1
|
Zhang Y, Qiu S, Pang Y, Su Z, Zheng L, Wang B, Zhang H, Niu P, Zhang S, Li Y. Enriched environment enhances angiogenesis in ischemic stroke through SDF-1/CXCR4/AKT/mTOR pathway. Cell Signal 2024; 124:111464. [PMID: 39396564 DOI: 10.1016/j.cellsig.2024.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Environmental-gene interactions significantly influence various bodily functions. Enriched environment (EE), a non-pharmacological treatment method, enhances angiogenesis in ischemic stroke (IS). However, underlying the role of EE in angiogenesis in aged mice post-IS remain unclear. This study aimed to determine the potential mechanism by which EE mediates angiogenesis in 12-month-old IS mice and oxygen-glucose deprivation/reperfusion (OGD/R)-induced bEnd.3 cells. In vivo, EE treatment alleviated the neurological deficits, enhanced angiogenesis, upregulated SDF-1, VEGFA, and the AKT/mTOR pathway. In addition, exogenous SDF-1 treatment had a protective effect similar to that of EE treatment in aged mice with IS. However, SDF-1 neutralizing antibody, AMD3100 (CXCR4 inhibitor), ARQ092 (AKT inhibitor), and rapamycin (mTOR inhibitor) treatment blocked the neuroprotective effect of EE treatment and inhibited angiogenesis in IS mice. In vitro, exogenous SDF-1 promoted migration of OGD/R-induced bEnd.3 cells and activated the AKT/mTOR pathway. AMD3100, ARQ092, and rapamycin inhibited SDF-1-induced cell migration. Collectively, these findings demonstrate that EE enhances angiogenesis and improves the IS outcomes through SDF-1/CXCR4/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yonggang Zhang
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China; Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
| | - Sheng Qiu
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China; Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
| | - Yi Pang
- Bengbu Medical College, Bengbu, Anhui, China
| | - Zhongzhou Su
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Lifang Zheng
- Department of Neurology, Yantian Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Binghao Wang
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Hongbo Zhang
- Department of Neurosurgery, The Second affiliated Hospital of Nanchang University, China
| | - Pingping Niu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China; Department of Rehabilitation Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China.
| | - Yuntao Li
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China; Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China.
| |
Collapse
|
2
|
Zhou M, Wang K, Jin Y, Liu J, Wang Y, Xue Y, Liu H, Chen Q, Cao Z, Jia X, Rui Y. Explore novel molecular mechanisms of FNDC5 in ischemia-reperfusion (I/R) injury by analyzing transcriptome changes in mouse model of skeletal muscle I/R injury with FNDC5 knockout. Cell Signal 2024; 113:110959. [PMID: 37918465 DOI: 10.1016/j.cellsig.2023.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Irisin, a myokine derived from proteolytic cleavage of the fibronectin type III domain-containing protein 5 (FNDC5) protein, is crucial in protecting tissues and organs from ischemia-reperfusion (I/R) injury. However, the underlying mechanism of its action remains elusive. In this study, we investigated the expression patterns of genes associated with FNDC5 knockout to gain insights into its molecular functions. METHODS We employed a mouse model of skeletal muscle I/R injury with FNDC5 knockout to examine the transcriptional profiles using RNA sequencing. Differentially expressed genes (DEGs) were identified and subjected to further analyses, including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) network analysis, and miRNA-transcription factor network analysis. The bioinformatics findings were validated using qRT-PCR and Western blotting. RESULTS Comparative analysis of skeletal muscle transcriptomes between wild-type (WT; C57BL/6), WT-I/R, FNDC5 knockout (KO), and KO-I/R mice highlighted the significance of FNDC5 in both physiological conditions and I/R injury. Through PPI network analysis, we identified seven key genes (Col6a2, Acta2, Col4a5, Fap, Enpep, Mmp11, and Fosl1), which facilitated the construction of a TF-hub genes-miRNA regulatory network. Additionally, our results suggested that the PI3K-Akt pathway is predominantly involved in FNDC5 deletion-mediated I/R injury in skeletal muscle. Animal studies revealed reduced FNDC5 expression in skeletal muscle following I/R injury, and the gastrocnemius muscle with FNDC5 knockout exhibited larger infarct size and more severe tissue damage after I/R. Moreover, Western blot analysis confirmed the upregulation of Col6a2, Enpep, and Mmp11 protein levels following I/R, particularly in the KO-I/R group. Furthermore, FNDC5 deletion inhibited the PI3K-Akt signaling pathway. CONCLUSION This study demonstrates that FNDC5 deletion exacerbates skeletal muscle I/R injury, potentially involving the upregulation of Col6a2, Enpep, and Mmp11. Additionally, the findings suggest the involvement of the PI3K-Akt pathway in FNDC5 deletion-mediated skeletal muscle I/R injury, providing novel insights into the molecular mechanisms underlying FNDC5's role in this pathological process.
Collapse
Affiliation(s)
- Ming Zhou
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China.
| | - Kai Wang
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yesheng Jin
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Jinquan Liu
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yapeng Wang
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yuan Xue
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Hao Liu
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Qun Chen
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhihai Cao
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Emergency, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Xueyuan Jia
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yongjun Rui
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China.
| |
Collapse
|
3
|
Qi L, Wang F, Sun X, Li H, Zhang K, Li J. Recent advances in tissue repair of the blood-brain barrier after stroke. J Tissue Eng 2024; 15:20417314241226551. [PMID: 38304736 PMCID: PMC10832427 DOI: 10.1177/20417314241226551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
The selective permeability of the blood-brain barrier (BBB) enables the necessary exchange of substances between the brain parenchyma and circulating blood and is important for the normal functioning of the central nervous system. Ischemic stroke inflicts damage upon the BBB, triggering adverse stroke outcomes such as cerebral edema, hemorrhagic transformation, and aggravated neuroinflammation. Therefore, effective repair of the damaged BBB after stroke and neovascularization that allows for the unique selective transfer of substances from the BBB after stroke is necessary and important for the recovery of brain function. This review focuses on four important therapies that have effects of BBB tissue repair after stroke in the last seven years. Most of these new therapies show increased expression of BBB tight-junction proteins, and some show beneficial results in terms of enhanced pericyte coverage at the injured vessels. This review also briefly outlines three effective classes of approaches and their mechanisms for promoting neoangiogenesis following a stroke.
