1
|
Wang N, Xin Y. Review: Gut microbiota: Therapeutic targets of ginseng polysaccharides against multiple disorders. Int J Biol Macromol 2025; 287:138527. [PMID: 39662561 DOI: 10.1016/j.ijbiomac.2024.138527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
As biological macromolecules, ginseng polysaccharides (GP) are often difficult to be directly absorbed through the intestinal cell membrane. It has been found that it can regulate gut microbiota by acting as a prebiotic, and then play a therapeutic role in some diseases, such as diarrhea, tumour, diabetic, dementia, obesity. With the deepening of research, we found that the role played by GP as a prebiotic cannot be ignored. Not only that, it can also affect the immunity and the metabolism and absorption of ginsenosides to play a synergistic role. Overall, GP can regulate the diversity of gut microbiota, which in turn affects the synthesis of secondary metabolites. GP also promotes the transformation of ginsenosides, leading to improved absorptivity of these compounds. This review aims to provide a deeper understanding of how GP interacts with the gut microbiota in various disorders and the transformation of ginsenosides. By exploring these interactions, we can gain valuable insights into the potential benefits of GP in managing different health conditions and enhancing the bioavailability of ginsenosides.
Collapse
Affiliation(s)
- Na Wang
- Department of Pharmacy, The Affliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yizhou Xin
- Department of Pharmacy, The Affliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
2
|
Jeong Y, Lee SH, Shim SL, Jang KH, Kim JH. Efficacy and safety of red ginseng extract powder (KGC05pg) in achieving glycemic control in prediabetic Korean adults: A 12-week, single-center, randomized, double-blind, parallel-group, placebo-controlled study. Medicine (Baltimore) 2024; 103:e41130. [PMID: 39969290 DOI: 10.1097/md.0000000000041130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND This study was conducted to assess the efficacy and safety of Red Ginseng Extract Powder (RGEP) (KGC05pg; Korea Ginseng Corporation, Daejeon, Korea) in achieving glycemic control in prediabetic Korean adults. METHODS The patients of the RGEP group (n = 49) and those of the placebo group (n = 49) were orally given 2 tablets of RGEP and its matching placebo, respectively, at a dose of 500 mg/day twice daily in the morning and the evening within 30 min after meal during a 12-week treatment period. The patients were assessed for glycemic control parameters, such as fasting blood glucose levels, 30-, 60-, 90-, and 120-min blood glucose levels on an oral glucose tolerance test, Hb1Ac levels and glucose area under the curve, insulin resistance parameters, such as homeostasis model assessment of insulin resistance, c-peptide and insulinogenic index, and hormone parameters, such as glucagon, adiponectin and glucagon-like peptide-1. Moreover, the patients were also assessed for time-dependent changes in dipeptidyl peptidase-4 levels. Finally, the patients were also assessed for incidences of treatment-emergent adverse events and serious adverse events. RESULTS There were significant differences in changes in fasting blood glucose and 30-, 60-, 90-, and 120-min blood glucose levels on an oral glucose tolerance test, Hb1Ac levels, glucose area under the curve, homeostasis model assessment of insulin resistance, c-peptide levels and insulinogenic index, glucagon, adiponectin, and glucagon-like peptide-1 levels at 12 weeks from baseline between the 2 groups (P < .05). There was a significant time-dependent decrease in dipeptidyl peptidase-4 levels in the RGEP group (P = .001). There were no cases of treatment-emergent adverse events and serious adverse events in each treatment arm. CONCLUSION RGEP might be effective in achieving glycemic control in prediabetic Korean adults.
Collapse
Affiliation(s)
- Yoonseon Jeong
- Korea Ginseng Corporation Research Institute, Gwacheon, Gyeonggi, Republic of Korea
| | | | | | | | | |
Collapse
|
3
|
Qiu Y, Wang N, Yu Z, Guo X, Yang M. Changes in the chemical composition and medicinal effects of black ginseng during processing. Front Pharmacol 2024; 15:1425794. [PMID: 39588153 PMCID: PMC11586192 DOI: 10.3389/fphar.2024.1425794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/02/2024] [Indexed: 11/27/2024] Open
Abstract
Aim of the Study To study the changes in the chemical composition and medicinal effects of black ginseng during processing. Materials and Methods The contents of ginsenosides Rg1, Re, Rh1, Rb1, 20-(S)-Rg3, 20-(R)-Rg3, and Rg5 were determined using high-performance liquid chromatography (HPLC), and the percentage of rare saponins was calculated. Furthermore, changes in the contents of reducing sugars and amino acids (i.e., Maillard reaction (MR) substrates) were measured to assess the relationship between processing and the MR. Compounds were identified using HPLC-MS and their cleavage patterns were analyzed. Gene co-expression network bioinformatics techniques were applied to identify the pharmacological mechanism of black ginseng. Results The changes in the physicochemical characteristics of black ginseng during processing were determined based on the MR. Rare saponins accumulated during black ginseng processing. In addition, reducing sugars were produced through polysaccharide pyrolysis and the MR; thus, their content initially increased and then decreased. The amino acid content gradually decreased as the number of evaporation steps increased, indicating that both amino acids and reducing sugars acted as substrates for the MR during black ginseng processing. Thirty-one saponins, 18 sugars, and 58 amino acids were identified based on the MS analysis. Transcriptomics results demonstrated that black ginseng can regulate signaling pathways such as the TNF, IL-17, MAPK, and PI3K-Akt pathways. This finding helps us understand the observed proliferation and differentiation of immune-related cells and positively regulated cell adhesion.
