1
|
Liu M, Wang Q, Xu W, Wu J, Xu X, Yang H, Li X. Natural products for treating cytokine storm-related diseases: Therapeutic effects and mechanisms. Biomed Pharmacother 2023; 167:115555. [PMID: 37776639 DOI: 10.1016/j.biopha.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND A cytokine storm (CS) is a rapidly occurring, complex, and highly lethal systemic acute inflammatory response induced by pathogens and other factors. Currently, no clinical therapeutic drugs are available with a significant effect and minimal side effects. Given the pathogenesis of CS, natural products have become important resources for bioactive agents in the discovery of anti-CS drugs. PURPOSE This study aimed to provide guidance for preventing and treating CS-related diseases by reviewing the natural products identified to inhibit CS in recent years. METHODS A comprehensive literature review was conducted on CS and natural products, utilizing databases such as PubMed and Web of Science. The quality of the studies was evaluated and summarized for further analysis. RESULTS This study summarized more than 30 types of natural products, including 9 classes of flavonoids, phenols, and terpenoids, among others. In vivo and in vitro experiments demonstrated that these natural products could effectively inhibit CS via nuclear factor kappa-B, mitogen-activated protein kinase, and Mammalian target of rapamycin (mTOR) signaling pathways. Moreover, the enzyme inhibition assays revealed that more than 20 chemical components had the potential to inhibit ACE2, 3CL-protease, and papain-like protease activity. The experimental results were obtained using advanced technologies such as biochips and omics. CONCLUSIONS Various natural compounds in traditional Chinese medicine (TCM) extracts could directly or indirectly inhibit CS occurrence, potentially serving as effective drugs for treating CS-related diseases. This study may guide further exploration of the therapeutic effects and biochemical mechanisms of natural products on CS.
Collapse
Affiliation(s)
- Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanai Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Jingyu Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Tan H, Wang F, Hu J, Duan X, Bai W, Wang X, Wang B, Su Y, Hu J. Inhibitory interaction of flavonoids with organic cation transporter 2 and their structure-activity relationships for predicting nephroprotective effects. J Appl Toxicol 2023; 43:1421-1435. [PMID: 37057715 DOI: 10.1002/jat.4474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Organic cation transporter 2 (OCT2) is mainly responsible for the renal secretion of various cationic drugs, closely associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OCT2 inhibitors with little toxicity in natural products in reducing OCT2-mediated AKI is of great value. Flavonoids are enriched in various vegetables, fruits, and herbal products, and some were reported to produce transporter-mediated drug-drug interactions. This study aimed to screen potential inhibitors of OCT2 from 96 flavonoids, assess the nephroprotective effects on cisplatin-induced kidney injury, and clarify the structure-activity relationships of flavonoids with OCT2. Ten flavonoids exhibited significant inhibition (>50%) on OCT2 in OCT2-HEK293 cells. Among them, the six most potent flavonoid inhibitors, including pectolinarigenin, biochanin A, luteolin, chrysin, 6-hydroxyflavone, and 6-methylflavone markedly decreased cisplatin-induced cytotoxicity. Moreover, in cisplatin-induced renal injury models, they also reduced serum blood urea nitrogen (BUN) and creatinine levels to different degrees, the best of which was 6-methylflavone. The pharmacophore model clarified that the aromatic ring, hydrogen bond acceptors, and hydrogen bond donors might play a vital role in the inhibitory effect of flavonoids on OCT2. Thus, our findings would pave the way to predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and optimizing flavonoid structure to alleviate OCT2-related AKI.
Collapse
Affiliation(s)
- Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinbo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yan Su
- Department of Health Management and Service, Cangzhou Medical College, Hebei, 061001, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
3
|
Demir S, Kazaz IO, Kerimoglu G, Demir EA, Colak F, Biyik AF, Cansever Y, Mentese A. Propolis ameliorates ischemia/reperfusion-induced testicular damage by reducing oxidative stress. Rev Int Androl 2023; 21:100364. [PMID: 37267854 DOI: 10.1016/j.androl.2023.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 06/04/2023]
Abstract
PURPOSE This study was performed to evaluate the effect of ethanolic extract of Turkish propolis (EEP) on testicular ischemia/reperfusion (I/R) damage in rats in terms of biochemistry and histopathology, for the first time. METHODS A total of 18 male Sprague-Dawley rats were divided into three groups with six rats in each group: control, torsion/detorsion (T/D), and T/D+EEP (100mg/kg). Testicular torsion was performed by 720° rotating the left testicle in a clockwise direction. The duration of ischemia was 4h and orchiectomy was performed after 2h of detorsion. EEP was applied only once 30min before detorsion. Tissue malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant status (TAS) levels were determined using colorimetric methods. Oxidative stress index (OSI) was calculated by proportioning tissue TOS and TAS values to each other. Tissue glutathione (GSH) and glutathione peroxidase (GPx) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Johnsen's testicle scoring system was used for histological evaluation. RESULTS In the T/D group, it was determined that statistically significant decreasing in TAS, GSH, GPx levels and Johnsen score, and increasing in TOS, OSI and MDA levels (p<0.05) compared with control group. EEP administration statistically significantly restored this I/R damage (p<0.05). CONCLUSION This is the first study to show that propolis prevent I/R-induced testicular damage through its antioxidant activity. More comprehensive studies are needed to see the underlying mechanisms.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Ilke Onur Kazaz
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational High School, Karadeniz Technical University, 61750 Trabzon, Turkey
| | - Fatih Colak
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ayse Firuze Biyik
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Yasin Cansever
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
4
|
Focak M, Suljevic D. Ameliorative Effects of Propolis and Royal Jelly against CCl 4 -Induced Hepatotoxicity and Nephrotoxicity in Wistar Rats. Chem Biodivers 2023; 20:e202200948. [PMID: 36416002 DOI: 10.1002/cbdv.202200948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Carbon tetrachloride (CCl4 ) is known to have hepatotoxic and nephrotoxic effects. During the two-month CCl4 exposure of Wistar rats, propolis extract (PE) and royal jelly (RJ) were added in order to test the potential protective effect against hepato-renal injury. Ketonuria, proteinuria, high creatinine and urea levels are the result of CCl4 -induced nephrotoxicity. Severe disorders of hematological indicators indicate anemia; high values of leukocytes indicate inflammatory condition. Cytogenetic impairments in hepatocytes, aggregation of platelets, and hypoproteinemia indicate severe liver impairment. Results suggest a more significant protective role of RJ compared to PE. Both extracts regulated proteinuria, ketonuria, hypoproteinemia and reduced platelet aggregation in the hepatic circulation. The increase in the number of erythrocytes (RBC) suggest protective effects against anemia; the decrease in the number of leukocytes can be linked to anti-inflammatory effects. PE and RJ have a beneficial effect against hepato-renal injury, anemia and anti-inflammatory conditions caused by CCl4 .
