1
|
Kim Y, Kim HK, Kang S, Kim H, Go GW. Rottlerin suppresses lipid accumulation by inhibiting de novo lipogenesis and adipogenesis via LRP6/mTOR/SREBP1C in 3T3-L1 adipocytes. Food Sci Biotechnol 2023; 32:1445-1452. [PMID: 37457404 PMCID: PMC10349001 DOI: 10.1007/s10068-023-01339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
Rottlerin is isolated from Mallotus japonicus, a plant rich in polyphenols. Rottlerin is a selective PKCδ-inhibitor and is also known as an uncoupler of oxidative phosphorylation and anti-neoplastic agent. However, its anti-obesity effect is yet to be established. Therefore, this study tested whether rottlerin inhibits adipogenesis and de novo lipogenesis via the LRP6/mTOR/SREBP1C pathway in 3T3-L1 adipocytes. Rottlerin dramatically decreased lipid accumulation assessed by Oil Red O as evidence to support the cellular phenotype (p < 0.001). Pivotal messenger RNA and protein expressions associated with de novo lipogenesis (SREBP1C, ACC1, FAS, and SCD1) and adipogenesis (PPARγ and C/EBPα) were subsequentially verified by rottlerin in a dose-dependent manner (p < 0.05). Further investigation revealed that rottlerin reduced the AKT/mTOR pathway via diminished total protein of LRP6 (p < 0.05). Collectively, these findings establish a causal link between rottlerin, LRP6, and the altered nutrient-sensing mTOR pathway, in which rottlerin regulates de novo lipogenesis and adipogenesis in white adipocytes.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
2
|
Chaiyarit S, Thongboonkerd V. Mitochondria-derived vesicles and their potential roles in kidney stone disease. J Transl Med 2023; 21:294. [PMID: 37131163 PMCID: PMC10152607 DOI: 10.1186/s12967-023-04133-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
Recent evidence has shown significant roles of mitochondria-derived vesicles (MDVs) in mitochondrial quality control (MQC) system. Under mild stress condition, MDVs are formed to carry the malfunctioned mitochondrial components, such as mitochondrial DNA (mtDNA), peptides, proteins and lipids, to be eliminated to restore normal mitochondrial structure and functions. Under severe oxidative stress condition, mitochondrial dynamics (fission/fusion) and mitophagy are predominantly activated to rescue mitochondrial structure and functions. Additionally, MDVs generation can be also triggered as the major MQC machinery to cope with unhealthy mitochondria when mitophagy is unsuccessful for eliminating the damaged mitochondria or mitochondrial fission/fusion fail to recover the mitochondrial structure and functions. This review summarizes the current knowledge on MDVs and discuss their roles in physiologic and pathophysiologic conditions. In addition, the potential clinical relevance of MDVs in therapeutics and diagnostics of kidney stone disease (KSD) are emphasized.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Ahmad Syazani Mohamed W, Zafirah Ismail N, Muhamad M, Azam Omar E, Abdul Samad N, Jer Ping O, Mohamad S. Q-TOF LC-MS Compounds Evaluation and Bioactivities of Propolis Extract Derived from Malaysian Stingless Bees, Tetrigona apicalis. Saudi J Biol Sci 2022; 29:103403. [PMID: 36033928 PMCID: PMC9411679 DOI: 10.1016/j.sjbs.2022.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/09/2022] [Accepted: 07/30/2022] [Indexed: 10/27/2022] Open
|
4
|
Kim S, Choi S, Dutta M, Asubonteng JO, Polunas M, Goedken M, Gonzalez FJ, Cui JY, Gyamfi MA. Pregnane X receptor exacerbates nonalcoholic fatty liver disease accompanied by obesity- and inflammation-prone gut microbiome signature. Biochem Pharmacol 2021; 193:114698. [PMID: 34303710 PMCID: PMC9135326 DOI: 10.1016/j.bcp.2021.114698] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease due to the current epidemics of obesity and diabetes. The pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor known for trans-activating liver genes involved in drug metabolism and transport, and more recently implicated in energy metabolism. The gut microbiota can modulate the host xenobiotic biotransformation and contribute to the development of obesity. While the male sex confers a higher risk for NAFLD than women before menopause, the mechanism remains unknown. We hypothesized that the presence of PXR promotes obesity by modifying the gut-liver axis in a sex-specific manner. Male and female C57BL/6 (wild-type/WT) and PXR-knockout (PXR-KO) mice were fed control or high-fat diet (HFD) for 16-weeks. Serum parameters, liver histopathology, transcriptomic profiling, 16S-rDNA sequencing, and bile acid (BA) metabolomics were performed. PXR enhanced HFD-induced weight gain, hepatic steatosis and inflammation especially in males, accompanied by PXR-dependent