotyper to elaborate the AC-induced phenotypes on the intestine-liver axis and gut microbial distribution of C57BL/6 mice. The experimental outcomes showed that the hepatic density may increase by elevating hepatic redox regulation, lipid degradation and glycolysis-related proteins and alleviating cholesterol biosynthesis and transport-related proteins in C57BL/6 mice with AC treatment. Moreover, AC facilitates intestinal glycolysis, TCA cycle, redox and cytoskeleton regulation-related proteins, but also reduces intestinal vesicle transport-related proteins in C57BL/6 mice. However, the body weight, GTT, daily food/water intake, and fecal/urine weight were unaffected by AC supplementation in C57BL/6 mice. Notably, the C57BL/6-AC mice had a higher gut microbial abundance of Alistipes shahii (AS) than C57BL/6-Ctrl mice. In summary, the AC treatment affects intestinal permeability by regulating redox and cytoskeleton-related proteins and elevates the gut microbial abundance of AS in C57BL/6 mice that might be associated with increasing hepatic density and metabolism-related proteins of the liver in C57BL/6 mice. Our study provides an insight into the mechanisms of AC-induced phenotypes and a comprehensive assessment of AC's nutraceutical effect in C57BL/6 mice.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Jhen-Wei Ruan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Cherng-Shyang Chang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Mei-Lan Ko
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, 30059, Taiwan.
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Chi-Chien Lin
- Department of Life Sciences, Institute of Biomedical Science, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Chiao-Mei Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Chih-Ting Huang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
8
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
9
|
Shi X, Luo X, Chen T, Guo W, Liang C, Tang S, Mo J. Naringenin inhibits migration, invasion, induces apoptosis in human lung cancer cells and arrests tumour progression in vitro. J Cell Mol Med 2021; 25:2563-2571. [PMID: 33523599 PMCID: PMC7933922 DOI: 10.1111/jcmm.16226] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the major cause for high-death rate all over the world, due to increased metastasize and difficulties in diagnosis. Naringenin is naturally occurring flavonoid found in various fruits including tomatoes, citrus fruit and figs. Naringenin is known to have several therapeutic effects including anti-atherogenic, antimicrobial, anti-inflammatory, hepatoprotective, anticancer and anti-mutagenic. The present study was aimed to analyse the naringenin induced anti-proliferative and apoptosis effects in human lung cancer cells. Cells were treated with various concentrations of naringenin (10, 100 & 200 µmol/L) for 48 hours. Cisplatin (20 µg/mL) was used as positive control. Cell viability, apoptosis, migration and mRNA, and protein expression of caspase-3, matrixmetallo proteinases-2 (MMP-2) and MMP-9 were determined. The cell viability was 93.7 ± 7.5, 51.4 ± 4.4 and 32.1 ± 2.1 at 10, 100 and 200 µmol/L of naringenin respectively. Naringenin significantly increased apoptotic cells. The 100 and 200 µmol/L of naringenin significantly suppressed the larger wounds of cultured human cancer cells compared with the untreated lung cancer cells. Naringenin increased d the expression of caspase-3 and reduced the expression of MMP-2 and MMP-9. Taking all these data together, it is suggested that the naringenin was effective against human lung cancer proliferation, migration and metastasis.
Collapse
Affiliation(s)
- Xingyuan Shi
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Xueping Luo
- Department of Thoracic surgeryThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Ting Chen
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Wei Guo
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Chanjin Liang
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Sihan Tang
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Jianming Mo
- Department of Respiratory MedicinePeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
10
|
Kuang Y, Li B, Wang Z, Qiao X, Ye M. Terpenoids from the medicinal mushroom Antrodia camphorata: chemistry and medicinal potential. Nat Prod Rep 2020; 38:83-102. [PMID: 32720965 DOI: 10.1039/d0np00023j] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to February 2020Antrodia camphorata is a medicinal mushroom endemic to Taiwan for the treatment of intoxication, liver injury, cancer, and inflammation. Owing to its rare occurrence and potent pharmacological activities, efforts have been devoted to identify its bioactive constituents, especially terpenoids. Since 1995, a total of 162 terpenoids including triterpenoids, meroterpenoids, sesquiterpenoids, diterpenoids, and steroids have been characterized. The ergostane-type triterpenoids (antcins) and meroterpenoids (antroquinonols) are characteristic constituents of A. camphorata. The terpenoids show anti-cancer, hepatoprotective, anti-inflammatory, anti-diabetic, and neuroprotective activities. This review summarizes the research progress on terpenoids in A. camphorata during 1995-2020, including structural diversity, resources, biosynthesis, pharmacological activities, metabolism, and toxicity. The medicinal potential of the terpenoids is also discussed.
Collapse
Affiliation(s)
- Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
11
|
Antrodia cinnamomea Confers Obesity Resistance and Restores Intestinal Barrier Integrity in Leptin-deficient Obese Mice. Nutrients 2020; 12:nu12030726. [PMID: 32164196 PMCID: PMC7146579 DOI: 10.3390/nu12030726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is associated with metabolic disorders. Thus, obesity prevention and treatment are essential for health. Antrodia cinnamomea (AC) is a multifunctional medicinal fungus used for the treatment of various diseases and for preventing diet-induced obesity. Leptin deficiency causes over-eating and spontaneous obesity. The concomitant metabolic symptoms are more severe than diet-induced obesity. Here, we used leptin-deficient (ob/ob) mice as an animal model for over-feeding to study the effect of AC on obesity. We fed C57BL/6 mice (WT, ob+/+) and ob/ob mice with AC for four weeks before performing qRT-PCR and immunoblot analysis to elaborate AC-modulated mechanisms. Further, we used Caco-2 cells as a human intestinal epithelial barrier model to examine the effect of AC on intestinal permeability. Our results suggested that AC reduces lipid deposits of the liver and epididymal white adipose tissue (EWAT) by promoting lipid metabolism and inhibiting lipogenesis-associated genes and proteins in ob/ob mice. Moreover, AC effectively repaired intestinal-barrier injury caused by leptin deficiency and enhanced intestinal barrier integrity in Caco-2 cells. Interestingly, AC significantly reduced body weight and EWAT with no compromise on food intake in ob/ob mice. Thus, AC effectively reduced obesity caused by leptin-deficiency and can potentially be used as a nutraceutical for treating obesity.