Collapse
Affiliation(s)
- Muhamed Focak
- Department of Biology, University of Sarajevo-Faculty of Science, Bosnia and Herzegovina
| | - Damir Suljevic
- Department of Biology, University of Sarajevo-Faculty of Science, Bosnia and Herzegovina
| |
Collapse
|
5
|
Plants with Therapeutic Potential for Ischemic Acute Kidney Injury: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6807700. [PMID: 35656467 PMCID: PMC9152371 DOI: 10.1155/2022/6807700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Acute kidney injury (AKI) is a complex condition which has an intricate pathology mostly involving hemodynamic, inflammatory, and direct toxic effects at the cellular level with high morbidity and mortality ratios. Renal ischemic reperfusion injury (RIRI) is the main factor responsible for AKI, most often observed in different types of shock, kidney transplantation, sepsis, and postoperative procedures. The RIRI-induced AKI is accompanied by increased reactive oxygen species generation together with the activation of various inflammatory pathways. In this context, plant-derived medicines have shown encouraging nephroprotective properties. Evidence provided in this systemic review leads to the conclusion that plant-derived extracts and compounds exhibit nephroprotective action against renal ischemic reperfusion induced-AKI by increasing endogenous antioxidants and decreasing anti-inflammatory cytokines. However, there is no defined biomarker or target which can be used for treating AKI completely. These plant-derived extracts and compounds are only tested in selected transgenic animal models. To develop the results obtained into a therapeutic entity, one should apply them in proper vertebrate multitransgenic animal models prior to further validation in humans.
Collapse
|
6
|
Hossain S, Yousaf M, Liu Y, Chang D, Zhou X. An Overview of the Evidence and Mechanism of Drug-Herb Interactions Between Propolis and Pharmaceutical Drugs. Front Pharmacol 2022; 13:876183. [PMID: 35444531 PMCID: PMC9015648 DOI: 10.3389/fphar.2022.876183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
With the growing interest in the medicinal use of propolis, numerous studies have reported significant interactions between propolis extract and pharmaceutical drugs which may result in great clinical benefits or risks. The present study aims to review the drug-herb interactions of the full-spectrum propolis extract and main pharmaceutical drugs from the pharmacodynamic and pharmacokinetic aspects and elucidate the underlying pharmacological mechanisms. A literature search was conducted between June 2021 and February 2022 in Google Scholar, PubMed, MEDLINE, and EMBASE databases to include English studies from years 2000 to 2022 that evaluated the interaction of full-spectrum propolis extract and standard pharmaceutical drugs/cytochromes P450s. Studies that looked into geopropolis, propolis fractions, and isolated compounds, or interaction of propolis with foods, bioactive molecules, or receptors other than standard pharmaceutical drugs were excluded. From a pharmacodynamic perspective, propolis extract exhibited positive or synergistic interaction with several chemotherapeutic drugs by enhancing antitumor activity, sensitizing the chemoresistance cell lines, and attenuating multi-organ toxicity. The molecular mechanisms were associated with upregulating the apoptotic signal and immunomodulatory activity and attenuating oxidative damage. Propolis extract also enhanced the anti-bacterial and antifungal activities of many antimicrobial drugs against sensitive and resistant organisms, with an effect against the gram-positive bacteria stronger than that of the gram-negative bacteria. The synergistic action was related to strengthened action on interfering cell wall integrity and protein synthesis. The strong antioxidant activity of propolis also strengthened the therapeutic effect of metformin in attenuating hyperglycemia and pancreatic damage, as well as mitigating oxidative stress in the liver, kidney, and testis. In addition, propolis showed a potential capacity to enhance short-term and long-term memory function together with donepezil and improve motor function with levodopa and parasite killing activity with praziquantel. Pharmacokinetic studies showed inhibitory activities of propolis extracts on several CYP450 enzymes in vitro and in vivo. However, the effects on those CYP450 were deemed insignificant in humans, which may be attributed to the low bioavailability of the contributing bioactive compounds when administered in the body. The enhanced bioactivities of propolis and main pharmaceutical drugs support using propolis in integrative medicine in anti-cancer, anti-microbial, antidiabetic, and neurological disorders, with a low risk of altered pharmacokinetic activities.
Collapse
Affiliation(s)
- Sanowar Hossain
- Department of Pharmacy, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Muhammad Yousaf
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
7
|
Anvarifard P, Anbari M, Ostadrahimi A, Ardalan M, Ghoreishi Z. A comprehensive insight into the molecular and cellular mechanisms of the effects of Propolis on preserving renal function: a systematic review. Nutr Metab (Lond) 2022; 19:6. [PMID: 35057819 PMCID: PMC8772196 DOI: 10.1186/s12986-021-00639-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The present systematic review is conducted, focusing on the existing evidence of Propolis's effects due to its various health benefits, mainly antioxidant and anti-inflammatory properties on preserving renal function. METHODS A systematic search of PubMed, Scopus, Embase, ProQuest, and Google Scholar was undertaken for relevant papers published from the start until January 2021. RESULTS This review revealed that Propolis affects fasting blood sugar (FBS), postprandial blood glucose, advanced glycation end products (AGEs) concentrations, malondialdehyde (MDA) levels, urinary concentrations of reactive oxygen metabolites (Tbars), total oxidant status (TOS), oxidative stress index (OSI), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation favorably. The findings on hemoglobin A1C (HbA1C), insulin, homeostasis model assessment of insulin resistance (HOMA-IR), β-cell function (HOMA-β), quantitative insulin sensitivity check index (QUICKI), and lipid profile were controversial. Moreover, a significant reduction in renal nuclear factor kappa B (NF-κB), serum immunoglobulins, renal ED-1+ cells, and urinary monocyte chemoattractant protein-1 (MCP-1) following Propolis supplementation has been reported, while the results on interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), nitric oxide (NO), nitric oxide synthetase (NOS), and high sensitivity C-reactive protein (hs-CRP) were controversial. Furthermore, included studies showed its anti- proteinuria and kidney restoring effects. CONCLUSION In this review, both human and animal studies provide us evidences that Propolis could potentially improve the glycemic status, oxidative stress, renal tissue damage, and renal function. Further studies are needed to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Paniz Anvarifard
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Anbari
- Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Attar-Neishaburi St., Golgasht Alley, Azadi Blvd., Tabriz, Iran
| | | | - Zohreh Ghoreishi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Attar-Neishaburi St., Golgasht Alley, Azadi Blvd., Tabriz, Iran.