up-regulation in hepatic genes involved in microbial response, inflammation, oxidative stress, and cancer; PXR-dependent increase in intestinal Firmicutes/Bacteroides ratio (hallmark of obesity) and the pro-inflammatory Lactobacillus, as well as a decrease in the anti-obese Allobaculum and the anti-inflammatory Bifidobacterum, with a PXR-dependent reduction of beneficial BAs in liver. The resistance to NAFLD in females may be explained by PXR-dependent decrease in pro-inflammatory bacteria (Ruminococcus gnavus and Peptococcaceae). In conclusion, PXR exacerbates hepatic steatosis and inflammation accompanied by obesity- and inflammation-prone gut microbiome signature, suggesting that gut microbiome may contribute to PXR-mediated exacerbation of NAFLD.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jeffrey O Asubonteng
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Marianne Polunas
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Michael Goedken
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
5
|
Litholytic Activities of Natural Bioactive Compounds and Their Mechanism Insights. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Urolithiasis is a disease characterized by the formation of stones, which are crystalline accretions that form in the urinary tract from minerals dissolved in the urine. Moreover, it is considered to be a complex and multifactorial disease, requiring treatment. Unfortunately, current treatments are insufficient or may induce several side effects. In fact, medicinal plants are among the anti-litholytic treatments that are strongly recommended by many studies. Indeed, these natural resources contain bioactive molecules of different natures, such as flavonoids, terpenoids, alkaloids, and phenolic acids, which have recently demonstrated very important anti-litholytic effects. The molecular mechanisms involved are multiple and variable, and can reach cellular and molecular levels. In this review, we have discussed in depth the work that has studied the bioactive molecules of medicinal plants and their major potential against urolithiasis. Scientific databases, including Web of Science, PubMed, and Google Scholar, were searched from their inception until April 2021.The cellular and molecular mechanisms are presented and discussed. Some mechanisms of action related to these bioactive compounds are highlighted. This review could provide a scientific starting point for further studies on urolithiasis and natural bioactive compounds, especially flavonoids.
Collapse
|
6
|
Sharma VC, Kaushik A, Dey YN, Srivastava B, Wanjari M, Pawar S, Chougule S. Nephroprotective potential of Anogeissus latifolia Roxb. (Dhava) against gentamicin-induced nephrotoxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:114001. [PMID: 33705920 DOI: 10.1016/j.jep.2021.114001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stem bark of Anogeissus latifolia Roxb. (Family: Combretaceae) is used traditionally and ethnomedicinally for correction of kidney disorders. AIM OF THE STUDY The present study demonstrates the nephroprotective potential of stem bark of A. latifolia Roxb. MATERIALS AND METHODS The HPTLC fingerprint and HPLC analysis were carried out to standardize the ethanolic extract of stem bark of A. latifolia (ALEE) using ellagic acid as a marker. Nephrotoxicity was induced in adult Wistar albino rats by gentamicin (100 mg/kg, intraperitoneally for 8 days) and they were treated with ALEE (100, 200 and 400 mg/kg, orally for 8 days), ellagic acid (10 mg/kg, orally for 8 days) and cystone syrup (5 ml/kg, orally), a standard reference a polyherbal formulation. Urine volume, serum and urine levels of creatinine, urea and uric acid, oxidative stress parameters (lipid peroxidation, catalase, superoxide dismutase and reduced glutathione), inflammatory markers (TNF-α and IL-6) and kidney weight along with its histological changes were studied in experimental animals. RESULTS HPTLC, HPLC and LC-MS analysis of ALEE revealed the presence of ellagic acid and other various phytoconstituents. Administration of gentamicin caused significant increase in urine output and kidney weight, elevated biochemical, inflammatory and oxidative stress parameters as well as caused histological damage in the kidney tissue. These parameters were attenuated by the concurrent treatment with ALEE and ellagic acid. The effects were comparable to cystone. CONCLUSION Present investigations concluded that ALEE exhibited nephroprotective potential and validated the traditional use of stem bark of A. latifolia in kidney disorders. The nephroprotective effect may be attributed to the antioxidant and anti-inflammatory phytoconstituents in ALEE.