Collapse
Affiliation(s)
- Liujie Qi
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Fei Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Xiaojing Sun
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Hang Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, PR China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
4
|
Gao J, Yao M, Chang D, Liu J. mTOR (Mammalian Target of Rapamycin): Hitting the Bull's Eye for Enhancing Neurogenesis After Cerebral Ischemia? Stroke 2023; 54:279-285. [PMID: 36321454 DOI: 10.1161/strokeaha.122.040376] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke remains a leading cause of morbidity and disability around the world. The sequelae of serious neurological damage are irreversible due to body's own limited repair capacity. However, endogenous neurogenesis induced by cerebral ischemia plays a critical role in the repair and regeneration of impaired neural cells after ischemic brain injury. mTOR (mammalian target of rapamycin) kinase has been suggested to regulate neural stem cells ability to self-renew and differentiate into proliferative daughter cells, thus leading to improved cell growth, proliferation, and survival. In this review, we summarized the current evidence to support that mTOR signaling pathways may enhance neurogenesis, angiogenesis, and synaptic plasticity following cerebral ischemia, which could highlight the potential of mTOR to be a viable therapeutic target for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Jiale Gao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, China (J.G., M.Y., J.L.)
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, China (J.G., M.Y., J.L.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, Australia (D.C.)
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, China (J.G., M.Y., J.L.)
| |
Collapse
|
5
|
Yang F, Chen ZR, Yang XH, Xu Y, Ran NJ, Liu MJ, Jin SG, Jia HN, Zhang Y. Monomethyl lithospermate alleviates ischemic stroke injury in middle cerebral artery occlusion mice in vivo and protects oxygen glucose deprivation/reoxygenation induced SHSY-5Y cells in vitro via activation of PI3K/Akt signaling. Front Pharmacol 2022; 13:1024439. [PMID: 36313310 PMCID: PMC9606694 DOI: 10.3389/fphar.2022.1024439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a fatal neurological disease, which seriously threatens human health and life. Ischemic stroke (IS) is the most common type of stroke in clinic. Its pathogenesis is very complex, mainly caused by nerve damage caused by brain blood supply disorder. Previous studies have confirmed that natural products play important roles in improving neurological disorders. Furthermore, our previous results also suggested that Shenxiong Tongmai granule, a clinically used herbal medicines’ prescription, has a good ameliorating effect on IS. In the present study, we found that Monomethyl lithospermate (MOL), a constituent of Shenxiong Tongmai granule, significantly improved the neurological damage in middle cerebral artery occlusion (MCAO) rats. MOL can significantly improve the neurological deficit score of MCAO rats, and improve the damage of hippocampal neurons caused by ischemia-reperfusion (IR). At the same time, we also found that MOL could reduce the level of oxidative stress in the brain tissues of MCAO rats. Furthermore, the oxygen and glucose deprivation/Reoxygenation (OGD/R)-induced SHSY-5Y cell model was established in vitro to investigate the pharmacological activity and molecular mechanisms of MOL in improving the nerve injury of IS rats. The results showed that MOL could increase the cell viability of SHSY-5Y cells, inhibit the mitochondrial membrane potential (MMOP) collapse and suppress apoptosis. In addition, MOL also ameliorated the elevated oxidative stress level caused by OGR/R treatment in SHSY-5Y cells. Further mechanistic studies showed that MOL could activate the PI3K/AKT pathway via promoting the phosphorylation of PI3K and AKT in MCAO rats and OGR/R-induced SHSY-5Y cells, which could be partially blocked by addition of PI3K/AKT pathway inhibitor of LY294002. Taken together, our current study suggested that MOL exerts a protective effect against neural damage caused by IS in vivo and in vitro by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fang Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ze-Ran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu-Hong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning-Jing Ran
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei-Jun Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuo-Guo Jin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shuo-Guo Jin, ; Hua-Nan Jia, ; Yang Zhang,
| | - Hua-Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shuo-Guo Jin, ; Hua-Nan Jia, ; Yang Zhang,
| | - Yang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shuo-Guo Jin, ; Hua-Nan Jia, ; Yang Zhang,
| |
Collapse
|
6
|
Liu B, Zhao T, Li Y, Han Y, Xu Y, Yang H, Wang S, Zhao Y, Li P, Wang Y. Notoginsenoside R1 ameliorates mitochondrial dysfunction to circumvent neuronal energy failure in acute phase of focal cerebral ischemia. Phytother Res 2022; 36:2223-2235. [PMID: 35419891 DOI: 10.1002/ptr.7450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/03/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022]
Abstract
Due to sudden loss of cerebral blood circulation, acute ischemic stroke (IS) causes neuronal energy attenuation or even exhaustion by mitochondrial dysfunction resulting in aggravation of neurological injury. In this study, we investigated if Notoginsenoside R1 ameliorated cerebral energy metabolism by limiting neuronal mitochondrial dysfunction in acute IS. Male Sprague-Dawley rats (260-280 g) were selected and performed by permanent middle cerebral artery occlusion model. In vitro, the oxygen glucose deprivation (OGD) model of Neuro2a (N2a) cells was established. We found Notoginsenoside R1 treatment reduced rats' cerebral infarct volume and neurological deficits, with increased Adenosine triphosphate (ATP) level together with upregulated expression of glucose transporter 1/3, monocarboxylate transporter 1 and citrate synthase in brain peri-ischemic tissue. In vitro, OGD-induced N2a cell death was inhibited, cell mitochondrial morphology was improved. Mitochondrial amount, mitochondrial membrane potential, and mitochondrial DNA copy number were increased by Notoginsenoside R1 administration. Furthermore, mitochondrial energy metabolism-related mRNA array found Atp12a and Atp6v1g3 gene expression were upregulated more than twofold, which were also verified in rat ischemic tissue by quantitative polymerase chain reaction (qPCR) assay. Therefore, Notoginsenoside R1 administration increases cerebral glucose and lactate transportation and ATP levels, ameliorates neuronal mitochondrial function after IS. Notoginsenoside R1 may be a novel protective agent for neuronal mitochondria poststroke.