| |
Collapse
|
8
|
El-Haskoury R, Al-Waili N, Kamoun Z, Makni M, Al-Waili A, Lyoussi B. Antioxidant activity and protective effect of propolis against carbon tetrachloride-induced liver and kidney injury by modulation of oxidative parameters. Vet World 2021; 14:3076-3083. [PMID: 35153395 PMCID: PMC8829412 DOI: 10.14202/vetworld.2021.3076-3083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Aim: Propolis has a protective effect against cellular damage caused by toxic agents such as drugs, metals, xenobiotics, and chemicals. The aim of this study was to investigate the antioxidant activity and the effect of ethanolic extract of propolis on carbon tetrachloride (CCl4)-induced oxidative stress on kidney and liver injury in rat. Materials and Methods: The study quantified phenol, flavone, and flavonol in propolis and assessed antioxidant activity using 2, 2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power, and molybdate. The investigators used four groups of rats to study the effect of propolis on CCl4-induced toxicity. Propolis extract was given orally (500 mg/kg) for 12 days, and CCl4 (1 mL/kg) was administered intraperitoneally on day 5 of the experiment. Blood and tissue samples of the liver and kidney were collected on day 13 to measure biochemical and oxidative parameters. The parameters included malondialdehyde (MDA), protein carbonyl formation (PCO), advanced oxidation protein products (AOPP), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and ascorbic acid (AA). Biochemical parameters included liver enzymes, blood urea (BU), creatinine, and uric acid (UA). Results: CCl4 decreased antioxidant agents, including CAT, GPx, GSH, and AA in the liver and kidney tissues. The oxidative agents’ levels, including MDA, PCO, and AOPP, increased by CCl4 compared to the control group. CCl4 increased liver enzymes, UA, BU, and creatinine in the blood samples. Propolis significantly alleviated liver and kidney function, improved antioxidant parameters, and decreased levels of oxidative agents. Conclusion: The data showed for the 1st time that Moroccan propolis has a protective effect against CCl4-induced kidney and liver toxicity by maintaining the activity of the antioxidant defense system, which was most likely due to its antioxidant activity.
Collapse
Affiliation(s)
- Redouan El-Haskoury
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Noori Al-Waili
- New York Medical Care for Nephrology, Richmond Hill, New York, United States
| | - Zeineb Kamoun
- Laboratory of Toxicology-Microbiology, and Environmental Health (UR11ES70), Faculty of Sciences of Sfax, Higher Institute of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Mohamed Makni
- Laboratory of Toxicology-Microbiology, and Environmental Health (UR11ES70), Faculty of Sciences of Sfax, Higher Institute of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Ahmed Al-Waili
- New York Medical Care for Nephrology, Richmond Hill, New York, United States
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
9
|
Green propolis extract attenuates acute kidney injury and lung injury in a rat model of sepsis. Sci Rep 2021; 11:5925. [PMID: 33723330 PMCID: PMC7960724 DOI: 10.1038/s41598-021-85124-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis is the leading cause of acute kidney injury (AKI) and lung injury worldwide. Despite therapeutic advances, sepsis continues to be associated with high mortality. Because Brazilian green propolis (GP) has promising anti-inflammatory, antioxidant, and immunomodulatory properties, we hypothesized that it would protect kidneys and lungs in rats induced to sepsis by cecal ligation and puncture (CLP). Male Wistar rats were divided into groups-control (sham-operated); CLP (CLP only); and CLP + GP (CLP and treatment with GP at 6 h thereafter)-all receiving volume expansion and antibiotic therapy at 6 h after the procedures. By 24 h after the procedures, treatment with GP improved survival, attenuated sepsis-induced AKI, and restored renal tubular function. Whole-blood levels of reduced glutathione were higher in the CLP + GP group. Sepsis upregulated the Toll-like receptor 4/nuclear factor-kappa B axis in lung and renal tissues, as well as increasing inflammatory cytokine levels and macrophage infiltration; all of those effects were attenuated by GP. Treatment with GP decreased the numbers of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive cells in renal and lung tissue, as well as protecting the morphology of the renal mitochondria. Our data open the prospect for clinical trials of the use of GP in sepsis.
Collapse
|
10
|
Propolis in Metabolic Syndrome and Its Associated Chronic Diseases: A Narrative Review. Antioxidants (Basel) 2021; 10:antiox10030348. [PMID: 33652692 PMCID: PMC7996839 DOI: 10.3390/antiox10030348] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Propolis is a resinous product collected by bees from plants to protect and maintain the homeostasis of their hives. Propolis has been used therapeutically by humans for centuries. This review article attempts to analyze the potential use of propolis in metabolic syndrome (MetS) and its associated chronic diseases. MetS and its chronic diseases were shown to be involved in at least seven out of the top 10 causes of death in 2019. Patients with MetS are also at a heightened risk of severe morbidity and mortality in the present COVID-19 pandemic. Propolis with its antioxidant and anti-inflammatory properties is potentially useful in ameliorating the symptoms of MetS and its associated chronic diseases. The aim of this article is to provide a comprehensive review on propolis and its therapeutic benefit in MetS and its chronic diseases, with an emphasis on in vitro and in vivo studies, as well as human clinical trials. Moreover, the molecular and biochemical mechanisms of action of propolis are also discussed. Propolis inhibits the development and manifestation of MetS and its chronic diseases by inhibiting of the expression and interaction of advanced glycation end products (AGEs) and their receptors (RAGEs), inhibiting pro-inflammatory signaling cascades, and promoting the cellular antioxidant systems.