Collapse
Affiliation(s)
- Vikas Chandra Sharma
- Department of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India; IPS College of Pharmacy, Gwalior, Madhya Pradesh, India.
| | - Atul Kaushik
- IPS College of Pharmacy, Gwalior, Madhya Pradesh, India.
| | - Yadu Nandan Dey
- School of Pharmaceutical Technology, Adamas University, Barasat, Kolkata, India; Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, India.
| | - Bhavana Srivastava
- Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, India.
| | - Manish Wanjari
- Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, India.
| | - Sharad Pawar
- Regional Ayurveda Institute for Fundamental Research, Pune, Maharashtra, India.
| | - Shridhar Chougule
- Regional Ayurveda Institute for Fundamental Research, Pune, Maharashtra, India.
| |
Collapse
|
7
|
Resveratrol Derivative, Trans-3, 5, 4'-Trimethoxystilbene Sensitizes Osteosarcoma Cells to Apoptosis via ROS-Induced Caspases Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8840692. [PMID: 33833855 PMCID: PMC8018847 DOI: 10.1155/2021/8840692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022]
Abstract
Numerous studies have shown that resveratrol can induce apoptosis in cancer cells. Trans-3, 5, 4'-trimethoxystilbene (TMS), a novel derivative of resveratrol, is a more potent anticancer compound than resveratrol and can induce apoptosis in cancer cells. Herein, we examined the mechanisms involved in TMS-mediated sensitization of human osteosarcoma (143B) cells to TNF-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis. Our results showed that cotreatment with TSM and TRAIL activated caspases and increased PARP-1 cleavage in 143B cells. Decreasing cellular ROS levels using NAC reversed TSM- and TRAIL-induced apoptosis in 143B cells. NAC abolished the upregulated expression of PUMA and p53 induced by treatment with TRAIL and TSM. Silencing the expression of p53 or PUMA using RNA interference attenuated TSM-mediated sensitization of 143B cells to TRAIL-induced apoptosis. Knockdown of Bax also reversed TSM-induced sensitization of 143B cell to TRAIL-mediated apoptotic cell death. These results indicate that cotreatment with TRAIL and TSM evaluated intracellular ROS level, promoted DNA damage, and activated the Bax/PUMA/p53 pathway, leading to activation of both mitochondrial and caspase-mediated apoptosis in 143B cells. Orthotopic implantation of 143B cells in mice also demonstrated that cotreatment with TRAIL and TSM reversed resistance to apoptosis in cells without obvious adverse effects in normal cells.