Collapse
Affiliation(s)
- Ye Qiu
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- National Pharmaceutical Engineering Centre for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Nengyuan Wang
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Yu
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiao Guo
- Jilin Cancer Hospital, Changchun, China
| | - Ming Yang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- National Pharmaceutical Engineering Centre for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Elhiss S, Hamdi A, Chahed L, Boisson-Vidal C, Majdoub H, Bouchemal N, Laschet J, Kraiem J, Le Cerf D, Maaroufi RM, Chaubet F, Ben Mansour M. Hyaluronic acid from bluefin tuna by-product: Structural analysis and pharmacological activities. Int J Biol Macromol 2024; 264:130424. [PMID: 38428772 DOI: 10.1016/j.ijbiomac.2024.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The fishing and aquaculture industries generate a huge amount of waste during processing and preservation operations, especially those of tuna. Recovering these by-products is a major economic and environmental challenge for manufacturers seeking to produce new active biomolecules of interest. A new hyaluronic acid was extracted from bluefin tuna's vitreous humour to assess its antioxidant and pharmacological activities. The characterization by infrared spectroscopy (FT-IR), nuclear magnetic resonance ((1D1H) and 2D (1H COSY, 1H/13C HSQC)) and size exclusion chromatography (SEC/MALS/DRI/VD) revealed that the extracted polysaccharide was a hyaluronic acid with high uronic acid content (55.8 %) and a weight average molecular weight of 888 kDa. This polymer possesses significant anti-radical activity and ferrous chelating capacity. In addition, pharmacological evaluation of its anti-inflammatory and analgesic potential, using preclinical models, in comparison with reference drugs (Dexamethasone, diclofenac, and acetylsalicylate of lysine), revealed promising anti-inflammatory activity as well as interesting peripheral and central antinociceptive activity. Therefore, our new hyaluronic acid compound may therefore serve as a potential drug candidate for the treatment of pain sensation and inflammation of various pathological origins.
Collapse
Affiliation(s)
- Sawsen Elhiss
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia
| | - Assia Hamdi
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Latifa Chahed
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia
| | | | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia
| | - Nadia Bouchemal
- Université Sorbonne Paris Nord, CNRS, CSPBAT, F-93000 Bobigny, France
| | - Jamila Laschet
- Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Jamil Kraiem
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Didier Le Cerf
- Université Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000 Rouen, France
| | - Raoui Mounir Maaroufi
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia
| | - Frédéric Chaubet
- Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France; Université Sorbonne Paris Nord, INSERM, LVTS, Institut Galilée, F-93430 Villetaneuse, France
| | - Mohamed Ben Mansour
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia.
| |
Collapse
|
5
|
Zhang XY, Khakisahneh S, Han SY, Song EJ, Nam YD, Kim H. Ginseng extracts improve circadian clock gene expression and reduce inflammation directly and indirectly through gut microbiota and PI3K signaling pathway. NPJ Biofilms Microbiomes 2024; 10:24. [PMID: 38503759 PMCID: PMC10950852 DOI: 10.1038/s41522-024-00498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Saeid Khakisahneh
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Song-Yi Han
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 245, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 245, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, Republic of Korea.
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea.