Collapse
|
11
|
Silva TSJD, Soares AA, Rocha TM, Pimenta AT, Miron D, Silva RJ, Viana GS, Leal LK(K. Spondias mombin: Quality control and anti-inflammatory activity in human neutrophils. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Güvenç M, Cellat M, Uyar A, Özkan H, Gokcek İ, İsler CT, Yakan A. Nobiletin Protects from Renal Ischemia-Reperfusion Injury in Rats by Suppressing Inflammatory Cytokines and Regulating iNOS-eNOS Expressions. Inflammation 2020; 43:336-346. [PMID: 31705353 DOI: 10.1007/s10753-019-01123-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ischemia-reperfusion injury is an organ failure caused by hypoxia and reperfusion, which is closely associated with oxidative stress and inflammation. In this study, we investigated whether nobiletin had protective effects on inflammatory parameters, oxidative damage, iNOS-eNOS expressions, and histopathological structure of renal tissue in rats with renal ischemia-reperfusion injury. For this purpose, 24 rats were divided into 4 groups: group 1 (Control), group 2 (Ischemia-Reperfusion-IR), group 3 (Nobiletin-10 mg/kg p.o.), group 4 (Nobiletin + IR). The study was continued for 7 days. At the end of the study, urea (p < 0.05), creatine (p < 0.05), MDA (p < 0.001), TNF-alpha (p < 0.001), IL-1 beta (p < 0.05), and IL-6 (p < 0.001) levels increased in the IR group; however, a significant decrease occurred in group 4 (Nobiletin + IR) and it reached the control group levels. In the IR group, GSH (p < 0.01) levels, and GSH.Px (p < 0.01) and CAT (p < 0.05) activities decreased whereas they increased significantly in group 4 (Nobiletin + IR) and reached the same levels as the control group. In histopathological analyses, destruction and increased iNOS-eNOS expressions in the IR group showed a significant decrease in group 4 (Nobiletin + IR). As a result, the application of nobiletin has shown that it has protective effects by reducing kidney damage caused by IR injury.
Collapse
Affiliation(s)
- Mehmet Güvenç
- Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Physiology, Antakya, Turkey.
| | - Mustafa Cellat
- Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Physiology, Antakya, Turkey
| | - Ahmet Uyar
- Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Pathology, Antakya, Turkey
| | - Hüseyin Özkan
- Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Genetics, Antakya, Turkey
| | - İshak Gokcek
- Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Physiology, Antakya, Turkey
| | - Cafer Tayer İsler
- Mustafa Kemal University, Faculty of Veterinary Medicine, Department Surgery, Antakya, Turkey
| | - Akın Yakan
- Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Genetics, Antakya, Turkey
| |
Collapse
|
13
|
Abd-Elrazek A, Mahmoud S, Abd ElMoneim A. The comparison between curcumin and propolis against sepsis-induced oxidative stress, inflammation, and apoptosis in kidney of adult male rat. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Propolis is a honeybee product displaying an anti-inflammatory, antimicrobial, and antioxidant effect on several tested animal models. Curcumin a polyphenol extracted from turmeric that gained interest as a potentially safe and inexpensive treatment for kidney diseases.
The present study aimed to compare the protective effects of curcumin and propolis on endotoxemia-induced renal dysfunction.
Results
Sepsis induction caused a marked decline in renal GSH, GPx, and GR, as well as antioxidant enzyme activities; CAT and SOD. Elevation in LPO, NO, IL-1β, and PGE2 contents were observed as well. A marked induction in Bax contents, Bax\Bcl2 ratio, accompanied by activation of NF-kB in the kidney of sepsis-induced rats was reported. However, Prop pretreatment of endotoxemic rats was effective in controlling the depletion of renal GSH content and its correlated enzymes; Cur was more potent in maintaining the renal CAT and SOD contents, as well as, dimensioning LPO content. Despite the renal inflammatory marker IL-1β, PGE2, NO contents, Bax\Bcl2 ratio, and NF-kB activation were greatly reduced by both curcumin and propolis, only Cur pretreatment attenuated NF-kB activation in kidney tissue of septic rat.
Conclusion
Though pretreatment of either Cur or Prop to septic rats protected their kidneys against oxidation, inflammation, and apoptosis status, Cur pretreatment was superior in protecting rats’ kidney after sepsis induction.
Collapse
|
14
|
Shi P, Geng Q, Chen L, Du T, Lin Y, Lai R, Meng F, Wu Z, Miao X, Yao H. Schisandra chinensis bee pollen's chemical profiles and protective effect against H 2O 2-induced apoptosis in H9c2 cardiomyocytes. BMC Complement Med Ther 2020; 20:274. [PMID: 32912207 PMCID: PMC7487998 DOI: 10.1186/s12906-020-03069-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
Background Schisandra chinensis (Turcz.) Baill bee pollen extract (SCBPE) is often used as a functional food in China due to its good antioxidant property. However, its chemical compositions and effects on H9c2 cardiomyocytes against H2O2-induced cell injury still lacks of reports thus far. This study aimed to characterize the main components of SCBPE and investigate its protective effects against H2O2-induced H9c2 cardiomyocyte injury. Methods The main components of SCBPE were analyzed via ultraperformance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (UPLC–QTOF MS/MS). The three main nucleosides in SCBPE were quantitatively analyzed via ultraperformance liquid chromatography–diode array detection. Furthermore, the potential mechanism by which SCBPE exerts protective effects against H2O2-induced H9c2 cardiomyocyte injury was explored for the first time via cell survival rate measurements; cell morphological observation; myocardial superoxide dismutase (SOD) activity and malondialdehyde (MDA) and glutathione (GSH) level determination; flow cytometry; and quantitative polymerase chain reaction. Results Two carbohydrates, three nucleosides, and nine quinic acid nitrogen-containing derivatives in SCBPE were identified or tentatively characterized via UPLC–QTOF MS/MS. The nine quinic acid nitrogen-containing derivatives were first reported in bee pollen. The contents of uridine, guanosine, and adenosine were 2.4945 ± 0.0185, 0.1896 ± 0.0049, and 1.8418 ± 0.0157 μg/mg, respectively. Results of in vitro experiments showed that cell survival rate, myocardial SOD activity, and GSH level significantly increased and myocardial MDA level significantly decreased in SCBPE groups compared with those in H2O2 group. Cell morphology in SCBPE groups also markedly improved compared with that in H2O2 group. Results indicated that SCBPE protected H9c2 cardiomyocytes from H2O2-induced apoptosis by downregulating the mRNA expressions of Bax, cytochrome C, and caspase-3 and upregulating the Bcl-2 mRNA expression. Conclusions This study is the first to report that SCBPE could protect against oxidative stress injury and apoptosis in H2O2-injured H9c2 cells. Results indicated that the nucleosides and quinic acid nitrogen-containing derivatives could be the main substances that exert protective effects against H2O2-induced H9c2 cardiomyocyte injury.