Collapse
Affiliation(s)
- Bowen Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| |
Collapse
|
7
|
Huang Q, Qi J, Gao Z, Li L, Wang N, Seto S, Yao M, Zhang Q, Wang L, Tong R, Chen Y, Chen X, Hou J. Chemical composition and protective effect of cerebrospinal fluid of Dan-Deng-Tong-Nao capsules on brain microvascular endothelial cells injured by OGD/R. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114705. [PMID: 34655669 DOI: 10.1016/j.jep.2021.114705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan-Deng-Tong-Nao Capsules (DDTNC) is a Chinese patent medicine and has been used in treating cerebral ischemic stroke (IS) for a long time in China, protection of brain microvascular endothelial cells (BMECs) is the main treatment strategy. But the holistic chemical information and potential bioactive components of DDTNC on protecting BMECs and its underlying mechanism is still unclear. AIM OF THE STUDY To identify the active ingredients of DDTNC and to explore the protective effects of DDTNC on BMECs associated with Wnt/β-catenin pathway. MATERIALS AND METHODS The components of DDTNC and cerebrospinal fluid containing composition of DDTNC (DDTNC-CSF) were detected by High performance liquid chromatography combined with Diode array detector (HPLC-DAD) and Ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), respectively. The experiment rat model was established with middle cerebral artery occlusion (MCAO), the therapeutic effects of DDTNC were assessed by Longa assay and TTC staining. The cerebral micro vessel density was determined by immunofluorescence staining. The injured BMECs caused by oxygen-glucose deprivation and reperfusion (OGD/R) was used to evaluate the protective effect of cerebrospinal fluid containing composition of DDTNC (DDTNC-CSF). The cell survival rate was detected by the method of CCK-8, the intracellular Ca2+ and reactive oxygen species (ROS) was estimated by Fluo-3. Moreover, the proteins of Bax, Bcl-2, Wnt, β-catenin, GSK-3β was determined by Western blotting. RESULTS The RSD values of all methodological studies were less than 3.0%. A total of 20 compounds were detected under the optimized HPLC-DAD chromatographic condition. In the UPLC-Q-TOF-MS negative mode, peak 1 and peak 2 were detecteted in DDTNC-CSF and was identified as Danshensu and Puerarin, respectively. In the UPLC-Q-TOF-MS positive mode, peak 1 and peak 3 were detecteted in DDTNC-CSF and was identified as Danshensu and Scutellarin, respectively. DDTNC significantly decreased the Longa values and infarct volume and significantly increased the cerebral microvessel density of the MCAO rats. The accumulation of intracellular Ca2+ and ROS in BMECs injured by OGD/R decreased significantly in DDTNC-CSF group. The expression of Bcl-2, β-catenin, wnt-1 was upregulated by DDTNC-CSF and the level of Bax and GSK3β could be downregulated by DDTNC-CSF. CONCLUSION The present study provided a scientific basis for revealing the mechanism of DDTNC in the treatment of IS and DDTNC is expected to be an effective drug for the treatment of IS.
Collapse
Affiliation(s)
- Qi Huang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Jiajia Qi
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Ziru Gao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Lili Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, PR China.
| | - Ning Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230012, PR China.
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Min Yao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Qianqian Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Lei Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Ruonan Tong
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Yuyang Chen
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Xiaoya Chen
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Jincai Hou
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd., Beijing, 100083, China.
| |
Collapse
|
8
|
lncRNA NRON knockdown alleviates hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis by upregulating HIF-1α expression. J Cardiovasc Pharmacol 2021; 79:479-488. [PMID: 34935702 DOI: 10.1097/fjc.0000000000001198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Acute myocardial infarction (AMI) has become the most common cause of death in the developed countries. However, its pathogenesis is poorly understood. Increasing studies have revealed that lncRNAs are important modulators of AMI development. This study aimed to explore the function of lncRNA noncoding repressor of nuclear factor of activated T cells (NRON) in hypoxia/reoxygenation (HR)-stimulated H9c2 cells. NRON expression in peripheral blood of AMI patients and H/R-stimulated H9c2 cells was measured by qRT-PCR. H9c2 cells were transfected with si-NRON or co-transfected with si-NRON and si-hypoxia-inducible factor-1 alpha (HIF-1α). The viability and apoptosis of these cells were evaluated by MTT assay and flow cytometer, respectively. In addition, HIF-1α, AKT/mTOR signal pathways, and ERK1/2 were detected by Western blot. NRON knockdown in the MI mouse model was conducted through adeno-associated virus (AAV) injection, and cardiac function was evaluated by motion-mode echocardiography. The results showed that NRON was highly expressed in peripheral blood of AMI patients and H/R-stimulated H9c2 cells. NRON knockdown promoted cell viability and inhibited cell apoptosis of H/R-stimulated H9c2 cells. Meanwhile, NRON knockdown also significantly attenuated heart damage and improved cardiac function in an AMI mouse model. Further, compared with si-normal control (NC), NRON knockdown increased the levels of HIF-1α, p-AKT, p-mTOR, and p-ERK1/2. HIF-1α knockdown reversed the effects of NRON knockdown in H/R-stimulated-H9c2 cells damage. Overall, our study revealed that NRON knockdown alleviated H/R-induced cardiomyocyte apoptosis by upregulating HIF-1α expression, suggesting that NRON might be a novel therapeutic target for AMI.
Collapse
|
9
|
Kang C, Wang Y, Li L, Li Z, Zhou Q, Pan X. Assessment of tantalum nanoparticle-induced MC3T3-E1 proliferation and underlying mechanisms. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:133. [PMID: 34689241 PMCID: PMC8542006 DOI: 10.1007/s10856-021-06606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In our previous study, tantalum nanoparticle (Ta-NPs) was demonstrated to promote osteoblast proliferation via autophagy induction, but the specific mechanism remains unclear. In the present study, we will explore the potential mechanism. METHODS Ta-NPs was characterized by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, and BET specific surface area test. MC3T3-E1 were treated with 0 or 20 μg/mL Ta-NPs with or without pretreatment with 10 μM LY294002, Triciribine, Rapamycin (PI3K/Akt/mTOR pathway inhibitors) for 1 h respectively. Western blotting was used to detect the expressions of pathway proteins and LC3B. CCK-8 assay was used to assess cell viability. Flow cytometry was used to detect apoptosis and cell cycle. RESULTS After pretreatment with LY294002, Triciribine and Rapamycin, the p-Akt/Akt ratio of pathway protein in Triciribine and Rapamycin groups decreased (P < 0.05), while the autophagy protein LC3-II/LC3-I in the Rapamycin group was upregulated obviously (P < 0.001). In all pretreated groups, apoptosis was increased (LY294002 group was the most obvious), G1 phase cell cycle was arrested (Triciribine and Rapamycin groups were more obvious), and MC3T3-E1 cells were proliferated much more (P < 0.01, P < 0.001, P < 0.05). CONCLUSION Pretreatment with Triciribine or Rapamycin has a greater effect on pathway protein Akt, cell cycle arrest, autophagy protein, and cell proliferation but with inconsistent magnitude, which may be inferred that the Akt/mTOR pathway, as well as its feedback loop, were more likely involved in these processes.