| |
Collapse
|
6
|
Chen T, Li S, Lian D, Hu Q, Hou H, Niu D, Li H, Song L, Gao Y, Chen Y, Hu X, Li J, Ye Z, Peng B, Zhang G. Integrated Network Pharmacology and Experimental Approach to Investigate the Protective Effect of Jin Gu Lian Capsule on Rheumatoid Arthritis by Inhibiting Inflammation via IL-17/NF-κB Pathway. Drug Des Devel Ther 2023; 17:3723-3748. [PMID: 38107658 PMCID: PMC10725692 DOI: 10.2147/dddt.s423022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose This study aimed to investigate the main pharmacological action and underlying mechanisms of Jin Gu Lian Capsule (JGL) against rheumatoid arthritis (RA) based on network pharmacology and experimental verification. Methods Network pharmacology approaches were performed to explore the core active compounds of JGL, key therapeutic targets, and signaling pathways. Molecular docking was used to predict the binding affinity of compounds with targets. In vivo experiments were undertaken to validate the findings from network analysis. Results A total of 52 targets were identified as candidate JGL targets for RA. Sixteen ingredients were identified as the core active compounds, including, quercetin, myricetin, salidroside, etc. Interleukin-1 beta (IL1B), transcription factor AP-1 (JUN), growth-regulated alpha protein (CXCL1), C-X-C motif chemokine (CXCL)3, CXCL2, signal transducer and activator of transcription 1 (STAT1), prostaglandin G/H synthase 2 (PTGS2), matrix metalloproteinase (MMP)1, inhibitor of nuclear factor kappa-B kinase subunit beta (IKBKB) and transcription factor p65 (RELA) were obtained as the key therapeutic targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the efficacy of JGL was functionally involved in regulating immune-mediated inflammation, in which IL-17/NF-κB signaling was recommended as one of the main pathways. Molecular docking suggested that the core active compounds bound strongly to their respective targets. Experimentally, JGL treatment mitigated inflammation, showed analgesic activity, and ameliorated collagen-induced arthritis. Enzyme-linked immunosorbent assay showed that JGL effectively reduced the serum levels of cytokines, chemokines, and MMPs. Immunohistochemistry staining showed that JGL markedly reduced the expression of the targets in IL-17/NF-κB pathway including IL-17A, IL-17RA, NF-κB p65, C-X-C motif ligand 2, MMP1 and MMP13. Conclusion This investigation provided evidence that JGL may alleviate RA symptoms by partially inhibiting the immune-mediated inflammation via IL-17/NF-κB pathway.
Collapse
Affiliation(s)
- Tengfei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Sihan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Dongyin Lian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Hongping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Delian Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yunhang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Xiaoru Hu
- National Institute for Food and Drug Control, Beijing, People's Republic of China
| | - Jianrong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Zuguang Ye
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
7
|
Kim KW, Lee YS, Choi BR, Yoon D, Lee DY. Anti-Neuroinflammatory Effect of the Ethanolic Extract of Black Ginseng through TLR4-MyD88-Regulated Inhibition of NF-κB and MAPK Signaling Pathways in LPS-Induced BV2 Microglial Cells. Int J Mol Sci 2023; 24:15320. [PMID: 37894998 PMCID: PMC10607189 DOI: 10.3390/ijms242015320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Korean ginseng (Panax ginseng) contains various ginsenosides as active ingredients, and they show diverse biological activities. Black ginseng is manufactured by repeated steaming and drying of white ginseng, which alters the polarity of ginsenosides and improves biological activities. The aim of the present investigation was to examine the anti-neuroinflammatory effects of the ethanolic extract of black ginseng (BGE) in lipopolysaccharide (LPS)-induced BV2 microglial cells. Pre-treatment with BGE inhibited the overproduction of pro-inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in LPS-induced BV2 cells. In addition, BGE reduced the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK) MAPK signaling pathways induced by LPS. These anti-neuroinflammatory effects were mediated through the negative regulation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) signaling pathway. Among the four ginsenosides contained in BGE, ginsenosides Rd and Rg3 inhibited the production of inflammatory mediators. Taken together, this investigation suggests that BGE represents potential anti-neuroinflammatory candidates for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Sciences, Rural Development Administration, Eumseong 27709, Republic of Korea; (K.-W.K.); (Y.-S.L.); (B.-R.C.); (D.Y.)
| |
Collapse
|
8
|
Wang Z, Chen Z, Tang Y, Zhang M, Huang M. Regulation of transcriptome networks that mediate ginsenoside biosynthesis by essential ecological factors. PLoS One 2023; 18:e0290163. [PMID: 37590202 PMCID: PMC10434944 DOI: 10.1371/journal.pone.0290163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Ginseng, a valuable Chinese medicinal herb, is renowned worldwide for its effectiveness in alleviating certain conditions and promoting overall health. In this study, we performed weighted gene co-expression network analysis (WGCNA) on the accumulation of essential saponins under the influence of 13 essential environmental factors (including air temperature, air bottom temperature, surface mean temperature, soil temperature, surface shortwave radiation, soil moisture, soil water content, rainfall, total precipitation, elevation, soil type, soil pH, and soil water potential). We identified a total of 40 transcript modules associated with typical environmental factors and the accumulation of essential saponins. Among these, 18 modules were closely related to the influence of typical environmental factors, whereas 22 modules were closely related to the accumulation of essential saponins. These results were verified by examining the transcriptome, saponin contents, environmental factor information and the published data and revealed the regulatory basis of saponin accumulation at the transcriptome level under the influence of essential environmental factors. We proposed a working model of saponin accumulation mediated by the transcriptional regulatory network that is affected by typical environmental factors. An isomorphic white-box neural network was constructed based on this model and the predicted results of the white-box neural network correlated with saponin accumulation. The effectiveness of our correlation-directed graph in predicting saponin contents was verified by bioinformatics analysis based on results obtained in this study and transcripts known to affect the biosynthesis of saponin Rb1. The directed graph represents a useful tool for manipulating saponin biosynthesis while considering the influence of essential environmental factors in ginseng and other medicinal plants.
