1
|
Krupa S, Ruman T, Szuberla W, Nizioł J. Analysis of the spatial distribution of metabolites in Aloe vera leaves by mass spectrometry imaging and UHPLC-UHRMS. Sci Rep 2025; 15:3502. [PMID: 39875566 PMCID: PMC11775111 DOI: 10.1038/s41598-025-88144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
This study presents an investigation of the chemical composition of Aloe vera leaf tissue with a focus on the spatial distribution of compounds. The composition was studied using two mass spectrometry imaging techniques: silver-109 nanoparticles assisted laser desorption/ionization mass spectrometry imaging (109AgNPs-LDI-MSI) and laser ablation-remote atmospheric pressure photoionization/chemical ionization mass spectrometry imaging (LARAPPI/CI-MSI) and the identification was aided by ultra-high-performance liquid chromatography and ultra-high-resolution mass spectrometry (UHPLC-UHRMS) analysis. The results showed an abundance of phenolic compounds with antioxidant, antimicrobial, and anti-inflammatory properties, making it a beneficial food additive and food packaging material. Analysis of the results of mass spectrometry imaging provided information about the potential changes in metabolic pathway expression in different regions of the leaf.
Collapse
Affiliation(s)
- Sumi Krupa
- Doctoral School, Rzeszów University of Technology, 8 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland
| | - Tomasz Ruman
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland
| | - Wiktoria Szuberla
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland
| | - Joanna Nizioł
- Department of Polymers and Biopolymers, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland.
| |
Collapse
|
2
|
Lee ZM, Goh BH, Khaw KY. Aloe vera and the Proliferative Phase of Cutaneous Wound Healing: Status Quo Report on Active Principles, Mechanisms, and Applications. PLANTA MEDICA 2025; 91:4-18. [PMID: 39566518 DOI: 10.1055/a-2446-2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Aloe vera is commonly used as traditional medicine for cutaneous wound healing. Nonetheless, the wound healing mechanisms of Aloe vera remain unclear. This review aims to provide insight into the molecular mechanisms of Aloe vera in promoting cutaneous wound healing, with particular emphasis on the mechanisms that stimulate cell proliferation and migration. Aloe vera has been shown to upregulate growth factors such as keratinocyte growth factor-1 (KGF-1), transforming growth factor-β (TGF-β), cyclin D1, insulin-like growth factor 1 (IGF-1), vascular endothelial growth factor (VEGF), basic fibroblastic growth factor (bFGF), and microfibril-associated glycoprotein 4 (MFAP4), as well as collagen, fibrillin, elastin, α-smooth muscle actin (α-SMA), integrins, and platelet endothelial cell adhesion molecule 1 (PECAM-1, also known as CD31), while downregulating the expression of matrix metalloproteinases (MMPs). In addition, Aloe vera was also found to upregulate PI3K/Akt and MAPK pathways, as well as the TGF-β signalling pathway via Smad proteins. Furthermore, molecular docking studies revealed that certain chemical constituents of Aloe vera bind to some of the forementioned growth factors or signalling molecules. With regards to current applications, although human clinical trials have reported positive results from using Aloe vera in healing open wounds and burns and alleviating some inflammatory skin diseases, the current commercial uses of Aloe vera remain largely focused on cosmetic products. Thus, greater advances are required to promote the use of Aloe vera products in clinical settings.
Collapse
Affiliation(s)
- Zhuang Min Lee
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Subang Jaya, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Subang Jaya, Malaysia
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kooi Yeong Khaw
- Biopharmaceutical Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
3
|
Liu Y, Zhao Y, Guo S, Qin D, Yan J, Cheng H, Zhou J, Ren J, Sun L, Peng H, Wu X, Li B. Copper doped carbon dots modified bacterial cellulose with enhanced antibacterial and immune regulatory functions for accelerating wound healing. Carbohydr Polym 2024; 346:122656. [PMID: 39245512 DOI: 10.1016/j.carbpol.2024.122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
The microenvironment of wound healing is susceptible to bacterial infection, chronic inflammation, oxidative stress, and inadequate angiogenesis, requiring the development of innovative wound dressings with antibacterial, anti-inflammatory, antioxidant, and angiogenic capabilities. This research crafted a new multifunctional bacterial cellulose composite membrane infused with copper-doped carbon dots (BC/Cu(II)-RCDs). Findings validated the successful loading of copper-doped carbon dots onto the BC membrane via hydrogen bonding interactions. Compared to the pure BC membrane, the BC/Cu(II)-RCDs composite membrane exhibited significantly enhanced hydrophilicity, tensile properties, and thermal stability. Diverse in vitro assays demonstrated excellent biocompatibility and antibacterial activity of BC/Cu(II)-RCDs composite membranes, alongside their ability to expedite the inflammatory phase and stimulate angiogenesis. In vivo trials corroborated the membrane's ability to foster epithelial regeneration, collagen deposition, and tissue regrowth in full-thickness skin wounds in rats while also curbing inflammation in infected full-thickness skin wounds. More importantly, the treatment of the BC/Cu(II)-RCDs composite membrane may result in the activation of VEGF and MAPK signaling proteins, which are key players in cell migration, angiogenesis, and skin tissue development. In essence, the developed BC/Cu(II)-RCDs composite membrane shows promise for treating infected wounds and serves as a viable alternative material for medicinal bandages.
Collapse
Affiliation(s)
- Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Susu Guo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
4
|
Jongsomchai K, Pudgerd A, Sakaew W, Wongprasert K, Kovensky J, Rudtanatip T. Sulfated Galactan Derivative from Gracilaria fisheri Improves Histopathology and Alters Wound Healing-Related Proteins in the Skin of Excision Rats. FRONT BIOSCI-LANDMRK 2024; 29:388. [PMID: 39614455 DOI: 10.31083/j.fbl2911388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/29/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The biological activities of sulfated polysaccharides (SP) are well-documented, especially regarding wound healing. Sulfated galactan (SG), a type of SP extracted from the red seaweed Gracilaria fisheri, has been identified as having multiple therapeutic properties related to its wound healing capacity. Recent research indicates that degraded SG (DSG) from G. fisheri, when combined with octanoyl ester (DSGO), can improve wound healing in fibroblasts. However, the effectiveness of natural products in clinical settings often differs from in vitro results. This study aimed to develop and evaluate ointments containing DSG and DSGO for skin repair in an animal model. METHODS Twenty-four Wistar rats were divided into four groups: (1) normal control, (2) ointment control, (3) DSG ointment, and (4) DSGO ointment. After inducing full-thickness excision wounds, these ointments were applied to the wounds. Wound contraction rate, histopathology, and protein related wound healing expression were then elucidated. RESULTS Our findings showed that both DSG and DSGO ointments significantly enhanced wound closure compared to the control groups. Histopathological and biochemical analyses indicated increased extracellular matrix production and fibroblasts, marked by improved fibroblast activity, neovascularization, and collagen deposition. Furthermore, immunohistochemistry and immunoblot analysis revealed that the ointments altered the expression of Ki67, α-smooth muscle actin (α-SMA), E-cadherin, vimentin, collagen, and components of the Smad signaling pathway, all of which are crucial for wound healing. The results also suggested that the DSGO ointment was marginally more effective in promoting wound healing in this model. CONCLUSIONS These results indicate that ointment supplemented with DSG and DSGO have the potential to enhance skin repair by improving histopathology and altering wound healing-related proteins.
Collapse
Affiliation(s)
- Kamonwan Jongsomchai
- Division of Anatomy, School of Medical Sciences, University of Phayao, 56000 Mueang Phayao, Thailand
| | - Arnon Pudgerd
- Division of Anatomy, School of Medical Sciences, University of Phayao, 56000 Mueang Phayao, Thailand
| | - Waraporn Sakaew
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, 40002 Mueang, Khon Kaen, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, 10400 Phaya Thai, Bangkok, Thailand
| | - José Kovensky
- Laboratoire de Glycochimie et des Agroressources d'Amiens (LG2A) UR 7378, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Tawut Rudtanatip
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, 40002 Mueang, Khon Kaen, Thailand
| |
Collapse
|
5
|
Iosageanu A, Mihai E, Seciu-Grama AM, Utoiu E, Gaspar-Pintiliescu A, Gatea F, Cimpean A, Craciunescu O. In Vitro Wound-Healing Potential of Phenolic and Polysaccharide Extracts of Aloe vera Gel. J Funct Biomater 2024; 15:266. [PMID: 39330241 PMCID: PMC11433545 DOI: 10.3390/jfb15090266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The present study aimed to conduct a comparative investigation of the biological properties of phenolic and polysaccharide extracts obtained using an ultrasound-assisted technique from Aloe vera gel and their effects on each stage of the wound healing process in in vitro experimental models. HPLC analysis showed that the phenolic extract contained aloin, ferulic, and caffeic acid, as well as quercetin dihydrate, as major compounds. Capillary zone electrophoresis indicated the prevalence of mannose and glucose in the polysaccharide extract. Cell culture testing revealed the anti-inflammatory properties of the phenolic extract at a concentration of 0.25 mg/mL through significant inhibition of pro-inflammatory cytokines-up to 28% TNF-α and 11% IL-8 secretion-in inflamed THP-1-derived macrophages, while a pro-inflammatory effect was observed at 0.5 mg/mL. The phenolic extract induced 18% stimulation of L929 fibroblast proliferation at a concentration of 0.5 mg/mL, enhanced the cell migration rate by 20%, and increased collagen type I synthesis by 18%. Moreover, the phenolic extract exhibited superior antioxidant properties by scavenging free DPPH (IC50 of 2.50 mg/mL) and ABTS (16.47 mM TE/g) radicals, and 46% inhibition of intracellular reactive oxygen species (ROS) production was achieved. The polysaccharide extract demonstrated a greater increase in collagen synthesis up to 25%, as well as antibacterial activity against Staphylococcus aureus with a bacteriostatic effect at 25 mg/mL and a bactericidal one at 50 mg/mL. All these findings indicate that the phenolic extract might be more beneficial in formulations intended for the initial phases of wound healing, such as inflammation and proliferation, while the polysaccharide extract could be more suitable for use during the remodeling stage. Moreover, they might be combined with other biomaterials, acting as efficient dressings with anti-inflammatory, antioxidant, and antibacterial properties for rapid recovery of chronic wounds.