Collapse
Affiliation(s)
- Chengrong Kang
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yudong Wang
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Liang Li
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhangwei Li
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Qianbing Zhou
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Xuan Pan
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Liu B, Li Y, Han Y, Wang S, Yang H, Zhao Y, Li P, Wang Y. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153660. [PMID: 34344565 DOI: 10.1016/j.phymed.2021.153660] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The leakage of blood-brain barrier (BBB) is main pathophysiological change in acute stage of ischemic stroke, which not only deteriorates neurological function, but also increases the risk of hemorrhagic transformation after thrombolysis. PURPOSE/STUDY DESIGN This article investigates the efficacy of Notoginsenoside R1, an active ingredient of Panax notoginseng, on BBB permeability and explores related mechanisms after acute ischemic stroke. METHODS In vivo, male Sprague-Dawley rats (260-280 g) were selected and randomly divided into 6 groups: sham group, model group, low, middle and high doses of Notoginsenoside R1 groups and positive drug Dl-3-n-Butylphthalide group. Except for sham group, rats were performed with permanent middle cerebral artery occlusion model in each group. Twelve hours later, rats were evaluated for Bederson neurological function, and BBB integrity by Evans blue leak imaging; Triphenyltetrazolium chloride staining was used to detect the volume of cerebral infarction. Frozen sections of rats' brain tissue were prepared for detection of MMPs activity in situ zymography. Peripheral tissue of cerebral infarction was collected and tested the expression of MMP2, 9 and tight junction proteins (zo1, claudin5, occludin) by western blot. In vitro, transwell endothelial barrier model was established by bEnd.3 cells. Oxygen glucose deprivation (OGD) was chosen to simulate the hypoxic environment. Suitable OGD stimulation time as well as Notoginsenoside R1 and Dl-3-n-Butylphthalide optimal dose concentrations were determined through transwell leakage and CCK8 assay. Furthermore, endothelial subcellular component proteins were extracted. The change of zo1, claudin5, occludin and caveolin1 was detected by western blot. RESULTS Notoginsenoside R1 treatment significantly reduced BBB leakage and cerebral infarction volume, weakened neurological deficits in post-stroke rats. Moreover, it inhibited the activity of MMPs in infarcted cortex and striatum, down-regulated MMP2, 9 and up-regulated zo1 and claudin5 expressions in penumbra. In vitro, Notoginsenoside R1 treatment decreased OGD-induced endothelial barrier permeability, restored expressions of zo1, claudin5 on cellular membrane and cytoplasm, as well as mediated membrane redistribution of occludin and caveolin1 from actin cytoskeletal fraction. CONCLUSIONS Notoginsenoside R1 treatment attenuates BBB permeability, cerebral infarction volume and neurological impairments in rats with acute cerebral ischemia. The mechanisms might be related to intervening degradation and redistribution of zo1, caludin5 and occludin by caveolin1/ MMP2/9 pathway. More effects and mechanisms of Notoginsenoside R1 on rehabilitation of stroke are worthy to be explored in the future.
Collapse
Affiliation(s)
- Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yiyang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
11
|
The Extracts of Angelica sinensis and Cinnamomum cassia from Oriental Medicinal Foods Regulate Inflammatory and Autophagic Pathways against Neural Injury after Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9663208. [PMID: 34257822 PMCID: PMC8257381 DOI: 10.1155/2021/9663208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The study indicates inflammation and autophagy are closely related to neural apoptosis in the pathology of ischemic stroke. In the study, we investigate the effects and mechanisms of the extracts of Angelica sinensis and Cinnamomum cassia (AC) from oriental medicinal foods on inflammatory and autophagic pathways in rat permanent middle cerebral artery occlusion model. Three doses of AC extract were, respectively, administered for 7 days. It suggests that AC extract treatment ameliorated scores of motor and sensory functions and ratio of glucose utilization in thalamic lesions in a dose-dependent manner. Expression of Iba1 was decreased and CD206 was increased by immunofluorescence staining, western blotting results showed expressions of TLR4, phosphorylated-IKKβ and IκBα, nuclear P65, NLRP3, ASC, and Caspase-1 were downregulated, and Beclin 1 and LC3 II were upregulated. Low concentrations of TNF-α, IL-1β, and IL-6 were presented by ELISA assay. Additionally, caspase 8 and cleaved caspase-3 expressions and the number of TUNEL positive cells in ipsilateral hemisphere were decreased, while the ratio of Bcl-2/Bax was increased. Simultaneously, in LPS-induced BV2 cells, it showed nuclear P65 translocation and secretion of proinflammatory cytokines were suppressed by AC extract-contained cerebrospinal fluid, and its intervened effects were similar to TLR4 siRNA treatment. Our study demonstrates that AC extract treatment attenuates inflammatory response and elevates autophagy against neural apoptosis, which contributes to the improvement of neurological function poststroke. Therefore, AC extract may be a novel neuroprotective agent by regulation of inflammatory and autophagic pathways for ischemic stroke treatment.
Collapse
|
12
|
Liu J, Wang F, Sheng P, Xia Z, Jiang Y, Yan BC. A network-based method for mechanistic investigation and neuroprotective effect on treatment of tanshinone Ⅰ against ischemic stroke in mouse. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113923. [PMID: 33617968 DOI: 10.1016/j.jep.2021.113923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanshinone-Ⅰ (TSNⅠ), a member of the mainly active components of Salvia miltiorrhiza Bunge (Dan Shen), which is widely used for the treatment for modern clinical diseases including cardiovascular and cerebrovascular diseases, has been reported to show the properties of anti-oxidation, anti-inflammation, neuroprotection and other pharmacological actions. However, whether TSNⅠ can improve neuron survival and neurological function against transient focal cerebral ischemia (tMCAO) in mice is still a blank field. AIM OF THE STUDY This study aims to investigate the neuroprotective effects of TSNⅠ on ischemic stroke (IS) induced by tMCAO in mice and explore the potential mechanism of TSNⅠ against IS by combining network pharmacology approach and experimental verification. MATERIALS AND METHODS In this study, the pivotal candidate targets of TSNⅠ against IS were screened by network pharmacology firstly. Enrichment analysis and molecular docking of those targets were performed to identify the possible mechanism of TSNⅠ against IS. Afterwards, experiments were carried out to further verify the mechanism of TSNⅠ against IS. The infarct volume and neurological deficit were evaluated by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Longa respectively. Immunohistochemistry was used to observe neuronal death in the hippocampus and cortical regions by detecting the change of NeuN. The predicting pathways of signaling-related proteins were assessed by Western blot in vitro and in vivo experiments. RESULTS In vivo, TSNⅠ was found to dose-dependently decrease mice's cerebral infarct volume induced by tMCAO. In vitro, pretreatment with TSNⅠ could increase cell viability of HT-22 cell following oxygen-glucose deprivation (OGD/R). Moreover, the results showed that 125 candidate targets were identified, Protein kinase B (AKT) signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and mitogen-activated protein kinases 1 (MAPK1) and AKT1 could be bound to TSNⅠ more firmly by molecular docking analysis, which implies that TSNⅠ may play a role in neuroprotection through activating AKT and MAPK signaling pathways. Meanwhile, TSNⅠ was confirmed to significantly protect neurons from injury induced by IS through activating AKT and MAPK signaling pathways. CONCLUSION In conclusion, our study clarifies that the mechanism of TSNⅠ against IS might be related to AKT and MAPK signaling pathways, which may provide the basic evidence for further development and utilization of TSNⅠ.