Collapse
Affiliation(s)
- Zhongce Wang
- College of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Zhiguo Chen
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, China
| | - You Tang
- College of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Meiping Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Meng Huang
- College of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| |
Collapse
|
9
|
Li L, Chang Z, Wei K, Tang Y, Chen Z, Zhang H, Wang Y, Zhu H, Feng B. Chemical Differentiation and Quantitative Analysis of Black Ginseng Based on an LC-MS Combined with Multivariate Statistical Analysis Approach. Molecules 2023; 28:5251. [PMID: 37446911 DOI: 10.3390/molecules28135251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Black ginseng is a new type of processed ginseng that is traditionally used in herbal medicine in East Asian countries. It is prepared from fresh, white, or red ginseng by undergoing a process of steaming and drying several times. However, the chemical differentiation of black ginseng with different processing levels is not well understood. The aim of this study was to propose a new method for discriminating and quantifying black ginseng. Six ginsenosides from black ginseng were accurately quantified, and based on this, the black ginseng samples were divided into incomplete and complete black ginseng. Ultrahigh-performance liquid chromatography-quadrupole-time of flight/mass spectrometry (UPLC-Q-TOF/MS) combined with a multivariate statistical analysis strategy was then employed to differentiate the two groups. A total of 141 ions were selected as analytical markers of black ginseng, with 45 of these markers being annotated by matching precise m/z and MS/MS data from prior studies.
Collapse
Affiliation(s)
- Lele Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Zhixia Chang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Keyu Wei
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Yi Tang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Zhao Chen
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Hongli Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
10
|
Huang L, Li HJ, Wu YC. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chem 2023; 407:134714. [PMID: 36495746 DOI: 10.1016/j.foodchem.2022.134714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
Black ginseng is a novel manufactured ginseng product, and the application of black ginseng products in market is increasing in recent years. Black ginseng is prepared by steaming and fermentation, but not as mature as processing red ginseng. Therefore, complete proposals for preparation techniques are firstly presented. Additionally, there are also abundant chemical components in black ginseng, including ginsenosides, polysaccharides, amino acids, polyphenols, flavonoids, etc. Among them, ginsenosides, polysaccharides and phenolic compounds are the main ingredients, making health benefits of black ginseng stronger than other ginseng products. Therefore, black ginseng as a functional food has come to the market in various forms, such as candies, tea, porridge, soup, etc. The improvement in nutrition, flavor, and safety has exhibited a broad prospect for black ginseng products in food industry. Accordingly, preparation technologies, phytochemistry, health benefits and application of black ginseng are comprehensively evaluated.
Collapse
Affiliation(s)
- Li Huang
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Yan-Chao Wu
- Weihai Jinyiyang Pharmaceutical Co., Ltd, Wendeng District, Weihai 264400, PR China.
| |
Collapse
|
11
|
Huo R, Wang M, Wei X, Qiu Y. Research Progress on Anti-Inflammatory Mechanisms of Black Ginseng. Chem Biodivers 2023; 20:e202200846. [PMID: 36789670 DOI: 10.1002/cbdv.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
In recent years, black ginseng, a new type of processed ginseng product, has attracted the attention of scholars globally. Ginsenoside and ginseng polysaccharide, the main active substances of black ginseng, have been shown to carry curative effects for many diseases. This article focuses on the mechanism of their action in anti-inflammatory response, which is mainly divided into three aspects: activation of immune cells to exert immune regulatory response; participation in inflammatory response-related pathways and regulation of the expression level of inflammatory factors; effect on the metabolic activity of intestinal flora. This study identifies active anti-inflammatory components and an action mechanism of black ginseng showing multi-component, multi-target, and multi-channel characteristics, providing ideas and a basis for a follow-up in-depth study of its specific mechanism.
Collapse
Affiliation(s)
- Ran Huo
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengyuan Wang
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xu Wei
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ye Qiu
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
12
|
Kan H, Zhang D, Chen W, Wang S, He Z, Pang S, Qu S, Wang Y. Identification of anti-inflammatory components in Panax ginseng of Sijunzi Decoction based on spectrum-effect relationship. CHINESE HERBAL MEDICINES 2023; 15:123-131. [PMID: 36875431 PMCID: PMC9975637 DOI: 10.1016/j.chmed.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/06/2022] Open
Abstract
Objective This study aimed to identify the main medicinal active components of Panax ginseng (P. ginseng) in the compatibility environment of clinical application. For this purpose, the anti-inflammatory ingredients of P. ginseng were investigated based on its therapeutic effect in Sijunzi Decoction (SJD) which is a widely used traditional Chinese formula. Methods The fingerprints of 10 batches of SJD consisting of different sources of P. ginseng were established by UPLC technique to investigate the chemical components. At the same time, the anti-inflammatory effects of these components were evaluated by dextran sulfate sodium-induced ulcerative colitis mouse model. Grey relational analysis was applied to explore the correlation degree between fingerprints and anti-inflammatory effects in SJD. Lipopolysaccharide-stimulated RAW264.7 murine macrophages were established to evaluate the anti-inflammatory action of the screened effective substances of P. ginseng. Results According to grey relational analysis, notoginsenoside R1, ginsenoside Rg2 and ginsenoside Rb3 of P. ginseng were the major anti-inflammatory contributions in SJD. They had been proven to be closely associated with the anti-inflammatory process of SJD and displayed a close effect compared with SJD by LPS-stimulated RAW264.7 murine macrophages. Conclusion Our work provides a general strategy for exploring the pharmacological ingredients of P. ginseng in traditional Chinese formulas which is beneficial for establishing the quality standards of traditional herbs in traditional Chinese medicine prescription based on their clinical therapeutic effect.