Collapse
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianqian Geng
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lifu Chen
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyu Du
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Lin
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongcai Lai
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fei Meng
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Wu
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqing Miao
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
15
|
The Mechanisms of the Herbal Components of CRSAS on HK-2 Cells in a Hypoxia/Reoxygenation Model Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5352490. [PMID: 32351597 PMCID: PMC7174917 DOI: 10.1155/2020/5352490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 01/22/2023]
Abstract
Background Acute kidney injury is a global problem, which brings a great burden to the society and family. The component of rhubarb, Salvia miltiorrhiza, Astragalus membranaceus, and safflower (CRSAS) has been proved as an useful agent to treat acute kidney injury (AKI) patients in China. Objective To assess the effect of CRSAS on human renal tubular epithelial cells (HK-2) after the hypoxia/reoxygenation (H/R) and investigate the potential mechanisms. Methods Network pharmacology was used to predict the potential pathways shared by CRSAS and AKI. Cell counting kit-8 (CCK-8) was used to assess the HK-2 vitality. Apoptosis of HK-2 cells was detected by carboxyfluorescein succinimidyl ester/propidium iodide (CFSF/PI) staining. Expression of GRP78, CHOP, caspase-3, and Bax was detected by western blot and quantitative real-time RT-PCR. Result CRSAS and AKI shared the endoplasmic reticulum stress (ERS) pathway based on network pharmacology analysis. CRSAS increases the vitality of HK-2 cells and reduces the apoptosis of HK-2 cells induced by H/R injury. The expression of GRP78 and CHOP in CRSAS groups was lower than that of control groups. Conclusions H/R can induce HK-2 cell apoptosis and ERS. CRSAS can reduce HK-2 cell apoptosis by inhibiting the ERS. Therefore, CRSAS might be able to treat kidney disease due to I/R injury. Animal experiment should be done to further prove our finding.
Collapse
|
16
|
Geyikoglu F, Koc K, Colak S, Erol HS, Cerig S, Yardimci BK, Cakmak O, Dortbudak MB, Eser G, Aysin F, Ozek NS, Yildirim S. Propolis and Its Combination with Boric Acid Protect Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Inhibiting Oxidative Stress, Inflammation, DNA Damage, and Apoptosis in Rats. Biol Trace Elem Res 2019; 192:214-221. [PMID: 30783919 DOI: 10.1007/s12011-019-1649-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022]
Abstract
Ischemia reperfusion (I/R) injury which causes kidney dysfunction is one of the most studied diseases directly linked to oxidative stress. In this regard, it is important to protect cells against damage by inducing antioxidant response. Herein, we aimed to evaluate the therapeutic roles and possible mechanisms of propolis and boric acid in kidney I/R injury based on relevant basic research and clinical studies. Sprague-Dawley rats were subjected to 50 min of ischemia followed by 3 h of reperfusion. Animals were randomly divided into a control group (the abdominal wall was just opened and closed), an I/R injury group, the propolis intervention group (200 mg/kg, intragastric administration, 1 h before ischemia), boric acid intervention group (14 mg/kg, intragastric administration 1 h before ischemia), and the propolis + boric acid intervention group (intragastric administration 1 h before ischemia). Kidney function, the antioxidant defensive system, and renal damage were assessed. In addition, the oxidative stress and inflammatory status were estimated in renal tissue. Furthermore, DNA damageand apoptosis were detected by immunohistochemistry. When compared with I/R group, propolis alone and especially propolis + boric acid groups significantly improved functional parameters. While the antioxidant response was increased, renal injury size and apoptosis were significantly decreased in both groups. Also, the MDA and TNF-α levels besides the 8-OHdG formation were downregulated. According to these outcomes, it can be said that especially propolis together with boric acid ameliorates kidney injury caused by I/R through acting as an antioxidant, anti-inflammatory, and antiapoptotic agent. In conclusion, propolis alone and its combination with boric acid could be developed as therapeutic agents against serious renal I/R injuries.
Collapse
Affiliation(s)
- Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey.