Collapse
Affiliation(s)
- Andreea Iosageanu
- Faculty of Biology, University of Bucharest, 91–95, Splaiul Independentei, 050095 Bucharest, Romania;
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (E.M.); (A.-M.S.-G.); (E.U.); (A.G.-P.); (F.G.); (O.C.)
| | - Elena Mihai
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (E.M.); (A.-M.S.-G.); (E.U.); (A.G.-P.); (F.G.); (O.C.)
| | - Ana-Maria Seciu-Grama
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (E.M.); (A.-M.S.-G.); (E.U.); (A.G.-P.); (F.G.); (O.C.)
| | - Elena Utoiu
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (E.M.); (A.-M.S.-G.); (E.U.); (A.G.-P.); (F.G.); (O.C.)
| | - Alexandra Gaspar-Pintiliescu
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (E.M.); (A.-M.S.-G.); (E.U.); (A.G.-P.); (F.G.); (O.C.)
| | - Florentina Gatea
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (E.M.); (A.-M.S.-G.); (E.U.); (A.G.-P.); (F.G.); (O.C.)
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, 91–95, Splaiul Independentei, 050095 Bucharest, Romania;
| | - Oana Craciunescu
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (E.M.); (A.-M.S.-G.); (E.U.); (A.G.-P.); (F.G.); (O.C.)
| |
Collapse
|
6
|
Guangmei D, Weishan H, Wenya L, Fasheng W, Jibing C. Evolution of radiation-induced dermatitis treatment. Clin Transl Oncol 2024; 26:2142-2155. [PMID: 38594379 DOI: 10.1007/s12094-024-03460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Radiation-induced skin damage (RID) is the most prevalent, significant side effect of radiotherapy (RT). Nearly 95% of patients experience moderate to severe skin reactions after receiving radiation therapy. However, criteria for acute radiation dermatitis (ARD) treatment remain unavailable. Topical agents with anti-inflammatory properties may protect the skin and facilitate tissue regeneration in patients with RID. Many of these topical agents function through nuclear factor kappa B pathway regulation. They either reduce the levels of inflammatory factors or elicit anti-inflammatory properties of their own, thus preventing oxidative stress and inflammatory responses and thus enabling RID prevention and management. Herein, we explore the 25 topical agents investigated for RID prevention and management thus far and evaluate their mechanisms of action. These agents include 11 natural agents, 3 miscellaneous agents, 9 topical nonsteroidal agents, and 2 topical corticosteroids.
Collapse
Affiliation(s)
- Deng Guangmei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - He Weishan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liu Wenya
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wu Fasheng
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Chen Jibing
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
7
|
Wiart C, Tan PL, Rajagopal M, Chew YL, Leong MY, Tan LF, Yap VL. Review of Malaysian medicinal plants with potential wound healing activity. BMC Complement Med Ther 2024; 24:268. [PMID: 38997637 PMCID: PMC11245834 DOI: 10.1186/s12906-024-04548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Wound is defined as the damage to biological tissues including skin, mucous membranes and organ tissues. The acute wound heals in less than 4 weeks without complications, while a chronic wound takes longer than 6 weeks to heal. Wound healing occurs in 4 phases, namely, coagulation, inflammatory, proliferative and remodeling phases. Triclosan and benzalkonium chloride are commonly used as skin disinfectants in wound healing. However, they cause allergic contact dermatitis and antibiotic resistance. Medicinal plants are widely studied due to the limited availability of wound healing agents. The present review included six commonly available medicinal plants in Malaysia such as Aloe barbadensis Miller, Carica papaya Linn., Centella asiatica Linn., Cymbopogon nardus Linn., Ficus benghalensis Linn. and Hibiscus rosa sinensis Linn. Various search engines and databases were used to obtain the scientific findings, including Google Scholar, ScienceDirect, PubMed Central and Research Gate. The review discussed the possible mechanism of action of medicinal plants and their active constituents in the wound healing process. In addition, their application in nanotechnology and wound dressings was also discussed in detail.
Collapse
Affiliation(s)
- Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Puay Luan Tan
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia.
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia.
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia
| | - Mun Yee Leong
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia
| | - Lee Fang Tan
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia
| | - Vi Lien Yap
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala, Lumpur, Malaysia
| |
Collapse
|
8
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
9
|
Hameed A, Tariq M, Sadia S, Alam MR, Haider A, Wahedi HM. Aloesin-loaded chitosan/cellulose-based scaffold promotes skin tissue regeneration. Int J Biol Macromol 2024; 273:133030. [PMID: 38857730 DOI: 10.1016/j.ijbiomac.2024.133030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Skin wound healing and regeneration is very challenging across the world as simple or acute wounds can be transformed into chronic wounds or ulcers due to foreign body invasion, or diseases like diabetes or cancer. The study was designed to develop a novel bioactive scaffold, by loading aloesin to chitosan-coated cellulose scaffold, to cure full-thickness skin wounds. The physiochemical characterization of the scaffold was carried out using scanning electron microscopy (SEM) facilitated by energy-dispersive spectrophotometer (EDS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results indicated the successful coating of chitosan and aloesin on cellulose without any physical damage. The drug release kinetics confirmed the sustained release of aloesin by showing a cumulative release of up to 88 % over 24 h. The biocompatibility of the aloesin-loaded chitosan/cellulose (AlCsCFp) scaffold was evaluated by the WST-8 assay that confirmed the significantly increased adherence and proliferation of fibroblasts on the AlCsCFp scaffold. The in vivo wound healing study showed that both 0.05 % and 0.025 % AlCsCFp scaffolds have significantly higher wound closure rates (i.e. 88.2 % and 95.6 % approximately) as compared to other groups. This showed that novel composite scaffold has a wound healing ability. Furthermore, histological and gene expression analysis demonstrated that the scaffold also induced cell migration, angiogenesis, re-epithelialization, collagen deposition, and tissue granulation formation. Thus, it is concluded that the aloesin-loaded chitosan/cellulose-based scaffold has great therapeutic potential for being used in wound healing applications in the clinical setting in the future.
Collapse
Affiliation(s)
- Aasia Hameed
- Department of Biomedicine, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Sector H-12, 44000 Islamabad, Pakistan; Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Mehreen Tariq
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Sobia Sadia
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - M Rizwan Alam
- Department of Biochemistry, Quaid-I-Azam University, Islamabad Capital Territory 45320, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Hussain Mustatab Wahedi
- Department of Biomedicine, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Sector H-12, 44000 Islamabad, Pakistan.
| |
Collapse
|
10
|
Ushasree MV, Jia Q, Do SG, Lee EY. New opportunities and perspectives on biosynthesis and bioactivities of secondary metabolites from Aloe vera. Biotechnol Adv 2024; 72:108325. [PMID: 38395206 DOI: 10.1016/j.biotechadv.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.
Collapse
Affiliation(s)
- Mrudulakumari Vasudevan Ushasree
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi Jia
- Unigen, Inc., 2121 South street suite 400 Tacoma, Washington 98405, USA
| | - Seon Gil Do
- Naturetech, Inc., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungcheongbuk-do 27858, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
11
|
Ren X, Wang Z, Wang X, Li Y, Tan Y. Determination of aloesone in rat plasma by LC-MS/MS spectrometry and its application in a pharmacokinetic study. Bioanalysis 2024; 16:453-460. [PMID: 38497753 PMCID: PMC11216510 DOI: 10.4155/bio-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Aim: We aimed to develop a rapid and accurate LC-MS/MS method for determining the concentration of aloesone in rat plasma, and to investigate its pharmacokinetics. Methods: The rat plasma samples were extracted using acetonitrile. Chromatographic separation was achieved using a Kinetex XB-C18 column, with a mobile phase of methanol and water (containing 0.1‰ formic acid) in a gradient elution. An ESI source, operating in positive ion mode with multiple reaction monitoring, was utilized. Results & conclusion: The developed method meets all the requirements for methodological validation, and it was successfully applied in the pharmacokinetic study. It was observed that oral administration of aloesone in rats resulted in rapid absorption (time to reach Cmax: 0.083 h) but low bioavailability (12.59%).