Collapse
Affiliation(s)
- Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.,Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Dongxue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shihan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shifeng Pang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Shuai Qu
- Jilin Institute of Biology, Changchun 130012, China
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
Sultan AA, El Nashar NF, Ashmawy SM, El Maghraby GM. Cubosomes for Enhancing Intestinal Absorption of Fexofenadine Hydrochloride: In situ and in vivo Investigation. Int J Nanomedicine 2022; 17:3543-3560. [PMID: 35983479 PMCID: PMC9379123 DOI: 10.2147/ijn.s370235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this work was to probe cubosomes for enhanced intestinal absorption and oral bioavailability of poorly absorbable fexofenadine HCl (FEX-HCl). Materials and Methods Two cubosomal systems were fabricated utilizing glyceryl mono-oleate, a lyotropic mono lamellar lipid as oil phase and poloxamer407 as stabilizer at weight ratios of 8:2 and 7:3. The morphology of cubosomes was researched using transmission electron microscopy (TEM) and particle size was measured using photon correlation spectroscopy. FEX-HCl release was monitored in vitro. The effect of cubosomal encapsulation on intestinal absorption was assessed using in situ rabbit intestinal perfusion technique. Carrageenan induced rat paw edema model was utilized to monitor in vivo anti-inflammatory effect before and after cubosomal encapsulation. Results TEM revealed the existence of spherical and polygonal nanostructures arranged in honeycomb organization. Size measurement reflected nanoparticles with reduced size at higher poloxamer concentration. Release studies revealed liberation of FEX-HCl from cubosomes based on Higuchi kinetics model. The intestinal permeability data indicated incomplete absorption of FEX-HCl from simple aqueous solution with P-glycoprotein efflux contributing to this poor intestinal absorption. Incorporation of FEX-HCl in cubosomes enhanced membrane transport parameters. The intestinal absorption did not correlate with drug release suggesting that drug release is not the rate limiting with possible intact cubosomal transport. Cubosomal encapsulation of FEX-HCl significantly enhanced its in vivo anti-inflammatory efficacy compared to the aqueous FEX-HCl dispersion. Conclusion Cubosomes are promising novel carriers for enhancing intestinal absorption of FEX-HCl. Intact FEX-HCl-cubosomal absorption is possible via trans-lymphatic pathway but this requires further investigations.
Collapse
Affiliation(s)
- Amal A Sultan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Nourhan F El Nashar
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
14
|
Lai WD, Li DM, Yu J, Huang L, Zheng MZ, Jiang YP, Wang S, Wen JJ, Chen SJ, Wen CP, Jin Y. An Apriori Algorithm-Based Association Analysis of Analgesic Drugs in Chinese Medicine Prescriptions Recorded From Patients With Rheumatoid Arthritis Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:937259. [PMID: 35959238 PMCID: PMC9358686 DOI: 10.3389/fpain.2022.937259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain, a common symptom of people with rheumatoid arthritis, usually behaves as persistent polyarthralgia pain and causes serious damage to patients' physical and mental health. Opioid analgesics can lead to a series of side effects like drug tolerance and addiction. Thus, seeking an alternative therapy and screening out the corresponding analgesic drugs is the key to solving the current dilemma. Traditional Chinese Medicine (TCM) therapy has been recognized internationally for its unique guiding theory and definite curative effect. In this study, we used the Apriori Algorithm to screen out potential analgesics from 311 cases that were treated with compounded medication prescription and collected from “Second Affiliated Hospital of Zhejiang Chinese Medical University” in Hangzhou, China. Data on 18 kinds of clinical symptoms and 16 kinds of Chinese herbs were extracted based on this data mining. We also found 17 association rules and screened out four potential analgesic drugs—“Jinyinhua,” “Wugong,” “Yiyiren,” and “Qingfengteng,” which were promised to help in the clinical treatment. Besides, combined with System Cluster Analysis, we provided several different herbal combinations for clinical references.