| | - Suat Colak
- Department of Biology, Uzumlu Vocational, Erzincan University, Erzincan, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Salim Cerig
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Berna Kavakcioglu Yardimci
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, Izmir, Turkey
| | - Ozge Cakmak
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | | - Gizem Eser
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
17
|
Evaluation with endothelial nitric oxide synthase (eNOS) immunoreactivity of the protective role of astaxanthin on hepatorenal injury of remote organs caused by ischaemia reperfusion of the lower extremities. GASTROENTEROLOGY REVIEW 2019; 15:161-172. [PMID: 32550950 PMCID: PMC7294969 DOI: 10.5114/pg.2019.88620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
Introduction Ischemia and following reperfusion triggers local and systemic damage with the involvement of free oxygen radicals and inflammatory mediators. Although blood flow saves extremity from necrosis,multi organ dysfunction may progress and cause death of the patient. Aim The study aims to examine the effect of astaxanthin (AST) on the prevention of remote tissue injury resulting from lower extremity ischaemia–reperfusion (I/R). To elucidate the potential hepatoprotective and renoprotective effects of AST, in addition to histopathological findings, the intrahepatic and intrarenal kinetics of endothelial nitric oxide synthase (eNOS) during I/R were determined by using the immunohistochemical method. Material and methods Twenty-eight male Wistar albino rats were divided into four groups. For the control group, only the anaesthesia procedure (2 h) was conducted without I/R. In the I/R group, 2 h of reperfusion was conducted following ischaemia under anaesthesia. For the I/R group + AST, 7 days prior to ischaemia, 125 mg/kg AST was given with gavage, and 2 h of ischaemia and 2 h of reperfusion were conducted under anaesthesia. Following necropsy, liver and kidney tissue samples were fixed in 10% buffered formalin for 48 h for histopathological and immunohistochemical investigation. Results The histological analysis revealed that severe I/R hepatorenal injury such as inflammatory cell infiltration, dilatation in sinusoids and lumen of tubuli, congestion in glomerular capillaries, degeneration in hepatocyte and epithelial cells of tubuli, and necrosis was ameliorated by AST. Immunohistochemical studies showed that the I/R-induced elevation in eNOS expression was reduced by AST treatment. Conclusions In the case of acute lower extremity I/R, AST decreased the ischaemic injury in liver and renal tissues by protecting the microcirculation and providing a cytoprotective effect with vasodilatation.
Collapse
|
18
|
Braik A, Lahouel M, Merabet R, Djebar MR, Morin D. Myocardial protection by propolis during prolonged hypothermic preservation. Cryobiology 2019; 88:29-37. [DOI: 10.1016/j.cryobiol.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022]
|
19
|
Jing R, Ban Y, Xu W, Nian H, Guo Y, Geng Y, Zang Y, Zheng C. Therapeutic effects of the total lignans from Vitex negundo seeds on collagen-induced arthritis in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152825. [PMID: 30831463 DOI: 10.1016/j.phymed.2019.152825] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/08/2018] [Accepted: 01/08/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND The seeds of Vitex negundo, with rich lignans metabolites, have been widely used as a traditional Chinese medicine and Ayurvedic herbal medicine for the treatment of rheumatism and joint inflammation. The total lignans of Vitex negundo seeds (TOV) were suggested to play an important role in the treatment of arthritis. PURPOSE The aim of the study was designed to investigate the anti-arthritic effects of TOV on collagen-induced arthritis (CIA) in rats as well as its possible mechanisms. METHODS TOV was prepared by combined macroporous resin and polyamide column chromatography, and constituents of TOV were analyzed by HPLC. CIA model in rats was established by immunization with chicken type II collagen and then the rats were intragastrically administrated with TOV for 30 days. Rat arthritis was evaluated by measurements of hind paw edema, arthritis index score, weight growth and indices of thymus and spleen, and by histological examination. Levels of serum MMP-2, MMP-3, MMP-9, IL-1β, IL-6, IL-8, IL-10, IL-17A and TNF-α were also examined. In addition, the expression of COX-2, iNOS and IκB, p-IκB in synovial tissues was evaluated by western blotting. The analgesic and anti-inflammatory effects of TOV were also evaluated in acetic acid-induced writhing and xylene-induced ear edema in mice, respectively. In addition, acute toxicity test was employed to preliminarily assess the safety of TOV. RESULTS TOV significantly inhibited the paw edema and decreased the arthritis index, with no influence on the body weight and the indices of thymus and spleen of CIA rats. Meanwhile, TOV dose-dependently reduced the infiltration of inflammatory cells, synovial hyperplasia and attenuated cartilage damage. Additionally, the serum levels of IL-1β, IL-6, IL-8, IL-17A, TNF-α, MMP-3 and MMP-9 were markedly decreased, while the level of serum IL-10 was increased in TOV-treated rats. The significant reduction of the expression of COX-2, iNOS and p-IκB and the notable increase of IκB in synovial tissues were also observed in TOV-treated animals. TOV also significantly inhibited acetic acid-induced writhing and decreased xylene-induced ear edema in mice. Finally, the maximal tolerable dose (MTD) of TOV was determined to be 16.0 g/kg. CONCLUSION These results suggest that TOV has significant anti-arthritic effects on collagen-induced arthritis in rats, which may be attributed to the inhibition of the levels of IL-1β, IL-6, IL-8, IL-17A, TNF-α, MMP-3 and MMP-9, and the increase of IL-10 in serum as well as down-regulation of the protein expression of COX-2 and iNOS in synovial tissues via suppressing the phosphorylation and degradation of IκB. Due to its high efficacy and safety, TOV can be regarded as a promising drug candidate for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Rui Jing
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Yanfei Ban
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Yaoli Guo
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Yiya Geng
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Yuan Zang
- Department of Orthpedics, Xijing Hospital, Fourth Military Medical University, Shaanxi Xi'an 710032, China.
| | - Chengjian Zheng
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
20
|
El Menyiy N, Al-Waili N, El Ghouizi A, Al-Waili W, Lyoussi B. Evaluation of antiproteinuric and hepato-renal protective activities of propolis in paracetamol toxicity in rats. Nutr Res Pract 2018; 12:535-540. [PMID: 30515282 PMCID: PMC6277308 DOI: 10.4162/nrp.2018.12.6.535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/31/2018] [Accepted: 09/05/2018] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES Propolis has a rich source of bioactive compounds and has renal and hepatic protective properties. The purpose of this study was to investigate the beneficial effect of hydro-ethanolic extract of propolis against paracetamol-induced liver damage and impairment of kidney function, as well as hematological changes in rats. MATERIALS AND METHODS Six groups of rats were used; the first group was served as a control; the second and third groups were treated by propolis extract at a dose of 50 and 100 mg/kg.B.WT. respectively; the fourth group was treated by paracetamol (200 mg/kg.B.WT.); the fifth group was treated by propolis (50 mg/kg.B.WT.) for eight days and then received similar dose of propolis for following seven days with paracetamol at a dose of 200 mg/kg.B.WT. daily for the seven days; and the sixth group was treated with propolis (100 mg/kg.B.WT.) for eight days and then received similar dose of propolis for following seven days with paracetamol at a dose of 200 mg/kg.B.WT. daily for the seven days. All the animals were treated for a period of 15 days. At the end of the experimental period, blood samples were collected for measurement of the liver enzymes, serum albumin, protein and creatinine, blood urea nitrogen, hematological parameters, and urine volume, protein and albumin. RESULTS Paracetamol over dose significantly lowered hemoglobin, serum total protein, albumin, and uric acid, while it significantly increased blood creatinine, blood urea nitrogen, alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase activities, white blood cells, and platelet count as compared to the control. However, these alterations were significantly attenuated by the use of propolis extract and the effect was dose dependent. Interestingly, propolis prevented paracetamol induced proteinuria, low hemoglobin and body weight loss. CONCLUSIONS Propolis significantly prevented paracetamol induced renal, hepatic and hematological toxicity and might be useful in the management of liver and renal diseases particularly proteinuria.