Collapse
|
12
|
Dey P, Son JY, Kundu A, Kim KS, Lee Y, Yoon K, Yoon S, Lee BM, Nam KT, Kim HS. Knockdown of Pyruvate Kinase M2 Inhibits Cell Proliferation, Metabolism, and Migration in Renal Cell Carcinoma. Int J Mol Sci 2019; 20:E5622. [PMID: 31717694 PMCID: PMC6887957 DOI: 10.3390/ijms20225622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that the activity of pyruvate kinase M2 (PKM2) isoform is crucial for the survival of tumor cells. However, the molecular mechanism underlying the function of PKM2 in renal cancer is undetermined. Here, we reveal the overexpression of PKM2 in the proximal tubule of renal tumor tissues from 70 cases of patients with renal carcinoma. The functional role of PKM2 in human renal cancer cells following small-interfering RNA-mediated PKM2 knockdown, which retarded 786-O cell growth was examined. Targeting PKM2 affected the protein kinase B (AKT)/mechanistic target of the rapamycin 1 (mTOR) pathway, and downregulated the expression of glycolytic enzymes, including lactate dehydrogenase A and glucose transporter-1, and other downstream signaling key proteins. PKM2 knockdown changed glycolytic metabolism, mitochondrial function, adenosine triphosphate (ATP) level, and intracellular metabolite formation and significantly reduced 786-O cell migration and invasion. Acridine orange and monodansylcadaverine staining, immunocytochemistry, and immunoblotting analyses revealed the induction of autophagy in renal cancer cells following PKM2 knockdown. This is the first study to indicate PKM2/AKT/mTOR as an important regulatory axis mediating the changes in the metabolism of renal cancer cells.
Collapse
Affiliation(s)
- Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Yura Lee
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (Y.L.); (K.T.N.)
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea;
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Ki Taek Nam
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (Y.L.); (K.T.N.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| |
Collapse
|
13
|
Antrodia cinnamomea Enhances Chemo-Sensitivity of 5-FU and Suppresses Colon Tumorigenesis and Cancer Stemness via Up-Regulation of Tumor Suppressor miR-142-3p. Biomolecules 2019; 9:biom9080306. [PMID: 31349708 PMCID: PMC6723279 DOI: 10.3390/biom9080306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
5-Fluorouracil (5-FU) regimen remains the backbone of the first-line agent to treat colon cancer, but often these patients develop resistance. Cancer stem cells (CSC's) are considered as one of the key contributors in the development of drug resistance and tumor recurrence. We aimed to provide preclinical evidence for Antrodia cinnamomea (AC), as a potential in suppressing colon cancer CSC's to overcome 5-FU drug-resistant. In-vitro assays including cell viability, colony formation, AC + 5-FU drug combination index and tumor sphere generation were applied to determine the inhibitory effect of AC. Mouse xenograft models also incorporated to evaluate in vivo effect of AC. AC treatment significantly inhibited the proliferation, colony formation and tumor sphere generation. AC also inhibited the expression of oncogenic markers (NF-κB, and C-myc), EMT/metastasis markers (vimentin and MMP3) and stemness associated markers (β-catenin, SOX-2 and Nanog). Sequential treatment of AC and 5-FU synergized and reduces colon cancer viability both in vivo and in vitro. Mechanistically, AC mediated anti-tumor effect was associated with an increased level of tumor suppressor microRNAs especially, miR142-3p. AC can be a potent synergistic adjuvant, down-regulates cancer stemness genes and enhances the antitumor ability of 5-FU by stimulating apoptosis-associated genes, suppressing inflammation and metastasis genes through miR142-3p in colon cancer.
Collapse
|
14
|
Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi. Molecules 2019; 24:molecules24122231. [PMID: 31207985 PMCID: PMC6632035 DOI: 10.3390/molecules24122231] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cordycepin (3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris, has attracted much attention due to its therapeutic potential and biological value. Cordycepin interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant, polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the discovery of novel targets and the development of new drugs to enhance the therapeutic potency and reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the biological application of cordycepin, for example, as a ligand, has been used to uncover molecular structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing fungi have yielded significant information related to the biosynthesis of high levels of cordycepin. Here, we summarized the medicinal targets, biological applications, cytotoxicity, delivery carriers, stability, and pros/cons of cordycepin in clinical applications, as well as described the metabolic mechanisms of cordycepin in cordycepin-producing fungi. We posit that new approaches, including single-cell analysis, have the potential to enhance medicinal potency and unravel all facets of metabolic mechanisms of cordycepin in Cordyceps militaris.