Collapse
Affiliation(s)
- Wei-dong Lai
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dian-ming Li
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Huang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming-zhi Zheng
- Hangzhou AI Center, China Academy of Information and Communications Technology, Hangzhou, China
| | - Yue-peng Jiang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-jun Wen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Si-jia Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng-ping Wen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Cheng-ping Wen
| | - Yan Jin
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Yan Jin
| |
Collapse
|
15
|
Black Ginseng Ameliorates Cellular Senescence via p53-p21/p16 Pathway in Aged Mice. BIOLOGY 2022; 11:biology11081108. [PMID: 35892965 PMCID: PMC9331701 DOI: 10.3390/biology11081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/29/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary The goal of this study was to examine if BG impacts the aging process, specifically cellular senescence, using in vitro and aged mouse models. Primary mouse embryonic fibroblasts (MEFs) and aged mice (18 months old) showed that BG supplementation retarded cellular senescence. Of note, BG-supplemented aged mice had remarkedly altered hepatic genes involved in the aging process as it caused less activation of the canonical senescence pathway. These observations demonstrated that BG positively impacts the age-related phenotype by controlling the expression of cellular senescence in the liver and other metabolic organs such as skeletal muscle and white adipose tissue. Abstract Cellular senescence, one of the hallmarks of aging, refers to permanent cell cycle arrest and is accelerated during the aging process. Black ginseng (BG), prepared by a repeated steaming and drying process nine times from fresh ginseng (Panax ginseng C.A. Meyer), is garnering attention for herbal medicine due to its physiological benefits against reactive oxygen species (ROS), inflammation, and oncogenesis, which are common cues to induce aging. However, which key nodules in the cellular senescence process are regulated by BG supplementation has not been elucidated yet. In this study, we investigated the effects of BG on cellular senescence using in vitro and aged mouse models. BG-treated primary mouse embryonic fibroblasts (MEFs) in which senescence was triggered by ionizing radiation (IR) expressed less senescence-associated β-galactosidase (SA-β-gal)-positive stained cells. In our aged mice (18 months old) study, BG supplementation (300 mg/kg) for 4 weeks altered hepatic genes involved in the aging process. Furthermore, we found BG supplementation downregulated age-related inflammatory genes, especially in the complement system. Based on this observation, we demonstrated that BG supplementation led to less activation of the canonical senescence pathway, p53-dependent p21 and p16, in multiple metabolic organs such as liver, skeletal muscle and white adipose tissue. Thus, we suggest that BG is a potential senolytic candidate that retards cellular senescence.
Collapse
|
16
|
Chen Z, Zhang Z, Liu J, Qi H, Li J, Chen J, Huang Q, Liu Q, Mi J, Li X. Gut Microbiota: Therapeutic Targets of Ginseng Against Multiple Disorders and Ginsenoside Transformation. Front Cell Infect Microbiol 2022; 12:853981. [PMID: 35548468 PMCID: PMC9084182 DOI: 10.3389/fcimb.2022.853981] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Panax ginseng, as the king of Chinese herb, has significant therapeutic effects on obesity, type 2 diabetes mellitus, fatty liver disease, colitis, diarrhea, and many other diseases. This review systematically summarized recent findings, which show that ginseng plays its role by regulating gut microbiota diversity, and gut microbiota could also regulate the transformation of ginsenosides. We conclude the characteristics of ginseng in regulating gut microbiota, as the potential targets to prevent and treat metabolic diseases, colitis, neurological diseases, cancer, and other diseases. Ginseng treatment can increase some probiotics such as Bifidobacterium, Bacteroides, Verrucomicrobia, Akkermansia, and reduce pathogenic bacteria such as Deferribacters, Lactobacillus, Helicobacter against various diseases. Meanwhile, Bacteroides, Eubacterium, and Bifidobacterium were found to be the key bacteria for ginsenoside transformation in vivo. Overall, ginseng can regulate gut microbiome diversity, further affect the synthesis of secondary metabolites, as well as promote the transformation of ginsenosides for improving the absorptivity of ginsenosides. This review can provide better insight into the interaction of ginseng with gut microbiota in multiple disorders and ginsenoside transformation.
Collapse
Affiliation(s)
- Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qing Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jia Mi, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jia Mi, ; Xiangyan Li,
| |
Collapse
|
17
|
Kim JY, Kwack MH, Lee EH, Lee WJ. Effects of Black Ginseng Water Extract under the Inflammatory Conditions of Cultured Sebocytes and Outer Root Sheath Cells. Ann Dermatol 2022; 34:95-104. [PMID: 35450316 PMCID: PMC8989908 DOI: 10.5021/ad.2022.34.2.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 11/08/2022] Open
Abstract
Background Ginseng has been used in Korea for a long time as a restorative herbal medicine. Black ginseng (BG) is made from red or white ginseng by multiple steamy and dry processes. Although BG has been reported to have anti-inflammatory potential, studies on its influence on inflammatory skin disorders are lacking. Objective To investigate the effects of BG under the inflammatory conditions of cultured sebocytes and outer root sheath (ORS) cells. Methods The cultured cells were treated with 0.1% dimethyl sulfoxide, 5 µg/ml lipopolysaccharide (LPS) or 5 µg/ml LPS+50 µg/ml BG for 6 hours and 24 hours. Reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, enzyme-linked immunosorbent assay, western blotting, immunofluorescence staining and Nile red staining were performed for analysis of inflammatory biomarkers and sebum-related biomarkers. Results BG brought out the increased gene and protein expression of inflammatory biomarkers such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α, in the LPS-treated sebocytes and ORS cells. In addition, BG induced increased expression of TLR4, p-c-jun, p-JNK and p-iκB in LPS-treated sebocytes and ORS cells. Furthermore, it significantly increased the expression of LL-37 and the production of sebum in LPS-treated sebocytes. Conclusion It may be possible for BG to increase the expression of inflammatory biomarkers in inflammatory skin disorders, such as acne.