Collapse
|
8
|
Jiang XF, Tian Z, Zhu SX, Li SH, Sun Y. RETRACTED ARTICLE: A novel small-molecule inhibitor suppresses colon cancer metastasis through inhibition of metastasis-associated in colon cancer-1 transcription. Invest New Drugs 2021; 39:293. [PMID: 32500466 DOI: 10.1007/s10637-020-00957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Xue-Feng Jiang
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, 130033, China
| | - Zhen Tian
- Department of Cardiology, The Third Hospital of Jilin University, Changchun, 130033, China
| | - Shuang-Xi Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University & Guangdong Key Laboratory of Stomatology, Guangzhou, China
| | - Sui-Hui Li
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Sun
- Department of Interventional Radiology, The Third Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
9
|
Chaiyarit S, Thongboonkerd V. Mitochondrial Dysfunction and Kidney Stone Disease. Front Physiol 2020; 11:566506. [PMID: 33192563 PMCID: PMC7606861 DOI: 10.3389/fphys.2020.566506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrion is a pivotal intracellular organelle that plays crucial roles in regulation of energy production, oxidative stress, calcium homeostasis, and apoptosis. Kidney stone disease (nephrolithiasis/urolithiasis), particularly calcium oxalate (CaOx; the most common type), has been shown to be associated with oxidative stress and tissue inflammation/injury. Recent evidence has demonstrated the involvement of mitochondrial dysfunction in CaOx crystal retention and aggregation as well as Randall’s plaque formation, all of which are the essential mechanisms for kidney stone formation. This review highlights the important roles of mitochondria in renal cell functions and provides the data obtained from previous investigations of mitochondria related to kidney stone disease. In addition, mechanisms for the involvement of mitochondrial dysfunction in the pathophysiology of kidney stone disease are summarized. Finally, future perspectives on the novel approach to prevent kidney stone formation by mitochondrial preservation are discussed.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing. Molecules 2018; 23:molecules23051219. [PMID: 29783751 PMCID: PMC6100286 DOI: 10.3390/molecules23051219] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022] Open
Abstract
Organismal ageing is associated with increased chance of morbidity or mortality and it is driven by diverse molecular pathways that are affected by both environmental and genetic factors. The progression of ageing correlates with the gradual accumulation of stressors and damaged biomolecules due to the time-dependent decline of stress resistance and functional capacity, which eventually compromise cellular homeodynamics. As protein machines carry out the majority of cellular functions, proteome quality control is critical for cellular functionality and is carried out through the curating activity of the proteostasis network (PN). Key components of the PN are the two main degradation machineries, namely the ubiquitin-proteasome and autophagy-lysosome pathways along with several stress-responsive pathways, such as that of nuclear factor erythroid 2-related factor 2 (Nrf2), which mobilises cytoprotective genomic responses against oxidative and/or xenobiotic damage. Reportedly, genetic or dietary interventions that activate components of the PN delay ageing in evolutionarily diverse organisms. Natural products (extracts or pure compounds) represent an extraordinary inventory of highly diverse structural scaffolds that offer promising activities towards meeting the challenge of increasing healthspan and/or delaying ageing (e.g., spermidine, quercetin or sulforaphane). Herein, we review those natural compounds that have been found to activate proteostatic and/or anti-stress cellular responses and hence have the potential to delay cellular senescence and/or in vivo ageing.
Collapse
|
11
|
Hemachandran H, Jain F, Mohan S, Kumar D T, Priya Doss C G, Ramamoorthy S. Glandular hair constituents of Mallotus philippinensis Muell. fruit act as tyrosinase inhibitors: Insights from enzyme kinetics and simulation study. Int J Biol Macromol 2017; 107:1675-1682. [PMID: 29054523 DOI: 10.1016/j.ijbiomac.2017.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022]
Abstract
The glandular hair extracts from the fruit rind of Mallotus philippinensis Muell. is employed to treat various skin infections, however the anti-tyrosinase activity remains unknown. Hence the present study inspected on the anti-melanogenic activity of M. philippinensis constituents. Lineweaver Burk plot revealed mixed inhibition for Rottlerin; non-competitive type of inhibition for mallotophilippen A and B respectively. Thermodynamic studies resulted in static quenching forming ground state complex with higher binding constant temperature dependently. Fluorescence and circular dichroism study implicated conformational change in secondary and tertiary structure of tyrosinase. Molecular docking suggests rottlerin has high binding affinity to the active site pocket of tyrosinase. Simulation study further proved that the compactness of inhibitor with tyrosinase by hydrogen bonding influenced the stability of the enzyme. Depigmentation efficacy is further proved in Aspergillus niger spores. Thus our findings delineate that rottlerin could be utilized as a depigmentation agent in food pharmaceutical and agricultural industries.