Collapse
|
15
|
Tania M, Shawon J, Saif K, Kiefer R, Khorram MS, Halim MA, Khan MA. Cordycepin Downregulates Cdk-2 to Interfere with Cell Cycle and Increases Apoptosis by Generating ROS in Cervical Cancer Cells: in vitro and in silico Study. Curr Cancer Drug Targets 2019; 19:152-159. [PMID: 30182857 DOI: 10.2174/1568009618666180905095356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/25/2018] [Accepted: 08/25/2018] [Indexed: 12/14/2022]
Abstract
Background: Cordycepin is a small molecule from medicinal mushroom Cordyceps, which has been reported for anticancer properties. </P><P> Objective: In this study, we have focused on the investigation of cordycepin effect on cervical cancer cells with further clarification of possible molecular mechanism. </P><P> Method: We have used cell viability and cell counting assay for cytotoxic effect of cordycepin, flow cytometric assay of apoptosis and cell cycle, and quantitative PCR (qPCR) and Western blotting for the determination of target gene expression. Molecular docking and Molecular dynamics simulation were used for in silico analysis of cordycepin affinity to target protein(s). </P><P> Results: Treatment of cordycepin controlled SiHa and HeLa cervical cancer cell growth, increased the rate of their apoptosis, and interfered with cell cycle, specifically elongated S-phase. qPCR results indicated that there was a downregulation of cell cycle proteins CDK-2, CYCLIN-A2 and CYCLIN-E1 in mRNA level by cordycepin treatment but no significant change was observed in pro-apoptotic or antiapoptotic proteins. The intracellular reactive oxygen species (ROS) level in cordycepin treated cells was increased significantly, implying that apoptosis might be induced by ROS. Western blot analysis confirmed significant decrease of Cdk-2 and mild decrease of Cyclin-E1 and Cyclin-A2 by cordycepin, which might be responsible for regulating cell cycle. Molecular docking indicated high binding affinity of cordycepin against Cdk-2. Molecular dynamics simulation further confirmed that the docked pose of cordycepin-Cdk-2 complex remained within the binding pocket for 10 ns. </P><P> Conclusion: Our study suggests that cordycepin is effective against cervical cancer cells, and regulating cell cycle via cell cycle proteins, especially downregulating Cdk-2, and inducing apoptosis by generating ROS are among the mechanisms of anticancer activities of cordycepin.
Collapse
Affiliation(s)
- Mousumi Tania
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
| | - Jakaria Shawon
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
| | - Kazi Saif
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
| | - Rudolf Kiefer
- Conducting Polymers in Composites and applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mahdi Safaei Khorram
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Mohammad A. Halim
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
| | - Md. Asaduzzaman Khan
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
| |
Collapse
|
16
|
Matuszewska A, Jaszek M, Stefaniuk D, Ciszewski T, Matuszewski Ł. Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor. PLoS One 2018; 13:e0197044. [PMID: 29874240 PMCID: PMC5991343 DOI: 10.1371/journal.pone.0197044] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to investigate in vitro the anticancer, antioxidant, and antibacterial activities of three low molecular weight subfractions I, II and III isolated from secondary metabolites produced by the wood degrading fungus Cerrena unicolor. The present study demonstrated that the low molecular weight subfractions III exhibited the strongest inhibitory activity towards breast carcinoma cells MDA-MB-231, prostatic carcinoma cells PC3, and breast cancer cells MCF7 with the half-maximal inhibitory concentration (IC50) value of 52,25 μg/mL, 60,66 μg/mL, and 54,92 μg/mL, respectively. The highest percentage of inhibition was noted at a concentration of 300 μg/mL in all the examined tumor lines. A significant percentage (59.08%) of ex-LMSIII inhibition of the MDA-MB-231 tumor line was reached at a concentration of 15 μg/ml, while the concentration applied did not affect normal human fibroblast cells. The low molecular weight subfraction III was the most effective and additionally showed the highest free radical 1,1-diphenyl-2-picryl-hydrazyl scavenging activity (IC50 20.39 μg/mL) followed by the low molecular weight subfraction I (IC50 64.14 μg/mL) and II (IC50 49.22 μg/mL). The antibacterial activity of the tested preparations was evaluated against three microorganisms: Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The MIC minimal inhibitory concentration (MIC) values for the low molecular weight subfraction I, II, and III showed a stronger inhibition effect on S. aureus than on B. subtilis and E. coli cells. The MIC values for the low molecular weight subfraction II against S. aureus, B. subtilis, and E. coli were 6.25, 12.5, and 100 mg/mL, respectively.
Collapse
Affiliation(s)
- Anna Matuszewska
- Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
- * E-mail:
| | - Magdalena Jaszek
- Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Stefaniuk
- Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Łukasz Matuszewski
- Department of Paediatric Orthopaedics and Rehabilitation, Medical University, Lublin, Poland
| |
Collapse
|
17
|
Wu CH, Liu FC, Pan CH, Lai MT, Lan SJ, Wu CH, Sheu MJ. Suppression of Cell Growth, Migration and Drug Resistance by Ethanolic Extract of Antrodia cinnamomea in Human Lung Cancer A549 Cells and C57BL/6J Allograft Tumor Model. Int J Mol Sci 2018. [PMID: 29522490 PMCID: PMC5877652 DOI: 10.3390/ijms19030791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to investigate the inhibitory activities of ethanolic extracts from Antrodia cinnamomea (EEAC) on lung cancer. Cell proliferation and cell cycle distribution were analyzed using (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay and flow cytometry, respectively. Wound-healing assay, Western blotting, and a murine tumor model were separately used to examine cell migration, protein expression, and tumor repression. Our results showed that EEAC induced cell cycle arrest at the G0/G1 phase resulting decreased cell viability in A549 cells. Moreover, EEAC up-regulated the growth-suppressing proteins, adenosine 5′-monophosphate-activated protein kinase (AMPK), p21 and p27, but down-regulated the growth-promoting proteins, protein kinase B (Akt), mammalian tarfet of rapamycin (mTOR), extracellular signal-regulating kinase 1/2 (ERK1/2), retinoblastoma protein (Rb), cyclin E, and cyclin D1. EEAC also inhibited A549 cell migration and reduced expression of gelatinases. In addition, our data showed that tumor growth was suppressed after treatment with EEAC in a murine allograft tumor model. Some bioactive compounds from EEAC, such as cordycepin and zhankuic acid A, were demonstrated to reduce the protein expressions of matrix metalloproteinase (MMP)-9 and cyclin D1 in A549 cells. Furthermore, EEAC enhanced chemosensitivity of A549 to paclitaxel by reducing the protein levels of caveolin-1. Our data suggests that EEAC has the potential to be an adjuvant medicine for the treatment of lung cancer.