Collapse
Affiliation(s)
- Xikang Ren
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571159, China
- Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571159, China
- Haikou Key Laboratory of Li Nationality Medicine, Haikou, 571159, China
| | - Zheng Wang
- Biotechnology and Biochemistry Laboratory, Hainan Medical University, Haikou, Hainan, 571159, China
| | - Xuesong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571159, China
- Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571159, China
- Haikou Key Laboratory of Li Nationality Medicine, Haikou, 571159, China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571159, China
- Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571159, China
- Haikou Key Laboratory of Li Nationality Medicine, Haikou, 571159, China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571159, China
- Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571159, China
- Haikou Key Laboratory of Li Nationality Medicine, Haikou, 571159, China
| |
Collapse
|
12
|
Chelu M, Musuc AM, Popa M, Calderon Moreno J. Aloe vera-Based Hydrogels for Wound Healing: Properties and Therapeutic Effects. Gels 2023; 9:539. [PMID: 37504418 PMCID: PMC10379830 DOI: 10.3390/gels9070539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Aloe vera-based hydrogels have emerged as promising platforms for the delivery of therapeutic agents in wound dressings due to their biocompatibility and unique wound-healing properties. The present study provides a comprehensive overview of recent advances in the application of Aloe vera-based hydrogels for wound healing. The synthesis methods, structural characteristics, and properties of Aloe vera-based hydrogels are discussed. Mechanisms of therapeutic agents released from Aloe vera-based hydrogels, including diffusion, swelling, and degradation, are also analyzed. In addition, the therapeutic effects of Aloe vera-based hydrogels on wound healing, as well as the reduction of inflammation, antimicrobial activity, and tissue regeneration, are highlighted. The incorporation of various therapeutic agents, such as antimicrobial and anti-inflammatory ones, into Aloe vera-based hydrogels is reviewed in detail. Furthermore, challenges and future prospects of Aloe vera-based hydrogels for wound dressing applications are considered. This review provides valuable information on the current status of Aloe vera-based hydrogels for the delivery of therapeutic agents in wound dressings and highlights their potential to improve wound healing outcomes.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
13
|
Saucedo-Acuña RA, Meza-Valle KZ, Cuevas-González JC, Ordoñez-Casanova EG, Castellanos-García MI, Zaragoza-Contreras EA, Tamayo-Pérez GF. Characterization and In Vivo Assay of Allantoin-Enriched Pectin Hydrogel for the Treatment of Skin Wounds. Int J Mol Sci 2023; 24:ijms24087377. [PMID: 37108540 PMCID: PMC10138972 DOI: 10.3390/ijms24087377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
This work describes a liquid allantoin-enriched pectin hydrogel with hydrophilic behavior that is supported by the presence of functional groups related to healing efficacy. A topical study shows the effect of the hydrogel application on surgically induced skin wound healing in a rat model. Contact angle measurements confirm hydrophilic behavior (11.37°), while Fourier-transform infrared spectroscopy indicates the presence of functional groups related to the healing effectiveness (carboxylic acid and amine groups). Allantoin is distributed on the surface and inside the amorphous pectin hydrogel surrounded by a heterogeneous distribution of pores. This promotes wound drying with better interaction between the hydrogel and cells involved in the wound healing process. An experimental study with female Wistar rats indicates that the hydrogel improves wound contraction, reducing around 71.43% of the total healing time and reaching total wound closure in 15 days.
Collapse
Affiliation(s)
- Rosa Alicia Saucedo-Acuña
- Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Av. Benjamín Franklin No. 4650, Zona Pronaf Condominio La Plata, Ciudad Juárez C.P. 32310, Mexico
| | - Karen Zulema Meza-Valle
- Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Av. Benjamín Franklin No. 4650, Zona Pronaf Condominio La Plata, Ciudad Juárez C.P. 32310, Mexico
| | - Juan Carlos Cuevas-González
- Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Av. Benjamín Franklin No. 4650, Zona Pronaf Condominio La Plata, Ciudad Juárez C.P. 32310, Mexico
| | - Elsa Gabriela Ordoñez-Casanova
- Institute of Engineering and Technology, Autonomous University of Ciudad Juarez, Av. del Charro y Henry Dunan s/n, Omega, Ciudad Juárez C.P. 32584, Mexico
| | - Manuel Iván Castellanos-García
- Institute of Engineering and Technology, Autonomous University of Ciudad Juarez, Av. del Charro y Henry Dunan s/n, Omega, Ciudad Juárez C.P. 32584, Mexico
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Mexico
| | - Genaro Federico Tamayo-Pérez
- Jefatura de Investigación, Hospital Ángeles Ciudad Juárez, Av. Campos Eliseos 9371, Campos Elíseos, Ciudad Juárez C.P. 32472, Mexico
| |
Collapse
|
14
|
Wang F, Liu J, An Q, Wang Y, Yang Y, Huo T, Yang S, Ju R, Quan Q. Aloe Extracts Inhibit Skin Inflammatory Responses by Regulating NF-κB, ERK, and JNK Signaling Pathways in an LPS-Induced RAW264.7 Macrophages Model. Clin Cosmet Investig Dermatol 2023; 16:267-278. [PMID: 36742263 PMCID: PMC9891070 DOI: 10.2147/ccid.s391741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
Introduction Inflammation generally refers to the body's defensive response to stimuli, and skin inflammation is still one of the major problems that affect human physical and mental health. While current pharmacological treatments are reported to have cytotoxicity and various side effects, herbal medicines with few side effects and low cytotoxicity are considered as alternative therapeutic approaches. Methods In order to investigate anti-inflammatory effects and mechanisms of ALOE, the potential cytotoxicity of A. vera extracts (ALOE) was determined in vitro at first. The production of the pro-inflammatory proteins (ie, IL-6, TNF-α) in lipopolysaccharides (LPS) and ultraviolet A (UVA)-stimulated HaCaT and RAW264.7 cells were then treated with ALOE to test its inhibitory effects using enzyme-linked immunosorbent assay (ELISA). To further explore the anti-inflammatory mechanisms of ALOE, quantitative Polymerase Chain Reaction (qPCR) was used to analyze the mRNA expression of inflammatory genes iNOS, COX-2 and NO production. For NF-κB and MAPK signaling pathways analysis, Western blotting and nuclear fluorescence staining were used to evaluate the expression of key factors. Results ALOE did not exhibit obvious cytotoxicity (0-3 mg/mL) in vitro. ALOE was able to inhibit the expression of pro-inflammatory cytokines IL-6, TNF-α and functioned more prominently in LPS-induced model. ALOE could also suppress the mRNA expression of LPS-induced iNOS and COX-2 and further down-regulate NO level. Furthermore, ALOE reduced the protein expression of P65 in NF-κB signaling pathway and suppressed LPS-induced activation of ERK and JNK, instead of p38 MAPK pathway. Conclusion Taken together, these results demonstrated that ALOE is a potential treatment in suppressing LPS-stimulated inflammation reactions targeting NF-κB, JNK and ERK signaling pathways. The anti-inflammatory effects of ALOE indicated that it has the potential to become an effective cosmetic ingredient.
Collapse
Affiliation(s)
- Fei Wang
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Jitao Liu
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Quan An
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
- Research and Development Department, Yunnan Baiyao Group Shanghai Science & Technology Co., Ltd., Shanghai, People’s Republic of China
| | - Yiming Wang
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Yang Yang
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Tong Huo
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Simin Yang
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Ruijun Ju
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Qianghua Quan
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
- Research and Development Department, Yunnan Baiyao Group Shanghai Science & Technology Co., Ltd., Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Mirjalili F, Mahmoodi M. Controlled release of protein from gelatin/chitosan hydrogel containing platelet-rich fibrin encapsulated in chitosan nanoparticles for accelerated wound healing in an animal model. Int J Biol Macromol 2023; 225:588-604. [PMID: 36403766 DOI: 10.1016/j.ijbiomac.2022.11.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
The physiological healing process is disrupted in many cases using the current wound healing procedures, resulting in delayed wound healing. Hydrogel wound dressings provide a moist environment to enhance granulation tissue and epithelium formation in the wound area. However, exudate accumulation, bacterial proliferation, and reduced levels of growth factors are difficulties of hydrogel dressings. Here, we loaded platelet-rich fibrin-chitosan (CH-PRF) nanoparticles into the gelatin-chitosan hydrogel (Gel-CH/CH-PRF) by solvent mixing method. Our goal was to evaluate the characteristics of hydrogel dressings, sustained release of proteins from the hydrogel dressing containing PRF, and reduction in the risk of infection by the bacteria in the wound area. The Gel-CH/CH-PRF hydrogel showed excellent swelling behavior, good porosity, proper specific surface area, high absorption of wound exudates, and proper vapor permeability rate (2023 g/m 2.day), which provided requisite moisture without dehydration around the wound area. Thermal behavior and the protein release from the hydrogels were investigated using simultaneous thermal analysis and the Bradford test, respectively. Most importantly, an excellent ability to control the release of proteins from the hydrogel dressings was observed. The high antimicrobial activity of hydrogel was confirmed using Gram-positive and Gram-negative bacteria. Due to the presence of chitosan in the hydrogels, the lowest scavenging capacity-50 value (5.82 μgmL-1) and the highest DPPH radical scavenging activity (83 %) at a concentration 25 μgmL-1 for Gel-CH/CH-PRF hydrogel were observed. Also, the hydrogels revealed excellent cell viability and proliferation. The wound healing process was studied using an in vivo model of the full-thickness wound. The wound closure was significantly higher on Gel-CH/CH-PRF hydrogel compared to the control group, indicating the highest epidermis thickness, and enhancing the formation of new granulation tissue. Our findings demonstrated that Gel-CH/CH-PRF hydrogel can provide an ideal wound dressing for accelerated wound healing.