Collapse
Affiliation(s)
- Jun Young Kim
- Department of Dermatology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eun Hye Lee
- Department of Dermatology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Weon Ju Lee
- Department of Dermatology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
18
|
Bahuguna A, Pal Khaket T, Bajpai VK, Shukla S, Park I, Na M, Suk Huh Y, Han YK, Chul Kang S, Kim M. N-acetyldopamine dimers from Oxya chinensis sinuosa attenuates lipopolysaccharides induced inflammation and inhibits cathepsin C activity. Comput Struct Biotechnol J 2022; 20:1177-1188. [PMID: 35317232 PMCID: PMC8908036 DOI: 10.1016/j.csbj.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 11/03/2022] Open
|
19
|
Lee YY, Kim SD, Park SC, Rhee MH. Panax ginseng: Inflammation, platelet aggregation, thrombus formation, and atherosclerosis crosstalk. J Ginseng Res 2022; 46:54-61. [PMID: 35058727 PMCID: PMC8753522 DOI: 10.1016/j.jgr.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Ginseng has been widely studied due to its various therapeutic properties on various diseases such as cardiovascular disease (CVD). Cardiovascular disease has been canonically known to be caused by high levels of low-density lipoproteins (LDL) in the bloodstream, in addition to the impaired vasodilatory effects of cholesterol. However, current research on CVD has revealed a cascade of mechanisms involving a series of events that contribute to the progression of CVD. Although this has been elucidated and summarized in previous studies the detailed correlation between platelet aggregation and innate immunity that plays an important role in CVD progression has not been thoroughly summarized. Furthermore, immune cell subtypes also contribute to the progression of plaque formation in the subendothelial layer. Thrombus formation and the coagulation cascade also have a vital role in the progression of atherosclerosis. Hence, in this mini review we aim to elucidate, summarize, and propose the potent therapeutic effect of ginseng on CVD, mainly on platelet aggregation, plaque formation, and thrombus formation.
Collapse
|
20
|
Duchesnea indica Extract Attenuates Coal Fly Ash-Induced Inflammation in Murine Alveolar Macrophages through the NF-Kappa B Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5546052. [PMID: 34194518 PMCID: PMC8203366 DOI: 10.1155/2021/5546052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Duchesnea indica is known as false strawberry, is found in East Asia, and has numerous biological properties. The aim of this study was to investigate the anti-inflammatory effect of Duchesnea indica extract (DIE) on coal fly ash- (CFA-) induced inflammation in murine alveolar macrophages (MH-S). Following the induction of inflammation in MH-S cells by CFA, nitric oxide (NO) was measured to evaluate the anti-inflammatory property of DIE. Cell viability and inflammatory gene expression were analyzed using polymerase chain reaction (PCR). The inflammatory pathway in MH-S cells was determined via western blotting and immunofluorescence (IF) analysis. Finally, the major components of the DIE were identified and separated through ultra-performance liquid chromatography (UPLC) and gas chromatography-mass spectrometry (GC-MS) analysis. Our results showed that the DIE dose-dependently inhibited the CFA-induced NO production in MH-S cells. Moreover, the DIE could suppress the CFA-induced proinflammatory mediators, such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). In addition, the inhibitory effect of the DIE on proinflammatory cytokines, including interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α), was detected with PCR. Moreover, the effect of the DIE on the nuclear factor-κB (NF-κB) pathway in CFA-activated MH-S cells was measured via western blotting. Furthermore, the inhibition of the phosphorylated NF-κB (p-NF-κB) translocation was analyzed using IF assay. The findings of this study indicated that the DIE potentially inhibited the CFA-induced inflammation by blocking the NF-κB inflammatory signaling pathway in MH-S cells and that the DIE might contain favorable anti-inflammatory compounds which may be effective in attenuating lung inflammation.