Collapse
Affiliation(s)
- Chi-Han Wu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Fon-Chang Liu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare Taiwan, Taichung 40343, Taiwan.
| | - Shou-Jen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan.
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
18
|
Antrodia cinnamomea Oligosaccharides Suppress Lipopolysaccharide-Induced Inflammation through Promoting O-GlcNAcylation and Repressing p38/Akt Phosphorylation. Molecules 2017; 23:molecules23010051. [PMID: 29278394 PMCID: PMC5943963 DOI: 10.3390/molecules23010051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022] Open
Abstract
Antrodia cinnamomea (AC), an edible fungus growing in Taiwan, has various health benefits. This study was designed to examine the potential inhibitory effects of AC oligosaccharides on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. By trifluoroacetic acid degradation, two oligosaccharide products were prepared from AC polysaccharides at 90 °C (ACHO) or 25 °C (ACCO), which showed different oligosaccharide identities. Compared to ACCO, ACHO displayed better inhibitory effects on LPS-induced mRNA expression of pro-inflammatory cytokines including IL-6, IL-8, IL-1β, TNF-α and MCP-1 in macrophage cells. Further, ACHO significantly suppressed the inflammation in lung tissues of LPS-injected C57BL/6 mice. The potential anti-inflammatory molecular mechanism may be associated with the promotion of protein O-GlcNAcylation, which further skewed toward the marked suppression of p38 and Akt phosphorylation. Our results suggest that the suppressive effect of AC oligosaccharides on inflammation may be an effective approach for the prevention of inflammation-related diseases.
Collapse
|
19
|
Phan CW, Wang JK, Cheah SC, Naidu M, David P, Sabaratnam V. A review on the nucleic acid constituents in mushrooms: nucleobases, nucleosides and nucleotides. Crit Rev Biotechnol 2017; 38:762-777. [PMID: 29124970 DOI: 10.1080/07388551.2017.1399102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mushrooms have become increasingly important as a reliable food source. They have also been recognized as an important source of bioactive compounds of high nutritional and medicinal values. The nucleobases, nucleosides and nucleotides found in mushrooms play important roles in the regulation of various physiological processes in the human body via the purinergic and/or pyrimidine receptors. Cordycepin, a 3'-deoxyadenosine found in Cordyceps sinensis has received much attention as it possesses many medicinal values including anticancer properties. In this review, we provide a broad overview of the distribution of purine nucleobases (adenine and guanine); pyrimidine nucleobases (cytosine, uracil, and thymine); nucleosides (uridine, guanosine, adenosine and cytidine); as well as novel nucleosides/tides in edible and nonedible mushrooms. This review also discusses the latest research focusing on the successes, challenges, and future perspectives of the analytical methods used to determine nucleic acid constituents in mushrooms. Besides, the exotic taste and flavor of edible mushrooms are attributed to several nonvolatile and water-soluble substances, including the 5'-nucleotides. Therefore, we also discuss the total flavor 5'-nucleotides: 5'-guanosine monophosphate (5'-GMP), 5'-inosine monophosphate (5'-IMP), and 5'-xanthosine monophosphate (5'-XMP) in edible mushrooms.
Collapse
Affiliation(s)
- Chia-Wei Phan
- a Mushroom Research Centre , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Anatomy, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Joon-Keong Wang
- c Faculty of Medicine and Health Sciences , UCSI University , Kuala Lumpur , Malaysia
| | - Shiau-Chuen Cheah
- c Faculty of Medicine and Health Sciences , UCSI University , Kuala Lumpur , Malaysia
| | - Murali Naidu
- a Mushroom Research Centre , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Anatomy, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Pamela David
- a Mushroom Research Centre , University of Malaya , Kuala Lumpur , Malaysia.,b Department of Anatomy, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Vikineswary Sabaratnam
- a Mushroom Research Centre , University of Malaya , Kuala Lumpur , Malaysia.,d Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
20
|
Chang HL, Chang YM, Lai SC, Chen KM, Wang KC, Chiu TT, Chang FH, Hsu LS. Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and -9. Exp Ther Med 2016; 13:739-744. [PMID: 28352360 DOI: 10.3892/etm.2016.3994] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is among the most common causes of cancer-related mortality. It has a high mortality rate and resistance to chemotherapy due to its high metastatic potential. Naringenin, a bioactive compound identified in several fruits, displays anti-inflammatory and antitumor effects. Furthermore, naringenin mitigates the migration of several human cancer cell types. However, the effects of naringenin on lung cancer remain unclear. The current study investigated the mechanisms of naringenin on the migration of lung cancer A549 cells. The results indicate that significant alteration in A549 cell proliferation was observed in response to naringenin (0-300 µM) treatment for 24 and 48 h. Furthermore, a dose-dependent migration inhibition of A549 in the presence of naringenin was observed by healing and transwell migration assays. In addition, a zymography assay revealed that naringenin exhibited a concentration-dependent inhibition of matrix metalloproteinase (MMP)-2 and -9 activities. Furthermore, naringenin also inhibited the activities of AKT in a dose-dependent manner. These observations indicated that naringenin inhibited the migration of lung cancer A549 cells through several mechanisms, including the inhibition of AKT activities and reduction of MMP-2 and -9 activities.