Collapse
Affiliation(s)
- Fatemeh Mirjalili
- Department of Material Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, 8915813135, Iran; Department of Bioengineering, University of California, Los Angeles, CA, United States of America.
| |
Collapse
|
16
|
Xie W, Zhang C, Wang T, Wang J, Fu F. Effects of natural products on skin inflammation caused by abnormal hormones secreted by the adrenal gland. Front Pharmacol 2023; 14:1156271. [PMID: 37205913 PMCID: PMC10188947 DOI: 10.3389/fphar.2023.1156271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/21/2023] Open
Abstract
The cortex of adrenal gland produces glucocorticoid, mineralocorticoid, and androgen. The medulla of adrenal gland secrets catecholamines. These hormones play an important role in regulating blood pressure, metabolism, and homeostasis of glucose or electrolytes. Hypersecretion or hyposecretion by the adrenal gland will cause a complex cascade of hormone effects and lead to diseases, including Addison's disease, Cushing's syndrome, and congenital adrenal cortical hyperplasia. Skin is the largest organ of body. It provides protection and acts as a barrier against external damage factors like infectious organisms, chemicals, and allergens. Endocrinologic disorders often induce cutaneous abnormalities. According to the previous evidences, natural products have the potential properties for attenuating skin disorders and improving dermatologic symptoms by inhibiting inflammation through MAPK or PI3K/AKT-dependent NF-κB pathways. The natural products may also promote skin wound healing by inhibiting the production of matrix metalloproteinase-9. We systematically searched the relevant articles from databases, including PubMed, Embase, and Cochrane library databases, to review the effects of natural products on skin disorders. This article summarized the effects of natural products on skin inflammation caused by abnormal hormone secreted by adrenal gland. And the published papers indicated that natural products might be a potential source for treating skin diseases.
Collapse
|
17
|
Second-Degree Burns and Aloe Vera: A Meta-analysis and Systematic Review. Adv Skin Wound Care 2022; 35:1-9. [DOI: 10.1097/01.asw.0000875056.29059.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Ajjoun M, Kharchoufa L, Alami Merrouni I, Elachouri M. Moroccan medicinal plants traditionally used for the treatment of skin diseases: From ethnobotany to clinical trials. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115532. [PMID: 35843409 DOI: 10.1016/j.jep.2022.115532] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Skin diseases are among the most common human health affections. A healthy skin promotes a healthy body that can be achieved through modern, allopathic and natural medicines. Therefore, medicinal plants can be a reliable therapy in treating skin diseases in humans through a diverse range of bioactive molecules they contain. AIM OF THE STUDY This review aims to provide for the first-time scientific evidence related to the dermatological properties of Morocco's medicinal plants and it aims to provide a baseline for the discovery of new drugs having activities against skin issues. METHODS This review involved an investigation with different search engines for Moroccan ethnobotanical surveys published between 1991 and 2021. The plants used to treat skin diseases have been determined. Information regarding pharmacological effects, phytochemical, and clinical trials related to the plants listed in this review was collected from different scientific databases like PubMed, Science Direct, Google Scholar, Web of Science and Scopus. The data were analyzed and summarized in the review. RESULTS A total of 401 plants belonging to 86 families mainly represented by Asteraceae, Lamiaceae, Fabaceae, and Apiaceae which have been documented to be in common use by Moroccans for managing skin diseases. Among those plants recorded, the most commonly used are Allium cepa L, Chamaeleon gummifer (L.) Cass and Salvia rosmarinus Schleid. Mill. Leaves were the most commonly used plant part, while powder and decoction were the most common method of traditional drug preparation. 107 of the 401 plants (27%) have undergone pharmacological validation. A total of 44 compounds isolated from 27 plants were investigated to treat different types of skin diseases, and 25 plants have been clinically studied for their activities against skin diseases. CONCLUSION The beneficial effects of using Moroccan medicinal plants to treat skin diseases, according to traditional practices, have been proven in numerous scientific studies. Therefore, other studies should focus on isolating and identifying specific bioactive compounds from plant extracts, revealing more valuable therapeutic properties. Furthermore, additional reliable clinical trials are needed to confirm their beneficial effect on patients with skin diseases.
Collapse
Affiliation(s)
- Mohammed Ajjoun
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Ilyass Alami Merrouni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
19
|
Kong XY, Chen TT, Zhang HW, Jia HM, Yu M, Zou ZM. Characterization of the metabolism of aloin A/B and aloesin in rats by using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2022; 36:e5483. [PMID: 35975594 DOI: 10.1002/bmc.5483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Aloin A/B and aloesin are the major bioactive constituents in the Aloe vera, with diverse pharmacological activities, including anti-bacterial, anti-tumour, anti-inflammatory and intestinal regulation. However, the in vivo metabolism of aloin A/B and aloesin are still unclear. In this study, the metabolic processes of aloin A/B and aloesin in rats were investigated using the ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and MetaboLynxTM software with Mass defect filter (MDF) technique. Based on the proposed method, the prototype component of three compounds were all detected in the rat plasma, urine and feces. Meanwhile, 25 aloin A/B metabolites (6 phase I, 3 phase II, 16 phase I combined with phase II) and 3 aloesin metabolites (2 phase I and 1 phase II) were detected in rats after oral administration of aloin A, aloin B and aloesin, and the main biotransformation reactions were hydroxylation, oxidation, methylation, acetylation, and glucuronidation. In addition, Aloin A and aloin B can be transformed into each other in vivo and the metabolic profiles of aloin A and aloin B were identical. These results provide essential data for further pharmaceutical researches and clinical application of aloin A/B and aloesin.
Collapse
Affiliation(s)
- Xin-Yu Kong
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Hong-Wu Zhang
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Mei Jia
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng Yu
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhong-Mei Zou
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, Zhang X, Wang Y, Yang S, Ma X, Zeng J, Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front Pharmacol 2022; 13:900439. [PMID: 35935866 PMCID: PMC9354992 DOI: 10.3389/fphar.2022.900439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Under normal circumstances, wound healing can be summarized as three processes. These include inflammation, proliferation, and remodeling. The vast majority of wounds heal rapidly; however, a large percentage of nonhealing wounds have still not been studied significantly. The factors affecting wound nonhealing are complex and diverse, and identifying an effective solution from nature becomes a key goal of research. This study aimed to highlight and review the mechanisms and targets of natural products (NPs) for treating nonhealing wounds. The results of relevant studies have shown that the effects of NPs are associated with PI3K-AKT, P38MAPK, fibroblast growth factor, MAPK, and ERK signaling pathways and involve tumor growth factor (TNF), vascular endothelial growth factor, TNF-α, interleukin-1β, and expression of other cytokines and proteins. The 25 NPs that contribute to wound healing were systematically summarized by an inductive collation of the six major classes of compounds, including saponins, polyphenols, flavonoids, anthraquinones, polysaccharides, and others, which will further direct the attention to the active components of NPs and provide research ideas for further development of new products for wound healing.
Collapse
Affiliation(s)
- E Liu
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YiJia Zhao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobing Pang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Neijiang Hospital of Traditional Chinese Medicine, Neijiang, China
| | - Zhengru Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueer Zhang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YanJin Wang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siming Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
21
|
Therapeutic Potential of Skin Stem Cells and Cells of Skin Origin: Effects of Botanical Drugs Derived from Traditional Medicine. Stem Cell Rev Rep 2022; 18:1986-2001. [PMID: 35648312 DOI: 10.1007/s12015-022-10388-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/09/2022]
Abstract
Skin, the largest organ of the body, plays a vital role in protecting inner organs. Skin stem cells (SSCs) comprise a group of cells responsible for multiplication and replacement of damaged and non-functional skin cells; thereby help maintain homeostasis of skin functions. SSCs and differentiated cells of the skin such as melanocytes and keratinocytes, have a plethora of applications in regenerative medicine. However, as SSCs reside in small populations in specific niches in the skin, use of external stimulants for cell proliferation in vitro and in vivo is vital. Synthetic and recombinant stimulants though available, pose many challenges due to their exorbitant prices, toxicity issues and side effects. Alternatively, time tested traditional medicine preparations such as polyherbal formulations are widely tested as effective natural stimulants, to mainly stimulate proliferation, and melanogenesis/prevention of melanogenesis of both SSCs and cells of skin origin. Complex, multiple targets, synergistic bioactivities of the phytochemical constituents of herbal preparations amply justify these as natural stimulants. The use of these formulations in clinical applications such as in skin regeneration for burn wounds, wound healing acceleration, enhancement or decrease of melanin pigmentations will be in great demand. Although much multidisciplinary research is being conducted on the use of herbal formulas as stem cell stimulants, very few related clinical trials are yet registered with the NIH clinical trial registry. Therefore, identification/ discovery, in depth investigations culminating in clinical trials, as well as standardization and commercialization of such natural stimulants must be promoted, ensuring the sustainable use of medicinal plants.
Collapse
|
22
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
23
|
Rizqi J, Fitriawan AS. Low-dose Indonesian Aloe vera Increases Viability and Migration of the Fibroblast: An In Vitro Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Important stages in wound healing involve homeostasis, inflammation, proliferation, and remodeling phases. Fibroblasts are essential factors in the healing pathway through the process of cell proliferation and migration. Aloe vera contains various active compounds used for anti-inflammatory, antimicrobial, immunomodulatory, anticancer, and wound healing.