Collapse
Affiliation(s)
- Jiajia Liu
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Fuxing Wang
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Peng Sheng
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Zihao Xia
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, 100084, PR China
| | - Bing Chun Yan
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
13
|
Wang M, Liu X, Wu Y, Wang Y, Cui J, Sun J, Bai Y, Lang MF. ΜicroRNA-122 protects against ischemic stroke by targeting Maf1. Exp Ther Med 2021; 21:616. [PMID: 33936273 DOI: 10.3892/etm.2021.10048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
The protection of brain tissue against damage and the reduction of infarct size is crucial for improving patient prognosis following ischemic stroke. Therefore, the present study aimed to investigate the regulatory effect of microRNA (miR)-122 and its target gene repressor of RNA polymerase III transcription MAF1 homolog (Maf1) on the infarct area in ischemic stroke. Reverse transcription-quantitative PCR (RT-qPCR) was performed to determine miR-122 expression levels in an ischemic stroke [middle cerebral artery occlusion (MCAO)] mouse model. Nissl staining was conducted to measure the infarct area of the MCAO mouse model. Moreover, RT-qPCR was performed to investigate the relationship between the expression of Maf1 and miR-122 in the MCAO mouse model. Dual-luciferase reporter assay in vitro and miR-122 mimic or inhibitor treatment in vivo were conducted to verify that miR-122 targeted and inhibited Maf1 expression. The results suggested that miR-122 was upregulated in the brain tissue of MCAO model mice. miR-122 overexpression effectively reduced the size of the infarct area in comparison with a control and miR-122 knockdown in brain tissue resulted in the opposite effect. Moreover, Maf1 was confirmed to be a direct target of miR-122. The results of a dual-luciferase reporter assay indicated that miR-122 bound to the 3'-untranslated region of Maf1. Maf1 expression decreased after stroke model induction in comparison with that in sham animals, and Maf1 expression was negatively associated with the expression of miR-122. In addition, miR-122 knockdown increased Maf1 expression levels, whereas miR-122 overexpression decreased Maf1 expression levels in comparison with a control. In conclusion, the results suggested that miR-122 improved the outcome of acute ischemic stroke by reducing the expression of Maf1.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Xiaoman Liu
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Yu Wu
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Yi Wang
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Jiahui Cui
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Jing Sun
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Ying Bai
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Ming-Fei Lang
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
14
|
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HXY, Fan LH, Peng W, Huang YL, Wu CJ. HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4915-4949. [PMID: 33235435 PMCID: PMC7680173 DOI: 10.2147/dddt.s274980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
HIF-1α is an important factor regulating oxygen balance in mammals, and its expression is closely related to various physiological and pathological conditions of the body. Because HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it has become an enduring research hotspot. At the same time, natural medicines and traditional Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in this article, we first outline the structure of HIF-1α and the regulation related to its expression, then introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural medicines and compound Chinese medicines through various pathways. This will help us understand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and traditional Chinese medicines that can treat related diseases.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Hu-Xin-Yue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lin-Hong Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yong-Liang Huang
- Pharmacy Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
15
|
Combinational Pretreatment of Colony-Stimulating Factor 1 Receptor Inhibitor and Triptolide Upregulates BDNF-Akt and Autophagic Pathways to Improve Cerebral Ischemia. Mediators Inflamm 2020; 2020:8796103. [PMID: 33192177 PMCID: PMC7648715 DOI: 10.1155/2020/8796103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023] Open
Abstract
Ki20227, a selective inhibitor of colony-stimulating factor 1 receptor (CSF1R), has been suggested to regulate microglia inflammatory function and neuronal synaptic plasticity. Triptolide (TP) pretreatment has neuroprotective effects through its anti-inflammatory and antiapoptotic features in ischemic stroke mice. However, the underlying mechanism and pathway are presently unclear. We thus investigated the association between neuroprotective effects of combined TP and Ki20227 and BDNF-Akt and autophagy pathways. Ki20227 was administrated for 7 days, and TP was administered once 24 hours prior to building the ischemic stroke model in C57BL/6 mice. Behavioral tests, Golgi staining, immunofluorescence, and western blot analyses were employed to examine neuroprotective effects of TP and Ki20227. TP and Ki20227 pretreatments improved the neurobehavioral function in stroke mice. Synaptic protein expressions and density of dendritic spine density were upregulated in Ki20227 and TP pretreated stroke mice. Further, optimized integration of TP and Ki20227 pretreatments upregulated the NeuN expression and downregulated Iba1 expression after stroke. In addition, both TP and Ki20227 pretreatments significantly upregulated BDNF, p-Akt/Akt, and Erk1/2 protein expressions and autophagy related proteins (LC3II/I, Atg5, and p62), indicating the activation of BDNF and autophagic pathways. Optimized integration of TP and Ki20227 can improve cerebral ischemia by inhibiting CSF1R signal and trigger autophagy and BDNF-Akt signaling pathways to increase dendritic spine density and synaptic protein expressions, which in turn enhances neurobehavioral function.
Collapse
|
16
|
Bu L, Dai O, Zhou F, Liu F, Chen JF, Peng C, Xiong L. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother 2020; 132:110855. [PMID: 33059257 DOI: 10.1016/j.biopha.2020.110855] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemic diseases, such as ischemic heart diseases and ischemic stroke, are the leading cause of death worldwide. Angiogenic therapy is a wide-ranging approach to fighting ischemic diseases. However, compared with anti-angiogenesis therapy for tumors, less attention has been paid to therapeutic angiogenesis. Recently, Traditional Chinese medicine (TCM) has garnered increasing interest for its definite curative effect and low toxicity. A growing number of studies have reported that TCM formulas, extracts, and compounds from herbal medicines exert pro-angiogenic activity, which has been confirmed in a few clinical trials. For comprehensive analysis of relevant literature, global and local databases including PubMed, Web of Science, and China National Knowledge Infrastructure were searched using keywords such as "angiogenesis," "neovascularization," "traditional Chinese medicine," "formula," "extract," and "compound." Articles were chosen that are closely and directly related to pro-angiogenesis. This review summarizes the pro-angiogenic activity and the mechanism of TCM formulas, extracts, and compounds; it delivers an in-depth understanding of the relationship between TCM and pro-angiogenesis and will provide new ideas for clinical practice.
Collapse
Affiliation(s)
- Lan Bu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ou Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin-Feng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
17
|
Amirzargar N, Heidari-Soureshjani S, Yang Q, Abbaszadeh S, Khaksarian M. Neuroprotective Effects of Medicinal Plants in Cerebral Hypoxia and Anoxia: A Systematic Review. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210315509666190820103658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Hypoxia and anoxia are dangerous and sometimes irreversible complications
in the central nervous system (CNS), which in some cases lead to death.