Collapse
Affiliation(s)
- Huai-Lu Chang
- Department of Thoracic Surgery of Zouying Branch, Kaohsiung Armed Force General Hospital, Kaohsiung 81342, Taiwan, R.O.C
| | - Yuh-Ming Chang
- Department of Neurology, Division of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu 30071, Taiwan, R.O.C.; Institutes of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Shih-Chan Lai
- Department of Parasitology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Ke-Min Chen
- Department of Parasitology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Kuan-Chu Wang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Tsu-Ting Chiu
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Fu-Hsin Chang
- Department of Biomedical Research, Asia-Pacific Biotech Developing, Kaohsiung 80681, Taiwan, R.O.C.; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C
| | - Li-Sung Hsu
- Institutes of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
21
|
Antrodia cinnamomea alleviates cisplatin-induced hepatotoxicity and enhances chemo-sensitivity of line-1 lung carcinoma xenografted in BALB/cByJ mice. Oncotarget 2016; 6:25741-54. [PMID: 26325335 PMCID: PMC4694863 DOI: 10.18632/oncotarget.4348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023] Open
Abstract
Whereas cisplatin (cis-diamminedichloroplatinum II) is a first-line medicine to treat solid cancerous tumors, it often causes serious side effects. New medicines that have an equivalent or even better therapeutic effect but with free or less side effects than cisplatin are highly anticipated in cancer therapy. Recent reports revealed that Antrodia cinnamomea (AC) possesses hepatoprotective activity in addition to anticancer. In this study, we wanted to know whether AC enhances chemo-sensitivity of cisplatin and/or alleviates cisplatin-induced hepatotoxicity, as well as the underlying mechanisms thereof. Our results indicated that AC inhibited proliferation of line-1 lung carcinoma cells and rescued hepatic HepG2 cells from cisplatin-induced cell death in vitro. The fact is that AC and cisplatin synergized to constrain growth of line-1 lung carcinoma cells in BALB/cByJ mice. Quantitative real-time PCR further revealed that AC promoted expression of apoptosis-related genes, while it decreased expression of NF-κB and VEGF in tumor tissues. In liver, AC reduced cisplatin-induced liver dysfunctions, liver inflammation and hepatic apoptosis in addition to body weight restoration. In summary, AC is able to increase cisplatin efficacy by triggering expression of apoptosis-related genes in line-1 lung cancer cells as well as to protect liver from tissue damage by avoiding cisplatin-induced hepatic inflammation and cell death.
Collapse
|
22
|
Chen YY, Liu FC, Wu TS, Sheu MJ. Antrodia cinnamomea Inhibits Migration in Human Hepatocellular Carcinoma Cells: The Role of ERp57 and PGK-1. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1671-96. [DOI: 10.1142/s0192415x15500950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Evidences suggest that ERp57 and PGK-1 signaling lead to cancer cell proliferation and migration. We hypothesized that ERp57 and PGK-1 down-regulation may inactivate matrix metalloproteinase (MMP)-2, -9 expressions and inhibit hepatocellular carcinoma (HCC) migration. Antrodia cinnamomea is widely prescribed as an adjuvant to treat HCC in Taiwan. We aimed to investigate if ethanol extract of fruiting bodies of Antrodia cinnamomea (EEAC) and its active ingredients (i.e., zhankuic acid A, cordycepin, and adenosine) can modulate HCC cancer cells migration through ERp57 and PGK-1 and other molecular pathways such as PI3K/Akt and MAPK. ERp57 and PGK-1 siRNA were transfected into HCC to determine effects on MMP-2/-9 expressions and cell migration. We then examined the inhibitory effects of EEAC and its active ingredients on HCC migration and its related mechanisms including ERp57, PGK-1, PI3K/Akt, and MAPK signaling pathways. Down-regulation of ERp57 and PGK-1 by siRNA decreased MMP-2, -9 expressions and Transwell cell migration in HCC. Nontoxic EEAC markedly inhibited migration of HCC, and significantly inhibited activities and protein expressions of MMP-2 and -9, while the expression of the endogenous inhibitors (TIMP-1 and TIMP-2) of these proteins increased. Nontoxic EEAC and its active ingredients decreased ERp57, GLUD-1, GST-pi, and PGK-1 protein expressions. Finally, nontoxic EEAC inhibited the phosphorylated FAK, PI3K/Akt, and MAPK signaling. Our findings first indicate that EEAC and its ingredients effectively suppress HCC migration. Additionally, the molecular mechanisms appear to be mediated, in part, through the down-regulation of ERp57, PGK-1, MAPK, and PI3K/Akt.
Collapse
Affiliation(s)
- Ying-Yi Chen
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Fon-Chang Liu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Tian-Shung Wu
- Department of Pharmacy, National Cheng Kung University, Tainan 701, Taiwan
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
23
|
Aroui S, Aouey B, Chtourou Y, Meunier AC, Fetoui H, Kenani A. Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-P38-JNK signaling pathway in human glioblastoma. Chem Biol Interact 2015; 244:195-203. [PMID: 26721195 DOI: 10.1016/j.cbi.2015.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 01/25/2023]
Abstract
Naringin (4',5,7-trihydroxyflavanone 7-rhamnoglucoside), a natural flavonoid, has pharmacological properties. In the present study, we investigated the anti-metastatic activity of naringin and its molecular mechanism(s) of action in human glioblastoma cells. Naringin exhibits inhibitory effects on the invasion and adhesion of U87 cells in a concentration-dependent manner by Matrigel Transwell and cell adhesion assays. Naringin also inhibited the migration of U87 cells in a concentration-dependent manner by wound-healing assay. Additional experiments showed that naringin treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase (MMP)-2 and MMP-9 using a gelatin zymography assay and western blot analyses. Furthermore, naringin was able to reduce the protein phosphorylation of extracellular signal-regulated kinase ERK, p38 mitogen-activated protein kinase and c-Jun N-terminal kinase by western blotting. Collectively, our data showed that naringin attenuated the MAPK signaling pathways including ERK, JNK and p38 and resulted in the downregulation of the expression and enzymatic activities of MMP-2, MMP-9, contributing to the inhibition of metastasis in U87 cells. These findings proved that naringin may offer further application as an antimetastatic agent.