AIM: This study aimed to evaluate the effect of A. vera on the viability and migration of fibroblast cells.
MATERIALS AND METHODS: Fibroblasts were cultured in a monolayer with Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum, 1% pinstripe, and 0.5% fungizone. We use fresh A. vera leaves extracted with 95% ethanol. Cell viability will be evaluated using the MTT test and microscopic evaluation. Cell migration was tested using an in vitro wound scratch assay and analyzed with ImageJ software.
RESULTS: A. vera stimulated cell viability compared to control (p < 0.05). Administration of A. vera does not change shape and is not toxic to fibroblasts. A. vera stimulated cell migration at doses of 250, 125, 50, and 5 μg/mL compared to control after 24 h of intervention. At 48 h incubation, migration doses of 250, 50, and 5 μg/mL were higher than control (p < 0.05).
CONCLUSIONS: A. vera extract may effectively wound healing by increasing viability and migration of fibroblast cells.
Collapse
|
24
|
Kaewsrisung S, Sukpat S, Issarasena N, Patumraj S, Somboonwong J. The effects of oral Aloe vera on the efficacy of transplanted human endothelial cells and the expression of matrix metalloproteinases in diabetic wound healing. Heliyon 2021; 7:e08533. [PMID: 34934844 DOI: 10.1016/j.heliyon.2021.e08533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Background Diabetic wounds are characterized by delayed healing and impaired angiogenesis. Aloe vera and human umbilical vein endothelial cells (HUVECs) are reported to facilitate wound healing, and the former also has hypoglycemic property. Matrix metalloproteinases are enzymes that play a role in diabetic wound pathogenesis. Objective To investigate whether oral Aloe vera can enhance the efficacy of HUVEC transplantation and inhibit the expression of matrix metalloproteinases in wound healing of diabetic mice. Materials and methods BALB/c nude mice were randomly assigned into five groups: normal control group, diabetic group (DM), DM transplanted with HUVECs, DM treated with oral Aloe vera, and DM treated with combined HUVECs and oral Aloe vera. Diabetes was induced by streptozotocin. Bilateral full-thickness excision cutaneous wounds were created. At days 7 and 14 post-wounding, the following parameters were determined: blood glucose, wound area, wound perfusion, capillary vascularity, re-epithelialization rate and tissue VEGF levels. Tissue expressions of MMP-2 and MMP-9 were compared between the DM mice and those treated with oral Aloe vera. Results Over days 7 and 14, Aloe vera exerted glucose-lowering effect in diabetic mice. Higher wound closure rate, blood flow and capillary vascularity, and lower MMP-2 and MMP-9 expressions were observed at both time points in DM treated with Aloe vera group compared with DM group (P < 0.05). Moreover, combined therapy of HUVECs and oral Aloe vera was more effective than Aloe vera or HUVECs alone in increasing VEGF levels, capillary vascularity and wound perfusion. Blood glucose levels were negatively correlated with angiogenesis (P = 0.000. Conclusion It is suggested that oral Aloe vera enhances the efficacy of HUVEC transplantation on diabetic wound angiogenesis, partly through improving glycemic control. Oral Aloe vera also promotes diabetic wound healing via inhibition of MMP-2 and MMP-9 expressions.
Collapse
Affiliation(s)
- Supassanan Kaewsrisung
- Inter-Department of Physiology, Graduate School, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakanda Sukpat
- Department of Physiology, Center of Excellence for Microcirculation, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nipan Issarasena
- Stem Cell and Cell Therapy Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suthiluk Patumraj
- Department of Physiology, Center of Excellence for Microcirculation, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juraiporn Somboonwong
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
25
|
Characterization and Topical Study of Aloe Vera Hydrogel on Wound-Healing Process. Polymers (Basel) 2021; 13:polym13223958. [PMID: 34833257 PMCID: PMC8623201 DOI: 10.3390/polym13223958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Wound healing is fundamental to restore the tissue integrity. A topical study of the influence of Aloe vera hydrogel, formulated with 1,2-propanediol (propanediol) and triethanolamine (TEA), on the skin wound-healing process was investigated in female Wistar rats. FTIR spectroscopy confirms the presence of carboxylic acid and methyl ester carboxylate groups related with important compounds that confer the hydrogel a good interaction with proteins and growth factors. SEM images show a microstructure and micro-roughness that promote a good adhesion to the wound. Therefore, the swelling kinetics and the contact angle response contribute to the understanding of the in vivo results of the animal test. The results indicated that the Aloe vera hydrogel, prepared with propanediol and TEA, together with its superficial characteristics, improve its rapid penetration without drying out the treated tissue. This produced a positive influence on inflammation, angiogenesis, and wound contraction, reducing 29% the total healing time, reaching the total closure of the wound in 15 days.
Collapse
|
26
|
Extraction of Aloesin from Aloe vera Rind Using Alternative Green Solvents: Process Optimization and Biological Activity Assessment. BIOLOGY 2021; 10:biology10100951. [PMID: 34681050 PMCID: PMC8533118 DOI: 10.3390/biology10100951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Aloesin is a bioactive constituent of Aloe spp. used primarily in cosmetic products. Its recovery from plant materials is affected by several variables that can compromise the process yield and profitability, which is why it is necessary to determine the best processing conditions. This study describes the design and optimization of a method for extraction of aloesin from Aloe vera rind, a leaf part often discarded as a by-product, using the response surface methodology. The effect of the variables time, temperature, solvent composition, and solid/liquid ratio were investigated. Green organic solvents (ethanol, propylene glycol, and glycerol) were used in aqueous mixtures. Aqueous propylene glycol was found to be the most promising solvent for aloesin recovery and a linear increase in extraction yields was verified with the increase in solid/liquid ratio. To assess the bioactivity of the extracts, their ability to inhibit lipid peroxidation and the fungal and bacterial growth, as well as their cytotoxic potential, was tested in vitro. Overall, it was possible to determine the best extraction conditions for aloesin and to better understand the antioxidant and antimicrobial properties of the aloesin-rich extracts, which may be produced and used by the industrial sector. Abstract Aloesin is an aromatic chromone with increasing applications in the cosmetic and health food industries. To optimize its extraction from the Aloe vera leaf rind, the independent variables time (10–210 min), temperature (25–95 °C) and organic solvent composition (0–100%, w/w) were combined in a central composite design coupled with response surface methodology. The solvents consisted of binary mixtures of water with ethanol, propylene glycol, or glycerol. The aloesin levels quantified in each extract were used as response for optimization. The theoretical models were fitted to the experimental data, statistically validated, and used to obtain the optimal extraction conditions. Then, a dose–response analysis of the solid/liquid ratio (S/L) was performed under the optimal conditions determined for each alcohol–water system and revealed that a linear improvement in extraction efficiency can be achieved by increasing the S/L ratio by up to 40 g/L. This analysis also allowed to experimentally validate the predictive models. Furthermore, the aloesin-rich extracts revealed antioxidant activity through thiobarbituric acid reactive substances (TBARS) formation inhibition, antimicrobial effects against bacterial and fungal strains, and no toxicity for PLP2 cells. Overall, this study provided optimal extraction conditions for the recovery of aloesin from Aloe vera rind through an eco-friendly extraction process and highlighted its bioactive potential.
Collapse
|
27
|
Dinshaw IJ, Ahmad N, Salim N, Leo BF. Nanoemulsions: A Review on the Conceptualization of Treatment for Psoriasis Using a 'Green' Surfactant with Low-Energy Emulsification Method. Pharmaceutics 2021; 13:1024. [PMID: 34371716 PMCID: PMC8309190 DOI: 10.3390/pharmaceutics13071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a skin disease that is not lethal and does not spread through bodily contact. However, this seemingly harmless condition can lead to a loss of confidence and social stigmatization due to a persons' flawed appearance. The conventional methods of psoriasis treatment include taking in systemic drugs to inhibit immunoresponses within the body or applying topical drugs onto the surface of the skin to inhibit cell proliferation. Topical methods are favored as they pose lesser side effects compared to the systemic methods. However, the side effects from systemic drugs and low bioavailability of topical drugs are the limitations to the treatment. The use of nanotechnology in this field has enhanced drug loading capacity and reduced dosage size. In this review, biosurfactants were introduced as a 'greener' alternative to their synthetic counterparts. Glycolipid biosurfactants are specifically suited for anti-psoriatic application due to their characteristic skin-enhancing qualities. The selection of a suitable oil phase can also contribute to the anti-psoriatic effect as some oils have skin-healing properties. The review covers the pathogenic pathway of psoriasis, conventional treatments, and prospective ingredients to be used as components in the nanoemulsion formulation. Furthermore, an insight into the state-of-the-art methods used in formulating nanoemulsions and their progression to low-energy methods are also elaborated in detail.