Collapse
Affiliation(s)
- Hridya Hemachandran
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - Fagun Jain
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - Sankari Mohan
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - Thirumal Kumar D
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - George Priya Doss C
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Bhardwaj R, Tandon C, Dhawan DK, Kaur T. Effect of endoplasmic reticulum stress inhibition on hyperoxaluria-induced oxidative stress: influence on cellular ROS sources. World J Urol 2017; 35:1955-1965. [DOI: 10.1007/s00345-017-2083-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023] Open
|
13
|
Yasir F, Wahab AT, Choudhary MI. Protective effect of dietary polyphenol caffeic acid on ethylene glycol-induced kidney stones in rats. Urolithiasis 2017; 46:157-166. [PMID: 28616648 DOI: 10.1007/s00240-017-0982-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/24/2017] [Indexed: 02/07/2023]
Abstract
Dietary polyphenol caffeic acid (1) has been reported for various pharmacological activities. The aim of the current study was to investigate the effect of caffeic acid (1) on ethylene glycol-induced renal stones in rats. For the study, male Wistar rats were divided into seven groups; normal, pathological, and standard drug controls, and preventive and curative groups. Normal control group received drinking water for 8 weeks. Pathological, standard drug, preventive, and curative groups received 0.75% ethylene glycol in drinking water for the induction of calcium oxalate stone formation, along with the regular diet. Standard drug group received Urocit-K by gavage from day 1, while preventive and curative groups received caffeic acid (1) by gavage at doses of 20 and 40 mg/kg on day 1 and day 14, respectively. At the end of the experiment, urine analysis and kidney histopathology were performed. Real-time PCR was performed to evaluate the renal expression of the most important genes involved in urolithiasis, i.e., osteopontin, Tamm-Horsfall, prothrombin fragment 1, and bikunin genes. The results indicated that in both the preventive and curative groups, treatment of rats with caffeic acid (1) significantly regulated the altered biochemical parameters, along with the remarkable reduction of calcium oxalate deposits in the kidneys, as compared to the pathological group. Treatment with compound 1 also resulted in down-regulation of the osteopontin gene, and up-regulation of the prothrombin fragment 1, Tamm-Horsfall, and bikunin genes. These results suggest that caffeic acid (1) can be further investigated for the prevention, and treatment of kidney stones.
Collapse
Affiliation(s)
- Fauzia Yasir
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Atia-Tul- Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. .,H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. .,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21412, Saudi Arabia.
| |
Collapse
|
14
|
Aggarwal D, Gautam D, Sharma M, Singla SK. Bergenin attenuates renal injury by reversing mitochondrial dysfunction in ethylene glycol induced hyperoxaluric rat model. Eur J Pharmacol 2016; 791:611-621. [PMID: 27717728 DOI: 10.1016/j.ejphar.2016.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/24/2016] [Accepted: 10/03/2016] [Indexed: 01/13/2023]
Abstract
Bergenin, isolated from Bergenia ligulata is a potent antioxidant and antilithiatic agent. Present work was designed to establish the biochemical role of bergenin on mitochondrial dysfunction in the ethylene glycol induced hyperoxaluric rat model. Bergenin was administrated at a dose of 10mg/kg body wt i.p. from 14th day of establishing the 28 days hyperoxaluria rat model. α-Tocopherol was given as positive control at a dose of 100mg/kg body wt i.p. Mitochondrial dysfunction was studied by evaluating the activities of respiratory chain complexes, mitochondrial membrane potential and reactive oxygen species. Histopathological analysis of the kidney tissue was done after Pizzolato staining. Also, expression of monocyte chemoattractant protein -1(MCP-1) and kidney injury marker protein (KIM-1) were studied and the levels of IL-1β were evaluated in kidney tissue homogenate. Mitochondrial dysfunction during stone crystallization was evident by decreased activities of electron transport chain complexes I, II and IV and augmented mitochondrial oxidative stress in hyperoxaluric rats. Bergenin treatment significantly (P<0.05) restored the activities of these complexes. Moreover, it curtailed the lipid peroxidation and up regulated antioxidant levels, ameliorating the state of mitochondrial dysfunction. The protective role of bergenin was also reinforced by reducing IL-1β production and expression of KIM-1 and MCP-1 in the renal tissue. The findings of the present study provide evidence that bergenin exerted protective effects in hyperoxaluria through mitochondrial protection that involves attenuation of oxidative stress. Hence, it presented itself as an effective remedy in combating urolithiasis.
Collapse
Affiliation(s)
- Deepika Aggarwal
- Department of Biochemistry, Panjab University Chandigarh, 160014, India
| | - Diksha Gautam
- Department of Biochemistry, Panjab University Chandigarh, 160014, India
| | - Minu Sharma
- Department of Biochemistry, Panjab University Chandigarh, 160014, India
| | - S K Singla
- Department of Biochemistry, Panjab University Chandigarh, 160014, India.
| |
Collapse
|