Collapse
Affiliation(s)
- Sonia Aroui
- Laboratory of Biochemistry, Molecular Mechanisms and Diseases Research Unit, UR12ES08, Faculty of Medicine, University of Monastir, BP5019, 5000 Monsatir, Tunisia.
| | - Bakhta Aouey
- Laboratory of Toxicology-Microbiology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Annie-Claire Meunier
- ERL CNRS/University of Poitiers n°7368, Georges Bonnet Street N°1, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Abderraouf Kenani
- Laboratory of Biochemistry, Molecular Mechanisms and Diseases Research Unit, UR12ES08, Faculty of Medicine, University of Monastir, BP5019, 5000 Monsatir, Tunisia
| |
Collapse
|
24
|
Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway. Tumour Biol 2015; 37:3831-9. [PMID: 26474590 DOI: 10.1007/s13277-015-4230-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
Gliomas are the most common and malignant primary brain tumors. They are associated with a poor prognosis despite the availability of multiple therapeutic options. Naringin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative and anti-cancer properties. However, there are no reports describing its effects on the invasion and migration of glioblastoma cell lines. Our results showed that the treatment of U251 glioma cell lines with different concentrations of naringin inhibited the invasion and migration of these cells. In addition, we revealed a decrease in the levels of matrix metalloproteinases (MMP-2) and (MMP-9) expression as well as proteinase activity in U251 glioma cells. In contrast, the expression of tissue inhibitor of metalloproteinases (TIMP-1) and (TIMP-2) was increased. Furthermore, naringin treatment decreased significantly the phosphorylated level of p38. Combined treatment with a p38 inhibitor (SB203580) resulted in the synergistic reduction of MMP-2 and MMP-9 expressions correlated with an increase of TIMP-1 and TIMP-2 expressions and the anti-invasive properties. However, p38 chemical activator (anisomycin) could block these effects produced by naringin, suggesting a direct downregulation of the p38 signaling pathway. These data suggest that naringin may have therapeutic potential for controlling invasiveness of malignant gliomas by inhibiting of p38 signal transduction pathways.
Collapse
|
25
|
Lee MM, Chen YY, Liu PY, Hsu S, Sheu MJ. Pipoxolan inhibits CL1–5 lung cancer cells migration and invasion through inhibition of MMP-9 and MMP-2. Chem Biol Interact 2015; 236:19-30. [DOI: 10.1016/j.cbi.2015.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/12/2015] [Accepted: 04/12/2015] [Indexed: 11/26/2022]
|
26
|
Huang YL, Chu YL, Ho CT, Chung JG, Lai CI, Su YC, Kuo YH, Sheen LY. Antcin K, an Active Triterpenoid from the Fruiting Bodies of Basswood-Cultivated Antrodia cinnamomea, Inhibits Metastasis via Suppression of Integrin-Mediated Adhesion, Migration, and Invasion in Human Hepatoma Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4561-4569. [PMID: 25911944 DOI: 10.1021/jf5059304] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Previous research demonstrated that the ethyl acetate extract from Antrodia cinnamomea suppresses the invasive potential of human breast and hepatoma cells, but the effective compounds are not identified. The main bioactive compounds of A. cinnamomea are ergostane-type triterpenoids, and the content of antcin K is the highest. The objective of this study was to evaluate the antimetastatic activity and mechanisms of antcin K purified from the fruiting body of basswood-cultivated A. cinnamomea on human liver cancer Hep 3B cells. The results showed that adhesion, migration, and invasion of Hep 3B cells were effectively inhibited by antcin K within 24 h of treatment. Antcin K not only reduced the protein expression and activity of MMP-2 and MMP-9 but also down-regulated vimentin and up-regulated E-cadherin in Hep 3B cells. In depth investigation for the molecular mechanism revealed that antcin K could reduce the protein expression of integrin β1, β3, α5, and αv and suppress phosphorylation of FAK, Src, PI3K, AKT, MEK, ERK, and JNK. These results suggested that antcin K was able to inhibit the metastasis of human hepatoma cells through suppression of integrin-mediated adhesion, migration, and invasion. Coupled with these findings, antcin K has a good potential to reduce the risk of liver cancer metastasis.
Collapse
Affiliation(s)
| | | | - Chi-Tang Ho
- ΔDepartment of Food Science, Rutgers University, New Brunswick, New Jersey, United States
| | - Jing-Gung Chung
- §Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | | | - Yueh-Hsiung Kuo
- ΠDepartment of Chinese Pharmaceutical Sciences and Chinese Medicine Resourceσ, China Medical University, Taichung, Taiwan
| | | |
Collapse
|
27
|
Lin CC, Chen CC, Kuo YH, Kuo JT, Senthil Kumar KJ, Wang SY. 2,3,5-Trimethoxy-4-cresol, an anti-metastatic constituent from the solid-state cultured mycelium of Antrodia cinnamomea and its mechanism. J Nat Med 2015; 69:513-21. [PMID: 25951809 DOI: 10.1007/s11418-015-0916-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
Antrodia cinnamomea is a valuable and unique edible fungus originating from the forests of Taiwan. In this study, an anti-metastatic compound, 2,3,5-trimethoxy-4-cresol (TMC), was isolated from the solid-state cultured mycelium of A. cinnamomea. According to the results obtained from cell wound healing, cell migration and invasion assays, TMC effectively suppressed movement, migration and invasion of lung cancer cells at the dosage of 5-40 μM, which was non-toxic to A549 cells. In addition, TMC reduced protein expression of Akt, MMP-2 and MMP-9 and enhanced E-cadherin and TIMP-1 protein expression, which are known to regulate cell adhesion, migration and invasion. Taken together, TMC effectively suppresses movement, migration and invasion of lung cancer cells, and achieves an anti-cancer metastasis effect.