Collapse
Affiliation(s)
- Ignatius Julian Dinshaw
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Bey Fen Leo
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
28
|
Svitina H, Hamman JH, Gouws C. Molecular mechanisms and associated cell signalling pathways underlying the anticancer properties of phytochemical compounds from Aloe species (Review). Exp Ther Med 2021; 22:852. [PMID: 34178125 PMCID: PMC8220653 DOI: 10.3892/etm.2021.10284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Naturally occurring components from various species of Aloe have been used as traditional folk medicine since the ancient times. Over the last few decades, the therapeutic effects of extracts and phytochemical compounds obtained from Aloe vera have been proven in preclinical and clinical studies. Recently, compounds from other Aloe species apart from Aloe vera have been investigated for the treatment of different diseases, with a particular focus on cancer. In the present review, the effects of phytochemical compounds obtained from different Aloe species are discussed, with a specific focus on the effects on cell signalling in cancer and normal cells, and their selectivity and efficacy. This information will be useful for the application of Aloe-derived compounds as therapeutic agents, either alone or in combination with other standard drugs for cancer treatment.
Collapse
Affiliation(s)
- Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of NASU, Kyiv 03143, Ukraine
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa
| |
Collapse
|
29
|
Effects of Aloe vera Flower Extract and Its Active Constituent Isoorientin on Skin Moisturization via Regulating Involucrin Expression: In Vitro and Molecular Docking Studies. Molecules 2021; 26:molecules26092626. [PMID: 33946287 PMCID: PMC8125160 DOI: 10.3390/molecules26092626] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
Skin moisturization is very crucial for maintaining the flexibility, viscoelasticity, and differentiation of the epidermis and its deprivation causes several diseases from dry skin to dermatitis. Aloe vera, a miracle plant having diverse medicinal properties including skin moisturization effects. This study investigated for the first time the molecular mechanism targeting skin moisturization effects of the Aloe vera flower and its major active constituent. By treating human epidermal keratinocytes (HaCaT cells) with Aloe vera flower water extract (AFWE), we found that AFWE upregulated epidermal involucrin by activating the expression of protein kinase C, p38, and ERK 1/2. Additionally, it modulated filaggrin, increased aquaporin expression, and hyaluronan synthesis via a balanced regulation of HAS1 and HYAL1 protein. Similarly, it was able to protect UVB-induced photodamage. Western blot analysis, ELISA, and qRT- PCR were performed to evaluate various epidermal differentiation markers and moisturization-related factors on human epidermal keratinocytes (HaCaT cells). TLC and HPLC were used to detect and analyze the chemical constituents. Among them, we found that an active component of Aloe vera flower, isoorientin (IO) has a high binding affinity to all of its targeted proteins such as involucrin, PKC, P38, etc. through molecular docking assay. This study indicated that the Aloe vera flower and its active constituent, IO can be used as a prominent ingredient to enhance skin barrier function and improve its related pathologies.
Collapse
|
30
|
In vivo immuno - and angiomodulatory effects of Aloe arborescens folii recentis extractum siccum (AAES) in mice. HERBA POLONICA 2021. [DOI: 10.2478/hepo-2020-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction
AAES is a powdered form of Biostymina, herbal medicinal product of Phytopharm Klęka S.A., a water extract of Aloe arborescens Mill. leaves. Aloe arborescens Mill. (woody aloe, tree-like aloe) is known to have several traditional medicinal properties including anti-inflammatory, immunomodulatory, antiviral and antimicrobial activity.
Objective
The aim of this work was to study the in vivo effect of AAES on cellular (leukocyte-induced cutaneous angiogenesis, LIA test, and proliferative response to PHA) and humoral (anti-SRBC antibody response) immunity in mice.
Methods
Balb/c mice were fed AAES from 0.5 to 75 mg/kg body mass for seven days before grafting their splenocytes intradermally to F1 (Balb/cxC3H) recipients (LIA test). Neovascular reaction was evaluated 72 h later in dissection microscope. Spleen cell cultures were incubated with 0.5, 1 and 2 μg/ml of PHA. After 48 h of incubation, tritiated thymidine was added. After further 24 h, cells were harvested (Skatron) and incorporation of tritiated thymidine was measured using Beta-scintillation counter. Balb/c mice were fed for 7 days with AAES, then immunized intraperitoneally with 5% SRBC suspension and 7 days later the antibody response was measured with hemagglutination test.
Results
Neovascular reaction was significantly higher in groups grafted with splenocytes collected from all AAES fed donors than from the controls. The proliferation of splenocytes taken from mice fed AAES at doses ranging from 0.5 mg/kg to 7.5 mg/kg was stimulated in all cultures. Suppression of proliferation was observed in cell cultures derived from mice fed with higher doses of AAES. Stimulation of anti-SRBC antibody production was seen in mice fed both 2.5 and 7.5 mg/kg dose of AAES.
Conclusion
Powdered form of Biostymina (AAES) might be useful in the treatment of patients with ischaemia of tissues and organs (myocardial infarction, stroke, necrosis) and in deficiency in the production of immune cells and growth factors (infections, chronic wound healing, ulceration and bone fusion).
Collapse
|
31
|
Tian M, Dong J, Yuan B, Jia H. Identification of potential circRNAs and circRNA-miRNA-mRNA regulatory network in the development of diabetic foot ulcers by integrated bioinformatics analysis. Int Wound J 2020; 18:323-331. [PMID: 33314661 PMCID: PMC8244070 DOI: 10.1111/iwj.13535] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
We aimed to explore the mechanism of circular RNAs (circRNAs) and provide potential biomarkers for molecular therapy of diabetic foot ulcers (DFU). Gene expression profile of GSE114248, including five normal samples and five DFU samples, was downloaded from GEO database. Differentially expressed circRNAs (DEcircRNAs) between two groups were identified. Then, DEcircRNA‐miRNA and miRNA‐mRNA interaction was revealed, followed by the circRNA‐miRNA‐mRNA network construction. Moreover, functional and pathway analysis were performed based on mRNAs, followed by the DM‐related pathway exploration. Specific binding sites for key circRNAs and associated miRNAs were under investigation. Finally, RT‐qPCR was used to verify the candidate the relative expression level of circRNA between normal tissues and DFU. Totally, 65 DEcircRNAs were revealed between two groups, followed by 113 circRNA‐miRNA‐mRNA interactions explored. The mRNAs in these interactions were mainly assembled in functions like cell proliferation and pathways. Moreover, a total of 11 DM‐related pathways were revealed. Finally, circRNA‐miRNA specific binding‐site analysis revealed two key circRNAs, for example, circRNA_072697 and circRNA_405463, corresponding to their miRNAs. These two circRNAs were novel biomarkers for DFU. circRNA_072697 acted as a sponge of miR‐3150a‐3p in the progression of DFU via regulating KRAS. MAPK signaling pathway might contribute to the development of DFU.
Collapse
Affiliation(s)
- Ming Tian
- Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaoyun Dong
- Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Yuan
- Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Shafaie S, Andalib S, Shafaei H, Montaseri A, Tavakolizadeh M. Differential Biological Behavior of Fibroblasts and Endothelial Cells under Aloe vera Gel Culturing. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:234-246. [PMID: 33274186 PMCID: PMC7703660 DOI: 10.22088/ijmcm.bums.9.3.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Aloe vera is used for its large variety of biological activities such as wound healing, anti-fungal, anti-inflammatory, hypoglycemic, immunomodulatory, gastroprotective, and anti-cancer. Although the beneficial effects of Aloe vera on wound healing have been proven, little is known about its effects at the cellular level. In this study, we evaluated the angiogenic and migrative effects of Aloe vera gel on fibroblasts and endothelial cells. Fibroblasts and endothelial cells were cultured in monolayer conditions with low glucose DMEM with 10% serum and 1% penicillin-streptomycin. Fresh and mature leaves of Aloe vera were used for gel preparation. Cell proliferation and morphology were studied by an inverted microscope. The migration of fibroblasts was assessed by scratch assay. MTT assay was performed for cell viability assessment, and real-time RT-PCR was used for evaluation of PECAM-1, integrin α1 and β1 transcription. After two days, the protein level of PECAM-1 was detected by flow cytometry. Our results showed that Aloe vera has a higher proliferative effect on fibroblasts in comparison with endothelial cells. Aloe vera also induced the migration of fibroblasts. The viability of both types of cells was similar to control ones. Integrin α1, β1 and PECAM-1 gene expression increased significantly (P <0.005) in Aloe vera treated fibroblasts and endothelial cells in comparison with the control groups. However, the expression of these genes was significantly higher in fibroblasts in comparison with endothelial cells. Protein levels of PECAM-1 showed no change in both cell types upon Aloe vera treatment. Aloe vera gel induced angiogenic and cell adhesion properties in fibroblasts more than endothelial cells. Further investigations are needed to show the main role of fibroblasts rather than endothelial cells in wound healing by Aloe vera administration.
Collapse
Affiliation(s)
- Saba Shafaie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Andalib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hajar Shafaei
- Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz.,Department of Anatomical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Anatomical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Tavakolizadeh
- Department of Pharmacognosy, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
33
|
Liang J, Cui L, Li J, Guan S, Zhang K, Li J. Aloe vera: A Medicinal Plant Used in Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:455-474. [PMID: 33066720 DOI: 10.1089/ten.teb.2020.0236] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin injury is a major problem threatening human physical and mental health, and how to promote wound healing has been the focus. Developing new wound dressings is an important strategy in skin regeneration. Aloe vera is a medicinal plant with a long history, complex constituents, and various pharmacological activities. Many studies have shown that A. vera plays an important role in promoting wound healing. Adding A. vera to wound dressing has become an ideal way. This review will describe the process of skin injury and wound healing and analyze the role of A. vera in wound healing. In addition, the types of wound dressing and the applications of A. vera in wound dressing will be discussed.