Collapse
Affiliation(s)
- Nawal El Menyiy
- Laboratory Physiology-Pharmacology & Environmental Health, Faculty of Sciences Dhar El Mehraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco
| | - Noori Al-Waili
- New York Medical Care for Nephrology, 87-40 134 Street, Richmond Hill, New York City, NY 11418, USA
| | - Asmae El Ghouizi
- Laboratory Physiology-Pharmacology & Environmental Health, Faculty of Sciences Dhar El Mehraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco
| | - Wail Al-Waili
- New York Medical Care for Nephrology, 87-40 134 Street, Richmond Hill, New York City, NY 11418, USA
| | - Badiaa Lyoussi
- Laboratory Physiology-Pharmacology & Environmental Health, Faculty of Sciences Dhar El Mehraz, University Sidi Mohamed Ben Abdallah, Fez 30000, Morocco
| |
Collapse
|
21
|
Rodrigues FADP, Santos ADDC, de Medeiros PHQS, Prata MDMG, Santos TCDS, da Silva JA, Brito GADC, Dos Santos AA, Silveira ER, Lima AÂM, Havt A. Gingerol suppresses sepsis-induced acute kidney injury by modulating methylsulfonylmethane and dimethylamine production. Sci Rep 2018; 8:12154. [PMID: 30108263 PMCID: PMC6092401 DOI: 10.1038/s41598-018-30522-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) and metabolic dysfunction are critical complications in sepsis syndrome; however, their pathophysiological mechanisms remain poorly understood. Therefore, we evaluated whether the pharmacological properties of 6-gingerol (6G) and 10-gingerol (10G) could modulate AKI and metabolic disruption in a rat model of sepsis (faecal peritonitis). Animals from the sham and AKI groups were intraperitoneally injected with 6G or 10G (25 mg/kg). Septic AKI decreased creatinine clearance and renal antioxidant activity, but enhanced oxidative stress and the renal mRNA levels of tumour necrosis factor-α, interleukin-1β, and transforming growth factor-β. Both phenol compounds repaired kidney function through antioxidant activity related to decreased oxidative/nitrosative stress and proinflammatory cytokines. Metabolomics analysis indicated different metabolic profiles for the sham surgery group, caecal ligation and puncture model alone group, and sepsis groups treated with gingerols. 1H nuclear magnetic resonance analysis detected important increases in urinary creatine, allantoin, and dimethylglycine levels in septic rats. However, dimethylamine and methylsulfonylmethane metabolites were more frequently detected in septic animals treated with 6G or 10G, and were associated with increased survival of septic animals. Gingerols attenuated septic AKI by decreasing renal disturbances, oxidative stress, and inflammatory response through a mechanism possibly correlated with increased production of dimethylamine and methylsulfonylmethane.
Collapse
Affiliation(s)
| | | | | | - Mara de Moura Gondim Prata
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Gerly Anne de Castro Brito
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Edilberto Rocha Silveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aldo Ângelo Moreira Lima
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alexandre Havt
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
22
|
Evaluation of KIM-1 as an early biomarker of snakebite-induced AKI in mice. Toxicon 2018; 151:24-28. [PMID: 29909065 DOI: 10.1016/j.toxicon.2018.06.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023]
Abstract
Acute kidney injury (AKI) is one of the most important complications of bothropic poisoning and its early identification remains challenging. The nephrotoxicity of Bothrops insularis venom (BinsV) was previously described by our research group. In this study, we continued to evaluate the effect of BinsV on kidney function in mice and LLC-MK2 proximal tubule cells, evaluating KIM-1 protein as an early AKI biomarker. Male Swiss mice were inoculated with BinsV intramuscularly and observed for 24 h in a metabolic cage model. Urine and blood were collected for biochemical analyses and the kidneys were examined for oxide-reducing balance and submitted to histological analysis. LLC-MK2 cells incubated with BinsV were assessed for cell viability and cell death mechanism by flow cytometry. Histological analysis of the kidneys indicated AKI and the oxide-reducing analyses demonstrated a decreasing in reduced glutathione (GSH) levels and an increasing on Malondialdehyde (MDA) levels. BinsV was cytotoxic to LLC-MK2 and the cytometry analyses suggested necrosis. Within 24 h after the envenomation, urinary creatinine did not increase, but the urinary levels of KIM-1 increased. In conclusion, we found AKI evidence in the kidney tissue and the increase in the KIM-1 levels suggest it can be used as an early AKI biomarker.