Collapse
|
28
|
Lin X, Farooqi AA, Ismail M. Recent progress in fungus-derived bioactive agents for targeting of signaling machinery in cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1797-804. [PMID: 25848216 PMCID: PMC4381899 DOI: 10.2147/dddt.s77341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is becoming increasingly understood that tumor cells may have different mutations and dependencies on diverse intracellular signaling cascades for survival or metastatic potential. Overexpression of oncogenes, inactivation of tumor suppressor genes, genetic/epigenetic mutations, genomic instability, and loss of apoptotic cell death are some of the mechanisms that have been widely investigated in molecular oncology. We partition this multicomponent review into the most recent evidence on the anticancer activity of fungal substances obtained from in vitro and xenografted models, and these fungal substances modulate expression of oncogenic and tumor suppressor miRNAs. There are some outstanding questions regarding fungus-derived chemical-induced modulation of intracellular signaling networks in different cancer cell lines and preclinical models. Certain hints have emerged, emphasizing mechanisms via which apoptosis can be restored in TRAIL-resistant cancer cells. Reconceptualization of the knowledge obtained from these emerging areas of research will enable us to potentially identify natural agents with notable anticancer activity and minimal off-target effects. Integration of experimentally verified evidence obtained from cancer cell line gene expression with large-scale functional screening results and pharmacological sensitivity data will be helpful in identification of therapeutics with substantial efficacy. New tools and technologies will further deepen our understanding of the signaling networks that underlie the development of cancer, metastasis, and resistance to different therapeutics at both a personal and systems-wide level.
Collapse
Affiliation(s)
- Xiukun Lin
- Department of Pharmacology, Capital Medical University, Beijing, People's Republic of China
| | | | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| |
Collapse
|
29
|
Lai CI, Chu YL, Ho CT, Su YC, Kuo YH, Sheen LY. Antcin K, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces mitochondria and endoplasmic reticulum stress-mediated apoptosis in human hepatoma cells. J Tradit Complement Med 2015; 6:48-56. [PMID: 26870680 PMCID: PMC4737972 DOI: 10.1016/j.jtcme.2014.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/21/2014] [Accepted: 10/02/2014] [Indexed: 01/11/2023] Open
Abstract
Liver cancer is the second leading cause of cancer deaths in Taiwan as per the 2011 statistics and ranks fourth in cancer-related mortality in the world. Recent researches have shown that Antrodia cinnamomea, a Taiwan-specific medicinal mushroom, has biological activities, including hepatoprotection, anti-inflammation, antihepatitis B virus activity, and anticancer activity. In the present study, the antiproliferative activity and molecular mechanisms of antcin K, the most abundant ergostane triterpenoid from the fruiting bodies of basswood cultivated A. cinnamomea, were investigated using human hepatoma Hep 3B cells. The results showed that antcin K effectively reduced Hep 3B cells viability within 48 hours. Antcin K induced phosphatidylserine exposure, chromatin condensation, and DNA damage, but did not significantly increase autophagosome content or cause cell expansion and cell lysis. Thus, the principal mode of Hep 3B cells death induced by antcin K was apoptosis, rather than autophagy or necrosis. In-depth investigation of the molecular mechanisms revealed that antcin K first promoted reactive oxygen species generation and adenosine triphosphate depletion, leading to endoplasmic reticulum stress and resulting in mitochondrial membrane permeability changes. After losing the mitochondrial membrane potential, caspase-independent and caspase-dependent apoptosis-related proteins were released, including HtrA2, apoptotic-induced factor, endonuclease G, and cytochrome c. Cytochrome c activated caspase-9 and caspase-3, and cut downstream protein PARP, ultimately leading to cell apoptosis. These results suggested that antcin K induced mitochondrial and endoplasmic reticulum stress-mediated apoptosis in human hepatoma cells. Coupled with these findings, antcin K has a potential to be a complementary agent in liver cancer therapy.
Collapse
Affiliation(s)
- Chiao-I Lai
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yung-Lin Chu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; International Mater's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Chi-Tang Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Yu-Cheng Su
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
Pan CH, Lin WH, Chien YC, Liu FC, Sheu MJ, Kuo YH, Wu CH. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2. Toxicol Appl Pharmacol 2015; 282:215-26. [DOI: 10.1016/j.taap.2014.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 01/20/2023]
|
31
|
|
32
|
The functional influences of common ABCB1 genetic variants on the inhibition of P-glycoprotein by Antrodia cinnamomea extracts. PLoS One 2014; 9:e89622. [PMID: 24586917 PMCID: PMC3934917 DOI: 10.1371/journal.pone.0089622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Abstract
Antrodia cinnamomea is a traditional healthy food that has been demonstrated to possess anti-inflammatory, antioxidative, and anticacer effects. The purpose of this study was to evaluate whether the ethanolic extract of A. cinnamomea (EEAC) can affect the efflux function of P-glycoprotein (P-gp) and the effect of ABCB1 genetic variants on the interaction between EEAC and P-gp. To investigate the mechanism of this interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established and the expression of P-gp was confirmed by Western blot. The results of the rhodamine 123 efflux assay demonstrated that EEAC efficiently inhibited wild-type P-gp function at an IC50 concentration of 1.51 ± 0.08 µg/mL through non-competitive inhibition. The IC50 concentrations for variant-type 1236T-2677T-3435T P-gp and variant-type 1236T-2677A-3435T P-gp were 5.56 ± 0.49 µg/mL and 3.33±0.67 µg/mL, respectively. In addition, the inhibition kinetics of EEAC also changed to uncompetitive inhibition in variant-type 1236T-2677A-3435T P-gp. The ATPase assay revealed that EEAC was an ATPase stimulator and was capable of reducing verapamil-induced ATPase levels. These results indicate that EEAC may be a potent P-gp inhibitor and higher dosages may be required in subjects carrying variant-types P-gp. Further studies are required to translate this basic knowledge into clinical applications.