Collapse
Affiliation(s)
- Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiankang Li
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jingan Li
- School of Materials Science and Engineering and Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
34
|
Wound Healing Effects of Aloe muth-muth: In Vitro Investigations Using Immortalized Human Keratinocytes (HaCaT). BIOLOGY 2020; 9:biology9110350. [PMID: 33113882 PMCID: PMC7690640 DOI: 10.3390/biology9110350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
The traditional use of Aloe spp. for the purpose of wound healing has a long history and is widespread internationally. Recently, a hybrid aloe plant (Aloe muth-muth) has been cultivated by cross pollination between Aloe vera and Aloe ferox. The Aloe muth-muth plant has not yet been investigated for medicinal properties and provides an opportunity for potential biological activity, including wound healing. The aim of this study was to investigate the in vitro wound healing effects of both Aloe muth-muth gel and whole leaf material with the use of the immortalized human keratinocyte (HaCaT) cell line. Cell viability was conducted using methyl thiazolyl tetrazolium (MTT) assays. In vitro wound healing was tested on HaCaT cells using an established scratch assay method. The effect of Aloe muth-muth gel material on HaCaT cell migration was also investigated. Aloe muth-muth gel material exhibited statistically significantly (p < 0.05) higher percentage wound closure compared to the control at all three concentrations investigated. These findings confirm that this newly cultivated species, Aloe muth-muth, also possesses wound healing activity corresponding to that reported for the two species it is derived from, namely, Aloe vera and Aloe ferox. Therefore, Aloe muth-muth has the potential to be used in future wound therapeutics.
Collapse
|
35
|
Manjuprasanna VN, Rudresha GV, Urs AP, Milan Gowda MD, Rajaiah R, Vishwanath BS. Drupin, a cysteine protease from Ficus drupacea latex accelerates excision wound healing in mice. Int J Biol Macromol 2020; 165:691-700. [PMID: 33010277 DOI: 10.1016/j.ijbiomac.2020.09.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
Wound healing is a tightly regulated physiological process that restores tissue integrity after injury. Plant latex proteases (PLPs) are considered an integral part in herbal wound care as it interferes at different phases of the wound healing process. Although many studies have reported the involvement of PLPs in healing process, an in-depth investigation is required to understand the molecular mechanism. Hence, the effect of PLPs with fibrinolytic activity on wound healing was investigated systematically using mouse excision wound model. Among 29 latices from Ficus genus tested, Ficus drupacea exhibited potent fibrinolytic activity. Cysteine protease responsible for fibrinolysis was purified from the F. drupacea latex named it as drupin, tested for its wound healing efficacy. The accelerated wound healing was mediated by downregulation of matrix metalloprotease (MMP)-9 without altering MMP-8 expression. Besides, drupin enhanced the rate of collagen synthesis at the wound site by increasing arginase 1 activity. And also, drupin increased the expression of arginase 1 in macrophages and involved in cell proliferation, and migration via MAP kinase and PI3K/Akt pathways. Overall, the present study highlights the interference of drupin in wound healing by increased arginase 1 activity and collagen synthesis, and cell proliferation and migration.
Collapse
Affiliation(s)
| | - Gotravalli V Rudresha
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | - Amog P Urs
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | | | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India.
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India.
| |
Collapse
|
36
|
Svitina H, Swanepoel R, Rossouw J, Netshimbupfe H, Gouws C, Hamman J. Treatment of Skin Disorders with Aloe Materials. Curr Pharm Des 2020; 25:2208-2240. [PMID: 31269881 DOI: 10.2174/1381612825666190703154244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ and functions as a barrier to protect the underlying tissues against the elements and pathogens, while also fulfilling many physiological roles and biochemical functions such as preventing excessive water loss. Skin disorders vary greatly in terms of origin, severity, symptoms and affect persons of all ages. Many plants have been used for medicinal purposes since ancient times including the treatment of skin disorders and diseases. Aloe represents one of the earliest medicinal plant species mentioned in antique scriptures and even in rock art dating back thousands of years. Different Aloe species and materials have been used in the prevention and treatment of skin related disorders. Aloe vera is the most commonly used Aloe species for medicinal purposes. Some of the most prominent skin related applications and disorders that Aloe materials have been investigated for are discussed in this paper, which include cosmetic, radiation, cancer, wound and antimicrobial applications. Both in vitro and in vivo studies are included in the discussions of this paper and comprehensive summaries of all these studies are given in tables in each section. Although some contradictory results were obtained among studies, certain Aloe materials have shown excellent efficacy and exhibited potential for the treatment of skin related disorders and cosmetic applications.
Collapse
Affiliation(s)
- Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Roan Swanepoel
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jacques Rossouw
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Happiness Netshimbupfe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
37
|
Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020; 25:molecules25061324. [PMID: 32183224 PMCID: PMC7144722 DOI: 10.3390/molecules25061324] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/23/2023] Open
Abstract
Aloe vera has been traditionally used to treat skin injuries (burns, cuts, insect bites, and eczemas) and digestive problems because its anti-inflammatory, antimicrobial, and wound healing properties. Research on this medicinal plant has been aimed at validating traditional uses and deepening the mechanism of action, identifying the compounds responsible for these activities. The most investigated active compounds are aloe-emodin, aloin, aloesin, emodin, and acemannan. Likewise, new actions have been investigated for Aloe vera and its active compounds. This review provides an overview of current pharmacological studies (in vitro, in vivo, and clinical trials), written in English during the last six years (2014–2019). In particular, new pharmacological data research has shown that most studies refer to anti-cancer action, skin and digestive protective activity, and antimicrobial properties. Most recent works are in vitro and in vivo. Clinical trials have been conducted just with Aloe vera, but not with isolated compounds; therefore, it would be interesting to study the clinical effect of relevant metabolites in different human conditions and pathologies. The promising results of these studies in basic research encourage a greater number of clinical trials to test the clinical application of Aloe vera and its main compounds, particularly on bone protection, cancer, and diabetes.
Collapse
|
38
|
Nguyen JK, Masub N, Jagdeo J. Bioactive ingredients in Korean cosmeceuticals: Trends and research evidence. J Cosmet Dermatol 2020; 19:1555-1569. [DOI: 10.1111/jocd.13344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Julie K. Nguyen
- Department of Dermatology SUNY Downstate Medical Center Brooklyn NY USA
- Dermatology Service VA New York Harbor Healthcare System – Brooklyn Campus Brooklyn NY USA
| | - Natasha Masub
- Department of Dermatology SUNY Downstate Medical Center Brooklyn NY USA
- Dermatology Service VA New York Harbor Healthcare System – Brooklyn Campus Brooklyn NY USA
| | - Jared Jagdeo
- Department of Dermatology SUNY Downstate Medical Center Brooklyn NY USA
- Dermatology Service VA New York Harbor Healthcare System – Brooklyn Campus Brooklyn NY USA
| |
Collapse
|
39
|
Clinical efficacy of an Aloe Vera gel versus a 0.12% chlorhexidine gel in preventing traumatic ulcers in patients with fixed orthodontic appliances: a double-blind randomized clinical trial. Odontology 2019; 108:470-478. [PMID: 31664632 DOI: 10.1007/s10266-019-00468-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Traumatic oral ulceration (TOU) is one of the most common side effects of orthodontic treatments. The objective of this trial is to compare the clinical efficacy of an 80% Aloe Vera gel, prepared using a master formula, versus a commercial 0.12% Chlorhexidine (CHX) gel for TOU prevention in participants wearing fixed orthodontic appliances. This report represents a single-centre, university-based, double-blinded, randomized controlled trial with 2 parallel arms. Patients aged 12 years or older, in the permanent dentition, and about to start fixed orthodontic treatment in this university setting were randomly allocated to use either Aloe Vera or CHX gel, following the cementation procedure. Pre-treatment and 1 month after the cementation clinical assessment and digital photographic images were taken of the teeth and assessed by 2 clinical assessors for the presence or absence of TOUs. A total of 140 were randomized and completed the trial. The overall prevalence of TOUs was 43.6%. Overall 5.7% of patients treated with Aloe Vera gel showed did not suffer from TOUs, whereas in the CHX arm, a total of 57 (81.4%) were affected by this outcome reaching a significant result (p < 0.001). In terms of relative risk (RRs) and confidence intervals (CIs), Aloe Vera provided better results than CHX with an RR of 0.07 (95%CI 0.03-0.16; p < 0.001), and with a patients' number needed to treat of 1.3 (95%CI 1.16-1.54). There were no adverse effects. These results suggest that Aloe Vera gel administration in patients with fixed orthodontic appliances could be important for effective prevention of TOU.