Collapse
|
23
|
Huang H, Shen Z, Geng Q, Wu Z, Shi P, Miao X. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomed Pharmacother 2017; 95:1765-1776. [PMID: 28962082 DOI: 10.1016/j.biopha.2017.09.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
Cisplatin (CP) has been used to cure numerous forms of cancers effectively in clinics, however, it could induce some toxic effects. Bee pollen is a natural compound, produced by honey bees. It is obtained from collected flower pollen and nectar, mixed with bee saliva. Bee pollen produced from Schisandra chinensis plants is described to exert potent antioxidant effects and to be a free radical scavenger. The purpose of this study was to investigate the effects of therapeutic treatment with Schisandra chinensis bee pollen extract (SCBPE) on liver and kidney injury induced by CP. The rats were intragastrically administrated with different doses of SCBPE (400mg/kg/day, 800mg/kg/day, 1200mg/kg/day) and vitamin C (400mg/kg/day, positive control group) for 12days, and the liver and kidney injury models were established by single intraperitoneal injection of CP (8mg/kg) at seventh day. The effect of SCBPE on CP toxicity was evaluated by measuring markers of liver and kidney injury in serum, levels of lipid peroxidation and antioxidants in liver and kidney, observing pathological changes of tissue, and quantified expression of NFκB, IL-1β, IL-6, cytochrome C, caspase3, caspase9, p53 and Bax in liver and kidney. Compared with the model group, the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the content of blood urea nitrogen (BUN), creatinine (Cr) in serum all decreased in SCBPE high dose group. Meanwhile, the activities of superoxide dismutase (SOD), catalase (CAT) and the content of reduced glutathione (GSH) in liver and kidney increased, and the content of malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS) decreased. In addition, the histopathologic aspects showed that the pathological changes of liver and kidney were found in the model group, and SCBPE group reduced to varying degrees. Moreover, the expression of NFκB, IL-1β, IL-6, cytochrome C, caspase3, caspase9, p53 and Bax in liver and kidney decreased. Therefore, SCBPE could reduce the damage of liver and kidney caused by CP by reducing the level of oxidative stress, and improving the antioxidant, anti-inflammatory and anti-apoptotic capacity of the body.
Collapse
Affiliation(s)
- Haibo Huang
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhuang Shen
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianqian Geng
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhong Wu
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiying Shi
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoqing Miao
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
24
|
Sampaio TL, Menezes RRPPBD, da Costa MFB, Meneses GC, Arrieta MCV, Chaves Filho AJM, de Morais GB, Libório AB, Alves RS, Evangelista JSAM, Martins AMC. Nephroprotective effects of (-)-α-bisabolol against ischemic-reperfusion acute kidney injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1843-1852. [PMID: 27912887 DOI: 10.1016/j.phymed.2016.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) in kidney is commonly related to acute kidney injury (AKI), essentially through oxidative stress. (-)-α-Bisabolol is a sesquiterpene isolated from the essential oil of a variety of plants, including chamomile, which has important antioxidant activity. STUDY DESIGN This study intends to evaluate the nephroprotective activity of (-)-α-bisabolol (Bis) in both in vivo and in vitro models of kidney I/R. METHODS Male Wistar rats were submitted to right nephrectomy, followed by ischemia by clamping of the renal artery in the left kidney for 60min. and 48h of reperfusion. The animals were treated orally with Bis (100mg/kg) or vehicle for 24h after reperfusion, and placed in metabolic cages, to evaluate water consumption, diuresis, urinary osmolality, classic biochemical markers and urinary KIM-1 (kidney injury molecule-1). Additionally, the left kidney was collected for histological evaluation and determination of glutathione (GSH) and Thiobarbituric Acid Reactive Substances (TBARS) levels. Tubular epithelial cells LLC-MK2 were used to assess Bis effect on in vitro I/R, by MTT assay. It was performed the cellular respiration tests by flow cytometry: evaluation of the production of cytoplasmic reactive oxygen species by DCFH-DA assay and mitochondrial transmembrane potential analysis with the dye rhodamine 123. RESULTS I/R caused alterations in diuresis, water intake, urinary osmolality, plasmatic creatinine, urea and uric acid, creatinine clearance, proteinuria and microalbuminuria. Treatment with Bis ameliorated all of these parameters. Also, KIM-1 level enhanced by I/R was also diminished in groups treated with Bis. The histological examination showed that Bis attenuated the morphological changes caused by I/R, markedly vascular congestion and intratubular deposits of proteinaceous material. Additionally, Bis was able to reduce the changes observed in TBARS and GSH levels in kidney tissue. In in vitro assay, Bis was capable to partially protect the cell lineage against cell damage induced by I/R. CONCLUSION (-)-α-Bisabolol has a nephroprotective effect in kidney I/R, with antioxidant effect. Moreover, this result seems to be associated to a direct protective effect on tubular epithelia.
Collapse
Affiliation(s)
- Tiago Lima Sampaio
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Ceará, Brazil
| | | | | | | | | | | | | | - Alexandre Braga Libório
- Department of Clinical Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Renata Sousa Alves
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
25
|
Chang KC, Lee DU. Nootkatone from the Rhizomes of Cyperus rotundus Protects Against Ischemia-reperfusion Mediated Acute Myocardial Injury in the Rat. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.845.850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Matrine Exerts a Strong Anti-Arthritic Effect on Type II Collagen-Induced Arthritis in Rats by Inhibiting Inflammatory Responses. Int J Mol Sci 2016; 17:ijms17091410. [PMID: 27571073 PMCID: PMC5037690 DOI: 10.3390/ijms17091410] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
To investigate anti-arthritic effects of matrine isolated from the roots of S. flavescens on type II collagen-induced arthritis (CIA) in rats and to explore its related potential mechanisms, CIA rats were established and administered with matrine (20, 40 or 80 mg/kg/days, for 30 days). Subsequently, blood was collected to determine serum levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, IL-10, MMP-2, MMP-3 and MMP-9, and hind paws and knee joints were collected for histopathological examination. Furthermore, indices of the thymus and spleen were determined, and synovial tissues were collected to determine the protein expressions of p-IκB, IκB, Cox-2 and iNOS. Our results indicated that matrine significantly suppressed inflammatory reactions and synovial tissue destruction. Matrine inhibited paw swelling, arthritis indices and weight loss in CIA rats. Additionally, matrine decreased the levels of TNF-α, IL-1β, IL-6, IL-8, IL-17A, MMP-2, MMP-3 and MMP-9. Matrine also down-regulated expressions of p-IκB, Cox-2, and iNOS but up-regulated IκB in synovial tissues in CIA rats. The results suggested matrine possesses an anti-arthritic effect in CIA rats via inhibiting the release of pro-inflammatory cytokines and proteins that promote the NF-κB pathway.
Collapse
|
27
|
Lee D, Choi YO, Kim KH, Chin YW, Namgung H, Yamabe N, Jung K. Protective effect of α-mangostin against iodixanol-induced apoptotic damage in LLC-PK1 cells. Bioorg Med Chem Lett 2016; 26:3806-9. [DOI: 10.1016/j.bmcl.2016.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
|