Objective:
The aim of this review was to investigate the neuroprotective effects of medicinal plants
in cerebral hypoxia and anoxia.
Methods:
The word hypox*, in combination with some herbal terms such as medicinal plant, phyto*
and herb*, was used to search for relevant publications indexed in the Institute for Scientific Information
(ISI) and PubMed from 2000-2019.
Results:
Certain medicinal plants and herbal derivatives can exert their protective effects in several
ways. The most important mechanisms are the inhibition of inducible nitric oxide synthase (iNOS),
production of NO, inhibition of both hypoxia-inducible factor 1α and tumor necrosis factor-alpha activation,
and reduction of extracellular glutamate, N-Methyl-D-aspartic and intracellular Ca (2+). In
addition, they have an antioxidant activity and can adjust the expression of genes related to oxidant
generation or antioxidant capacity. These plants can also inhibit lipid peroxidation, up-regulate superoxide
dismutase activity and inhibit the content of malondialdehyde and lactate dehydrogenase.
Moreover, they also have protective effects against cytotoxicity through down-regulation of the proteins
that causes apoptosis, anti-excitatory activity, inhibition of apoptosis signaling pathway, reduction
of pro-apoptotic proteins, and endoplasmic reticulum stress that causes apoptosis during hypoxia,
increasing anti-apoptotic protein, inhibition of protein tyrosine kinase activation, decreasing
proteases activity and DNA fragmentation, and upregulation of mitochondrial cytochrome oxidase.
Conclusion:
The results indicated that medicinal plants and their compounds mainly exert their neuroprotective
effects in hypoxia via regulating proteins that are related to antioxidant, anti-apoptosis
and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nasibeh Amirzargar
- Department of Neurology, Rofeydeh Rehabilitation Hospital, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Qian Yang
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Saber Abbaszadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
18
|
Zhao Y, Yang J, Li C, Zhou G, Wan H, Ding Z, Wan H, Zhou H. Role of the neurovascular unit in the process of cerebral ischemic injury. Pharmacol Res 2020; 160:105103. [PMID: 32739425 DOI: 10.1016/j.phrs.2020.105103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemic injury exhibits both high morbidity and mortality worldwide. Traditional research of the pathogenesis of cerebral ischemic injury has focused on separate analyses of the involved cell types. In recent years, the neurovascular unit (NVU) mechanism of cerebral ischemic injury has been proposed in modern medicine. Hence, more effective strategies for the treatment of cerebral ischemic injury may be provided through comprehensive analysis of brain cells and the extracellular matrix. However, recent studies that have investigated the function of the NVU in cerebral ischemic injury have been insufficient. In addition, the metabolism and energy conversion of the NVU depend on interactions among multiple cell types, which make it difficult to identify the unique contribution of each cell type. Therefore, in the present review, we comprehensively summarize the regulatory effects and recovery mechanisms of four major cell types (i.e., astrocytes, microglia, brain-microvascular endothelial cells, and neurons) in the NVU under cerebral ischemic injury, as well as discuss the interactions among these cell types in the NVU. Furthermore, we discuss the common signaling pathways and signaling factors that mediate cerebral ischemic injury in the NVU, which may help to provide a theoretical basis for the comprehensive elucidation of cerebral ischemic injury.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoying Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
19
|
Peng W, Mo X, Li L, Lu T, Hu Z. PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced injury through the ERK signaling pathway in N2A cells. J Mol Histol 2020; 51:307-315. [PMID: 32448978 DOI: 10.1007/s10735-020-09881-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Cerebral ischemia-reperfusion injury is pivotal in the development of multiple-subcellular organelle and tissue injury after acute ischemic stroke. Recently, the Golgi apparatus (GA) has been shown to be a key subcellular organelle that plays an important role in neuroprotection against oxygen-glucose deprivation/reperfusion (OGD/R) injury. PAQR3, a scaffold protein exclusively localized in the GA, was originally discovered as a potential tumor suppressor protein. PAQR3 acts as a spatial regulator of Raf-1 that binds Raf-1 and sequesters it to the GA, where it negatively modulates the Ras/Raf/MEK/ERK signaling pathway in tumor models. Studies suggest that suppression of the ERK pathway can alleviate OGD/R-induced cell apoptosis. However, whether PAQR3 has potential effects on ischemic stroke and the underlying mechanism(s) remain unexplored. The current study is the first to show that PAQR3 was significantly downregulated in mouse neuroblastoma (N2A) cells upon OGD/R exposure, both at the mRNA and protein levels. Compared to that in controls, the mRNA level of PAQR3 began to decline at 0 h (0 h) after reperfusion, while the protein level began to decline at 4 h. Furthermore, overexpression of PAQR3 reduced OGD/R-induced apoptosis. The mRNA and protein levels of total ERK1 and ERK2 were unaltered, while activated p-ERK1 and p-ERK2 were decreased in N2A cells transfected with a PAQR3 expression vector after OGD for 4 h plus 24 h of reperfusion. Collectively, these data indicated that increased PAQR3 expression protected against OGD/R-induced apoptosis possibly by inhibiting the ERK signaling pathway. Therefore, PAQR3 might be a new attractive target in the treatment of OGD/R insult, and the underlying mechanism will pave the way for its potential experimental and clinical application.
Collapse
Affiliation(s)
- Wenna Peng
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoye Mo
- Department of Emergency, First Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Li
- Colleges of Medicine, Jishou University, Jishou, Hunan, China
| | - Tonglin Lu
- Department of Intensive Care Unit, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Liu Z, Liu Y, Long Y, Liu B, Wang X. Role of HSP27 in the multidrug sensitivity and resistance of colon cancer cells. Oncol Lett 2020; 19:2021-2027. [PMID: 32194698 DOI: 10.3892/ol.2020.11255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance in cancer cells is a primary factor affecting therapeutic efficacy. Heat shock 27 kD protein 1 (HSP27) is associated with cell apoptosis and resistance to chemotherapy. However, the mechanisms underlying HSP27-associated pathways in colon cancer cells remain unclear. Therefore, the present study used short hairpin (sh) RNA to inhibit HSP27 expression in colon cancer cells in order to investigate the effects in vitro and in vivo. Flow cytometry was used to investigate cell apoptosis and a xenograft model was employed to examine the tumorigenesis. Protein expression was measured by Western blotting. The results revealed that suppression of HSP27 expression significantly increased cell apoptosis, inhibited tumor growth and enhanced sensitivity to the anti-cancer agents 5-fluorouracil (5-FU) and vincristine (VCR). shHSP27 significantly decreased the expression of notch receptor 1 and the phosphorylation level of Akt and mTOR, and enhanced the effect of 5-FU and VCR. In conclusion, HSP27 suppression enhanced the sensitivity of colon cancer cells to 5-FU and VCR, and increased colon cancer cell apoptosis with and without chemotherapy. Therefore, the development of novel therapeutic agents that inhibit the expression of HSP27 may offer a new treatment option for colon cancer.