Collapse
|
40
|
Topical essential fatty acid oil on wounds: Local and systemic effects. PLoS One 2019; 14:e0210059. [PMID: 30608959 PMCID: PMC6319702 DOI: 10.1371/journal.pone.0210059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The use of medicinal plants and their derivatives is increasing, and approximately one-third of all traditional herbal medicines are intended for wound treatment. Natural products used in these treatments include vegetable oils, which are rich in essential fatty acids. Once in contact with an ulcerative surface, the oil reaches the blood and lymphatic vessels, thus eliciting systemic effects. OBJECTIVE This study evaluated the local and possible systemic effects of essential fatty acids (sunflower oil) applied topically to rat wounds. METHODS Cutaneous punch wounds (6 mm) were produced on the dorsa of 30 rats. Saline (SS), mineral oil (MO) or essential fatty acid (EFA) solutions were applied topically. Healing was evaluated after 2, 4 and 10 days (n = 5 per group) by visual and histological/morphometric examination, second harmonic generation (SHG) microscopy, and cytokine and growth factor quantification in the scar tissue (real-time PCR) and in serum (ELISA). RESULTS MO/EFA-treated animals had higher IGF-1, leptin, IL-6 and IFN-γ mRNA expression and lower serum IL-6 levels than the control (SS/MO) animals. SHG analysis showed no difference in collagen density between the animals treated with MO and EFA. CONCLUSION EFA treatment induces topical (observed by local IGF-1, leptin, IL-6 and IFN-γ production) and systemic effects, lowering IL-6 levels in the serum. As the oil is widely used to shorten ulcer healing time, studies are needed to evaluate the treatment safety and possible undesired effects.
Collapse
|
41
|
Al-Maweri SA, Ashraf S, Lingam AS, Alqutaibi A, Abdulrab S, Alaizari N, Halboub E. Aloe vera in treatment of oral submucous fibrosis: A systematic review and meta-analysis. J Oral Pathol Med 2018; 48:99-107. [DOI: 10.1111/jop.12789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Sadeq Ali Al-Maweri
- Department of Oral Medicine and Diagnostic Science; Al-Farabi Colleges; Riyadh Saudi Arabia
| | - Sajna Ashraf
- Department of Oral Medicine and Diagnostic Science; Al-Farabi Colleges; Riyadh Saudi Arabia
| | - Amara Swapna Lingam
- Department of Oral Medicine and Diagnostic Science; Al-Farabi Colleges; Riyadh Saudi Arabia
| | - Ahmed Alqutaibi
- Department of Prosthodontics; Ahram Canadian University; Cairo Egypt
| | - Saleem Abdulrab
- Department of Restorative Dental Sciences; Al-Farabi Colleges; Riyadh Saudi Arabia
- Primary Health Care Corporation; Doha Qatar
| | - Nader Alaizari
- Department of Oral Medicine and Diagnostic Science; Al-Farabi Colleges; Riyadh Saudi Arabia
| | - Esam Halboub
- Department of Maxillofacial Surgery and Diagnostic Sciences; College of Dentistry; Jazan University; Jazan Saudi Arabia
| |
Collapse
|
42
|
Evaluation of collagen type I scaffolds including gelatin-collagen microparticles and Aloe vera in a model of full-thickness skin wound. Drug Deliv Transl Res 2018; 9:25-36. [DOI: 10.1007/s13346-018-00595-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
El-Gammal A, Nardo VD, Daaboul F, Tchernev G, Wollina U, Lotti J, Lotti T. Is There a Place for Local Natural Treatment of Psoriasis? Open Access Maced J Med Sci 2018; 6:839-842. [PMID: 29875856 PMCID: PMC5985880 DOI: 10.3889/oamjms.2018.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND: Apitherapy is the medical use of honey bee products (honey, propolis, royal jelly, bee wax, and bee venom) to relieve human ailments, propolis in particularly, rich in essential oils such as flavonoid. Propolis is derived from tree buds and plants. It is considered as one of the most well-documented products from the honeybee and has always played an important role in traditional folk medicine. Another renowned plant is Aloe vera appertaining to the Liliaceae family. Its mucilaginous gel has been extensively used in many cultures for its apparent effectiveness in treating wounds, burns, itchiness and hair loss. AIM: The aim was to assess the efficacy of a mixture in an ointment form of propolis (50%) and aloe vera (3%), in the treatment of mild to moderate psoriasis. METHODS: In this double-blind control study, 2248 patients with both mild to moderate cases of psoriasis were evaluated from 2012 to 2015. RESULTS: In Group 1 the overall response at the end of 12 weeks was as follows: Cleared in 64.4% (excellent response), good response in 22.2%, and weak response in 5.6% and no response in 7.7%. In Group 2 (placebo group) no significant improvement was observed after 12 weeks of treatment. Also, histology also demonstrated a marked reduction in hyperkeratosis and acanthosis. CONCLUSION: In comparison with Group 2 (placebo group) patients in Group 1, treated with a mixture of propolis (50%) and aloe vera (3%), in the form of an ointment have shown noteworthy improvement thus substantiating the therapeutic value of propolis and aloe vera in the treatment of mild to moderate psoriasis.
Collapse
Affiliation(s)
- Agharid El-Gammal
- Department of Nuclear, Subnuclear and Radiation Physics, University of Rome "G. Marconi", Rome, Italy
| | - Veronica Di Nardo
- Department of Nuclear, Subnuclear and Radiation Physics, University of Rome "G. Marconi", Rome, Italy
| | - Farah Daaboul
- Institute of Dermatological and Regenerative Sciences, Dermatology and Nutrition, Via Alfieri 28, Florence 50121, Italy
| | - Georgi Tchernev
- Medical Institute of Ministry of Interior (MVR-Sofia), Department of Dermatology, Venereology and Dermatologic Surgery General Skobelev Nr 79, Sofia 1606, Bulgaria.,Onkoderma - Policlinic for Dermatology and Dermatologic Surgery, General Skobelev 26, Sofia 1407, Bulgaria
| | - Uwe Wollina
- Städtisches Klinikum Dresden, Department of Dermatology and Allergology, Academic Friedrichstrasse 41, Dresden 01067, Germany
| | - Jacopo Lotti
- University G. Marconi of Rome, Dept. of Nuclear, Subnuclear and Radiation Physics, Rome, Italy
| | - Torello Lotti
- Università Degli Studi "G. Marconi", Institute of Dermatology, Rome, Italy
| |
Collapse
|
44
|
Koga AY, Pereira AV, Lipinski LC, Oliveira MRP. Evaluation of wound healing effect of alginate films containing Aloe vera (Aloe barbadensis Miller) gel. J Biomater Appl 2018; 32:1212-1221. [DOI: 10.1177/0885328218754615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adriana Y Koga
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| | - Airton V Pereira
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| | - Leandro C Lipinski
- Department of Medicine, State University of Ponta Grossa, Paraná, Brazil
| | - Marcia RP Oliveira
- Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Paraná, Brazil
| |
Collapse
|
45
|
Lobine D, Cummins I, Govinden-Soulange J, Ranghoo-Sanmukhiya M, Lindsey K, Chazot PL, Ambler CA, Grellscheid S, Sharples G, Lall N, Lambrechts IA, Lavergne C, Howes MJR. Medicinal Mascarene Aloes: An audit of their phytotherapeutic potential. Fitoterapia 2017; 124:120-126. [PMID: 29066297 DOI: 10.1016/j.fitote.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/15/2023]
Abstract
A phytochemical and biological investigation of the endemic Mascarene Aloes (Aloe spp.), including A. tormentorii (Marais) L.E.Newton & G.D.Rowley, A. purpurea Lam, A. macra Haw., A. lomatophylloides Balf.f and A. vera (synonym A. barbadensis Mill.), which are used in the traditional folk medicine of the Mascarene Islands, was initiated. Methanolic extracts of the Aloes under study were analysed using high resolution LC-UV-MS/MS and compounds belonging to the class of anthraquinones, anthrones, chromones and flavone C-glycosides were detected. The Mascarene Aloes could be distinguished from A. vera by the absence of 2″-O-feruloylaloesin and 7-O-methylaloeresin. GC-MS analysis of monosaccharides revealed the presence of arabinose, fucose, xylose, mannose and galactose in all the Mascarene Aloes and in A. vera. The crude extracts of all Aloes analysed displayed antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Only extracts of A. macra were active against P. aeruginosa and Klebsiella pneumoniae, while none of the Aloe extracts inhibited Propionibacterium acnes. A. macra displayed anti-tyrosinase activity, exhibiting 50% inhibition at 0.95mg/mL, and extracts of A. purpurea (Mauritius) and A. vera displayed activity in a wound healing-scratch assay. In vitro cytotoxicity screening of crude methanolic extracts of the Aloes, using the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) showed that only A. purpurea (Réunion) elicited a modest toxic effect against HL60 cells, with a percentage toxicity of 8.2% (A. purpurea-Réunion) and none of the Aloe extracts elicited a toxic effect against MRC 5 fibroblast cells at a concentration of 0.1mg/mL. Mascarene Aloe species possess noteworthy pharmacological attributes associated with their rich phytochemical profiles.
Collapse
Affiliation(s)
- D Lobine
- Faculty of Agriculture, University of Mauritius, Réduit, Mauritius; Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - I Cummins
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | | | - K Lindsey
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - P L Chazot
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - C A Ambler
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - S Grellscheid
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - G Sharples
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - N Lall
- Department of Plant and Soil Science, Plant Science Complex, University of Pretoria, Pretoria 0002, South Africa
| | - I A Lambrechts
- Department of Plant and Soil Science, Plant Science Complex, University of Pretoria, Pretoria 0002, South Africa
| | - C Lavergne
- Conservatoire Botanique National de Mascarin, Centre Permanent d'Initiatives pour l'Environnement, Rue du Père Georges, Les Colimaçons, Saint-Leu, La Réunion, France
| | - M-J R Howes
- Natural Capital and Plant Health Department, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| |
Collapse
|