Collapse
|
33
|
Chen SC, Chien YC, Pan CH, Sheu JH, Chen CY, Wu CH. Inhibitory effect of dihydroaustrasulfone alcohol on the migration of human non-small cell lung carcinoma A549 cells and the antitumor effect on a Lewis lung carcinoma-bearing tumor model in C57BL/6J mice. Mar Drugs 2014; 12:196-213. [PMID: 24413802 PMCID: PMC3917270 DOI: 10.3390/md12010196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/14/2013] [Accepted: 12/16/2013] [Indexed: 01/03/2023] Open
Abstract
There are many major causes of cancer death, including metastasis of cancer. Dihydroaustrasulfone alcohol, which is isolated from marine coral, has shown antioxidant activity, but has not been reported to have an anti-cancer effect. We first discovered that dihydroaustrasulfone alcohol provided a concentration-dependent inhibitory effect on the migration and motility of human non-small cell lung carcinoma (NSCLC) A549 cells by trans-well and wound healing assays. The results of a zymography assay and Western blot showed that dihydroaustrasulfone alcohol suppressed the activities and protein expression of matrix metalloproteinase (MMP)-2 and MMP-9. Further investigation revealed that dihydroaustrasulfone alcohol suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. Dihydroaustrasulfone alcohol also suppressed the expression of PI3K and the phosphorylation of Akt. Furthermore, dihydroaustrasulfone alcohol markedly inhibited tumor growth in Lewis lung cancer (LLC)-bearing mice. We concluded that dihydroaustrasulfone alcohol is a new pure compound with anti-migration and anti-tumor growth activity in lung cancer and might be applied to clinical treatment in the future.
Collapse
Affiliation(s)
- Shuo-Chueh Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
- School of Medicine, China Medical University, Taichung 404, Taiwan; E-Mail:
| | - Yi-Chung Chien
- School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan; E-Mail:
- College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 110, Taiwan; E-Mail:
| | - Chun-Hsu Pan
- College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 110, Taiwan; E-Mail:
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (C.-H.W.); (J.-H.S.); (C.-Y.C.); Tel.: +886-2-2736-1661 (ext. 6100) (C.-H.W.); Fax: +886-2-2739-0671 (C.-H.W.); Tel.: +886-7-5252000 (ext. 5030) (J.-H.S.); Fax: +886-7-5255-0200 (J.-H.S.); Tel.: +886-4-22052121 (ext. 1921) (C.-Y.C.); Fax: +886-4-2203-8883 (C.-Y.C.)
| | - Chih-Yi Chen
- Division of Chest Surgery and Cancer Center, Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (C.-H.W.); (J.-H.S.); (C.-Y.C.); Tel.: +886-2-2736-1661 (ext. 6100) (C.-H.W.); Fax: +886-2-2739-0671 (C.-H.W.); Tel.: +886-7-5252000 (ext. 5030) (J.-H.S.); Fax: +886-7-5255-0200 (J.-H.S.); Tel.: +886-4-22052121 (ext. 1921) (C.-Y.C.); Fax: +886-4-2203-8883 (C.-Y.C.)
| | - Chieh-Hsi Wu
- College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 110, Taiwan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.-H.W.); (J.-H.S.); (C.-Y.C.); Tel.: +886-2-2736-1661 (ext. 6100) (C.-H.W.); Fax: +886-2-2739-0671 (C.-H.W.); Tel.: +886-7-5252000 (ext. 5030) (J.-H.S.); Fax: +886-7-5255-0200 (J.-H.S.); Tel.: +886-4-22052121 (ext. 1921) (C.-Y.C.); Fax: +886-4-2203-8883 (C.-Y.C.)
| |
Collapse
|
34
|
Lee SH, Jaganath IB, Manikam R, Sekaran SD. Inhibition of Raf-MEK-ERK and hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:271. [PMID: 24138815 PMCID: PMC4015811 DOI: 10.1186/1472-6882-13-271] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. METHODS Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. RESULTS Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. CONCLUSIONS Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.
Collapse
|
35
|
Lu MC, El-Shazly M, Wu TY, Du YC, Chang TT, Chen CF, Hsu YM, Lai KH, Chiu CP, Chang FR, Wu YC. Recent research and development of Antrodia cinnamomea. Pharmacol Ther 2013; 139:124-56. [DOI: 10.1016/j.pharmthera.2013.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 12/20/2022]
|
36
|
Liu FC, Lai MT, Chen YY, Lin WH, Chang SJ, Sheu MJ, Wu CH. Elucidating the inhibitory mechanisms of the ethanolic extract of the fruiting body of the mushroom Antrodia cinnamomea on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:874-882. [PMID: 23611488 DOI: 10.1016/j.phymed.2013.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to explore whether the ethanolic extract of Antrodia cinnamomea (EEAC), a medical mushroom form Taiwan, could affect the proliferation and migration of WEHI-3 cells in vitro and to explore the antitumor effects of EEAC in BALB/c mice engrafted with WEHI-3 cells. The results showed that EEAC inhibited the proliferation of WEHI-3 cells, resulting in the accumulation of cell in G0/G1 and G2/M phases, as determined by flow cytometry. Moreover, EEAC markedly reduced the migration of WEHI-3 cells, as determined by a transwell assay. Treatment of WEHI-3 cells with EEAC also decreased MMP-9 protein expression and enzyme activity. The protein levels of p-Akt, p-ERK1/2 were also decreased, whereas the expression of p21 and p27 was increased. Furthermore, in an in vivo model, EEAC treatment reduced the infiltration of WEHI-3 cells into the liver and spleens and decreased tumor growth. Other bioactive compounds, such as cordycepin and zhankuic acid A, have been demonstrated to reduce the expression of MMP-9, cyclin E, cyclin D1 and to increase the expression of p21, p27. This is the first study to investigate that the mechanisms by which EEAC reduce the proliferation and migration of WEHI-3 cells in vitro, as well as the ability of EEAC to reduced infiltration of WEHI-3 cells into the liver and spleen in vivo. The results suggest that EEAC may prove to be useful in future antileukemic therapies.
Collapse
Affiliation(s)
- Fon-Chang Liu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|