Collapse
Affiliation(s)
- Zhengyong Liu
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yi Liu
- Department of Information, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yupeng Long
- Department of Clinical Laboratory, Army 958 Hospital of The Chinese People's Liberation Army, Chongqing 400020, P.R. China
| | - Baohua Liu
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xiangfeng Wang
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
21
|
Identification micro-RNAs functional modules and genes of ischemic stroke based on weighted gene co-expression network analysis (WGCNA). Genomics 2020; 112:2748-2754. [PMID: 32198065 DOI: 10.1016/j.ygeno.2020.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 01/20/2023]
|
22
|
Xia ZY, Luo C, Liu BW, Bian XQ, Li Y, Pang AM, Xu YH, Tan HM, Zhao YH. Shengui Sansheng Pulvis maintains blood-brain barrier integrity by vasoactive intestinal peptide after ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153158. [PMID: 31999981 DOI: 10.1016/j.phymed.2019.153158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/03/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Background Shengui Sansheng Pulvis (SSP) has about 300 years history used for stroke treatment, and evidences suggest it has beneficial effects on neuro-angiogenesis and cerebral energy metabolic amelioration post-stroke. However, its protective action and mechanisms on blood-brain barrier (BBB) is still unknown. Purpose Based on multiple neuroprotective properties of vasoactive intestinal peptide (VIP) in neurological disorders, we investigate if SSP maintaining BBB integrity is associated with VIP pathway in rat permanent middle cerebral artery occlusion (MCAo) model. Methods Three doses of SSP extraction were administered orally. Evaluations of motor and balance abilities and detection of brain edema were performed, and BBB permeability were assessed by Evans blue (EB) staining. Primary brain microvascular endothelial cells (BMECs) were subjected to oxygen-glucose deprivation, and incubated with high dose SSP drug-containing serum and VIP-antagonist respectively. Transendothelial electrical resistance (TEER) assay and Tetramethylrhodamine isothiocyanate (TRITC)-dextran (4.4 kDa) and fluorescein isothiocyanate (FITC)-dextran (70 kDa) were used to evaluate the features of paracellular junction. Western blot detected the expressions of Claudin-5, ZO-1, Occludin and VE-cadherin, matrix metalloproteinase (MMP) 2/9 and VIP receptors 1/2, and immunofluorescence staining tested VIP and Claudin-5 expressions. Results Our results show that SSP significantly reduces EB infiltration in dose-dependent manner in vivo and attenuates TRITC- dextran and FITC-dextran diffusion in vitro, and strengthens endothelial junctional complexes as represented by decreasing Claudin-5, ZO-1, Occludin and VE-cadherin degradations and MMP 2/9 expression, as well as promoting TEER in BMECs after ischemia. Moreover, it suggests that SSP notably enhances VIP and its receptors 1/2 expressions. VIP-antagonist exacerbates paracellular barrier of BMECs, while the result is reversed after incubation with high dose SSP drug-containing serum. Additionally, SSP also improve brain edema and motor and balance abilities after ischemic stroke. Conclusions we firstly demonstrate that the ameliorated efficacy of SSP on BBB permeability is related to the enhancements of VIP and its receptors, suggesting SSP might be an effective therapeutic agent on maintaining BBB integrity post-stroke.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Brain Ischemia/drug therapy
- Brain Ischemia/metabolism
- Brain Ischemia/physiopathology
- Claudin-5/metabolism
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Infarction, Middle Cerebral Artery/physiopathology
- Male
- Permeability
- Rats, Inbred Strains
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Stroke/drug therapy
- Stroke/physiopathology
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Zhen-Yan Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Cheng Luo
- The Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo-Wen Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi-Qing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Yang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Ai-Ming Pang
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Experimental Hematology, Tianjin, China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Hong-Mei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yong-Hua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao.
| |
Collapse
|
23
|
Zhang B, Saatman KE, Chen L. Therapeutic potential of natural compounds from Chinese medicine in acute and subacute phases of ischemic stroke. Neural Regen Res 2020; 15:416-424. [PMID: 31571650 PMCID: PMC6921351 DOI: 10.4103/1673-5374.265545] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stroke is one of the leading causes of death and disability in adults worldwide, resulting in huge social and financial burdens. Extracts from herbs, especially those used in Chinese medicine, have emerged as new pharmaceuticals for stroke treatment. Here we review the evidence from preclinical studies investigating neuroprotective properties of Chinese medicinal compounds through their application in acute and subacute phases of ischemic stroke, and highlight potential mechanisms underlying their therapeutic effects. It is noteworthy that many herbal compounds have been shown to target multiple mechanisms and in combinations may exert synergistic effects on signaling pathways, thereby attenuating multiple aspects of ischemic pathology. We conclude the paper with a general discussion of the prospects for novel natural compound-based regimens against stroke.
Collapse
Affiliation(s)
- Bei Zhang
- College of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Kathryn E Saatman
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, KY, USA
| | - Lei Chen
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, KY, USA
| |
Collapse
|
24
|
Hong M, Shi H, Wang N, Tan HY, Wang Q, Feng Y. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol 2019; 10:696. [PMID: 31297056 PMCID: PMC6606950 DOI: 10.3389/fphar.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1)–induced angiogenesis has been involved in numerous pathological conditions, and it may be harmful or beneficial depending on the types of diseases. Exploration on angiogenesis has sparked hopes in providing novel therapeutic approaches on multiple diseases with high mortality rates, such as cancer and ischemic stroke. The HIF-1 pathway is considered to be a major regulator of angiogenesis. HIF-1 seems to be involved in the vascular formation process by synergistic correlations with other proangiogenic factors in cancer and cerebrovascular disease. The regulation of HIF-1–dependent angiogenesis is related to the modulation of HIF-1 bioactivity by regulating HIF-1α transcription or protein translation, HIF-1α DNA binding, HIF-1α and HIF-1α dimerization, and HIF-1 degradation. Traditional Chinese herbal medicines have a long history of clinical use in both cancer and stroke treatments in Asia. Growing evidence has demonstrated potential proangiogenic benefits of Chinese herbal medicines in ischemic stroke, whereas tumor angiogenesis could be inhibited by the active components in Chinese herbal medicines. The objective of this review is to provide comprehensive insight on the effects of Chinese herbal medicines on angiogenesis by regulating HIF-1 pathways in both cancer and ischemic stroke.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
25
|
Liu B, Zhang Q, Ke C, Xia Z, Luo C, Li Y, Guan X, Cao X, Xu Y, Zhao Y. Ginseng-Angelica-Sansheng-Pulvis Boosts Neurogenesis Against Focal Cerebral Ischemia-Induced Neurological Deficiency. Front Neurosci 2019; 13:515. [PMID: 31191223 PMCID: PMC6549519 DOI: 10.3389/fnins.2019.00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023] Open
Abstract
Background The traditional Chinese medicine Ginseng-Angelica-Shanseng-Pulvis (GASP) has been used to treat stroke for 300 years. This present study investigated if it can induce increases in neurogenesis following cerebral ischemic injury. Methods Rats following middle cerebral artery occlusion were orally treated with high, medium, and low doses of a standardized GASP extract. Results After 14 days, treatment with GASP improved regional blood flow and infarction volume by magnetic resonance imaging scanning, enhanced Ki67+ expression in the subventricular zone, increased brain-derived neurotrophic factor (BDNF) secretion, Nestin, and bone morphogenetic protein (BMP) 2/4 expressions in the hippocampus in a dose-dependent manner. Interestingly, low-dose treatment with GASP downregulated doublecortin and Notch1 expressions in the hippocampus, as well as upregulated glial fibrillary acidic protein expression in the subgranular zone and hairy and enhancer of split (Hes) 5 expression in the hippocampus, while treatment with middle and high doses of GASP reversed these results. Meanwhile, the consumed time was shortened in the basket test and the adhesive removal test and the spending time on exploring novel objects was prolonged by GASP treatment whose effects were more obvious at day 14 post-ischemia. Conclusion Our study demonstrates that treatment with GASP increases neurogenesis and ameliorates sensorimotor functions and recognition memory. We hypothesize that these effects are thought be mediated by an effect on the BMP2/4 pathway and Notch1/Hes5 signal. Due to its beneficial efficacy, GASP can be recognized as an alternative therapeutic agent for ischemic stroke.
Collapse
Affiliation(s)
- Bowen Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhang
- Department of Biotherapy, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Chienchih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Zhenyan Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cheng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
26
|
Luo C, Bian X, Zhang Q, Xia Z, Liu B, Chen Q, Ke C, Wu JL, Zhao Y. Shengui Sansheng San Ameliorates Cerebral Energy Deficiency via Citrate Cycle After Ischemic Stroke. Front Pharmacol 2019; 10:386. [PMID: 31065240 PMCID: PMC6489525 DOI: 10.3389/fphar.2019.00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cerebral energy deficiency is a key pathophysiologic cascade that results in neuronal injury and necrosis after ischemic stroke. Shengui Sansheng San (SSS) has been used to treat stroke for more than 300 years. In present study, we investigated the therapeutic efficacy and mechanism of SSS extraction on cerebral energy deficiency post-stroke. In permanent middle cerebral artery occlusion (pMCAo) model of rats, it suggested that SSS extraction in dose-dependent manner improved neurological function, cerebral blood flow (CBF), 18F-2-deoxy-glucose uptake and the density and diameter of alpha smooth muscle actin (α-SMA) positive vasculature in ipsilateral area, as well as decreased infarcted volume. Meanwhile, the metabolomics study in cerebrospinal fluid (CSF) was performed by using 5-(diisopropylamino)amylamine (DIAAA) derivatization-UHPLC-Q-TOF/MS approach. Eighty-eight endogenous metabolites were identified, and mainly involved in citrate cycle, fatty acid biosynthesis, aminoacyl-tRNA biosynthesis, amino acids metabolism and biosynthesis, etc. The remarkable increase of citrate in CSF after treatment with three dosages indicated that the therapeutic mechanism of SSS extraction might be related with citrate cycle. Simultaneously, it showed that high dosage group significantly increased peripheral blood glucose level, the expressions of glucose transporter (GLUT) 1, GLUT3, and monocarboxylic acid transporter 1 (MCT1), which contributed to the transportation of glucose and lactate. By the regulations of phosphorylated pyruvate dehydrogenase E1-alpha (p-PDHA1), acetyl CoA synthetase and citrate synthetase (CS), the levels of citrate and its upstream molecules (pyruvate and acetyl CoA) in peri-infarction zone further enhanced, which ultimately caused the massive yield of adenosine triphosphate (ATP). Our study first demonstrated that SSS extraction could ameliorate cerebral energy deficiency after ischemia by citrate cycle, which is characterized by the enhancements of glucose supply, transportation, utilization, and metabolism.
Collapse
Affiliation(s)
- Cheng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qian Zhang
- Department of Biotherapy, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Zhenyan Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chienchih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
27
|
Wan YJ, Xu L, Song WT, Liu YQ, Wang LC, Zhao MB, Jiang Y, Liu LY, Zeng KW, Tu PF. The Ethanolic Extract of Caesalpinia sappan Heartwood Inhibits Cerebral Ischemia/Reperfusion Injury in a Rat Model Through a Multi-Targeted Pharmacological Mechanism. Front Pharmacol 2019; 10:29. [PMID: 30804781 PMCID: PMC6370896 DOI: 10.3389/fphar.2019.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Caesalpinia sappan L. (C. sappan) is a traditional Chinese medicinal plant. The dried heartwood of C. sappan (also known as Sappan wood) has been widely used for the folkloric medical treatment of ischemic cerebral stroke in China. However, the detailed underlying pharmacological mechanism still remains largely unexplored. Methods: In this study, a middle cerebral artery occlusion (MCAO) rat model was employed to elucidate the mechanism of the anti-cerebral ischemic effects of C. sappan ethanolic extract (CEE). Moreover, systemic multi-target identification coupled with gene ontology biological process (GO BP) and reactome pathway analysis was used to investigate the potential neuroprotective mechanism. Furthermore, the presumed mechanism was confirmed through biological analysis by determining the effects of CEE on the identified signaling pathways in PC12 cells model-induced by oxygen-glucose deprivation/reperfusion (OGD/R). Results: Our study demonstrates that CEE (both through in vivo administration at a dosage of 300 mg/kg and through in vitro incubation at a dosage of 2.4 μg/mL) is a neuroprotective agent that can effectively inhibit neuronal damage, promote synaptic generation, and suppress the activation of neutrophils, microglia, and astrocytes. Moreover, the neuroprotective mechanism of CEE is mediated via regulating 150 potential target proteins, which are associated with 6 biological processes and 10 pathways, including JAK-STAT, HSP90 and DNA damage/telomere stress. Conclusion: CEE can exert neuroprotective effect through multi-target pharmacological mechanisms to prevent ischemia/reperfusion-induced cerebral injury.
Collapse
Affiliation(s)
- Yan-Jun Wan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Li Xu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Ting Song
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Qi Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Li-Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ming-Bo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lian-Ying Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|