Collapse
|
21
|
Yoo S, Park BI, Kim DH, Lee S, Lee SH, Shim WS, Seo YK, Kang K, Lee KT, Yim SV, Soung DY, Kim BH. Ginsenoside Absorption Rate and Extent Enhancement of Black Ginseng (CJ EnerG) over Red Ginseng in Healthy Adults. Pharmaceutics 2021; 13:pharmaceutics13040487. [PMID: 33918329 PMCID: PMC8067055 DOI: 10.3390/pharmaceutics13040487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Red ginseng (RG) and black ginseng (BG, CJ EnerG) were prepared from fresh ginseng using one and nine cycles of steaming and drying, respectively. This process reduces the molecular weight (MW) of ginsenoside-active compounds in ginseng by removing sugar moieties from their dammaranes. We compared the pharmacokinetic characteristics of ginsenosides between BG comprising mainly low-MW ginsenosides (Rg3, Rg5, Rk1, and Rh1) and RG that predominantly contains high-MW ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1). The safety profiles and tolerability were also studied using a randomized, double-blind, single-dose, crossover clinical trial. A combination of Rb1, Rg1, and Rg3, well-known representative and functional RG components, exhibited a 1 h faster absorption rate (Tmax) and 58% higher exposure (24 h area under the concentration–time curve, AUC24) in BG than in RG. Furthermore, the combination of Rg3, Rg5, and Rk1, the major and most efficient components in BG, displayed 824% higher absorption (AUC24) in BG than in RG. The total ginsenoside showed a 5 h rapid intestinal absorption (Tmax) and 79% greater systemic exposure (AUC24) in BG than in RG. No clinically significant findings were observed in terms of safety or tolerability. Thus, BG extract was more effective than RG extract.
Collapse
Affiliation(s)
- Saebyul Yoo
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.Y.); (D.-h.K.)
| | - Bom-I Park
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
| | - Do-hyun Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.Y.); (D.-h.K.)
| | - Sooyoung Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.L.); (K.-T.L.)
| | - Seung-hoon Lee
- Department of Statistics, lnha University, Incheon 22212, Korea;
| | - Wang-Seob Shim
- Kyung Hee Drug Analysis Center, College of Pharmacy, Medical Center, Kyung Hee University, Seoul 02447, Korea;
| | - Yong Ki Seo
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
| | - Kimoon Kang
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.L.); (K.-T.L.)
- Kyung Hee Drug Analysis Center, College of Pharmacy, Medical Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Do Yu Soung
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
- Correspondence: (D.Y.S.); (B.-H.K.)
| | - Bo-Hyung Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.Y.); (D.-h.K.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Medical Center, Seoul 02447, Korea;
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (D.Y.S.); (B.-H.K.)
| |
Collapse
|
22
|
The Effects of New Zealand Grown Ginseng Fractions on Cytokine Production from Human Monocytic THP-1 Cells. Molecules 2021; 26:molecules26041158. [PMID: 33671522 PMCID: PMC7926829 DOI: 10.3390/molecules26041158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/18/2022] Open
Abstract
Pro-inflammatory cytokines and anti-inflammatory cytokines are important mediators that regulate the inflammatory response in inflammation-related diseases. The aim of this study is to evaluate different New Zealand (NZ)-grown ginseng fractions on the productions of pro-inflammatory and anti-inflammatory cytokines in human monocytic THP-1 cells. Four NZ-grown ginseng fractions, including total ginseng extract (TGE), non-ginsenoside fraction extract (NGE), high-polar ginsenoside fraction extract (HPG), and less-polar ginsenoside fraction extract (LPG), were prepared and the ginsenoside compositions of extracts were analyzed by HPLC using 19 ginsenoside reference standards. The THP-1 cells were pre-treated with different concentrations of TGE, NGE, HPG, and LPG, and were then stimulated with lipopolysaccharide (LPS). The levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and anti-inflammatory cytokines, such as interleukin-10 (IL-10), and transforming growth factor beta-1 (TGF-β1), were determined by enzyme-linked immunosorbent assay (ELISA). TGE at 400 µg/mL significantly inhibited LPS-induced TNF-α and IL-6 productions. NGE did not show any effects on inflammatory secretion except inhibited IL-6 production at a high dose. Furthermore, LPG displayed a stronger effect than HPG on inhibiting pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) productions. Particularly, 100 µg/mL LPG not only significantly inhibited the production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, but also remarkably enhanced the production of anti-inflammatory cytokine IL-10. NZ-grown ginseng exhibited anti-inflammatory effects in vitro, which is mainly attributed to ginsenoside fractions (particularly less-polar ginsenosides) rather than non-saponin fractions.
Collapse
|
23
|
The effect of ginsenoside Rg5, isolated from black ginseng, on heart failure in zebrafish based on untargeted metabolomics. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Lee DK, Park S, Long NP, Min JE, Kim HM, Yang E, Lee SJ, Lim J, Kwon SW. Research Quality-Based Multivariate Modeling for Comparison of the Pharmacological Effects of Black and Red Ginseng. Nutrients 2020; 12:nu12092590. [PMID: 32858896 PMCID: PMC7551003 DOI: 10.3390/nu12092590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022] Open
Abstract
Black ginseng has various pharmacological activities, but only few studies have compared its pharmacological effects with those of red ginseng. We conducted an integrative systematic literature evaluation and developed a non-inferiority test based on the multivariate modeling approach to compare the pharmacological effects of red ginseng and black ginseng. We searched reported studies on the pharmaceutical effects and composition of ginsenosides and assigned numeric scores using nonlinear principal component analysis, based on discretization measures for the included publications. Downstream weighted linear regression models were constructed to study the eight major biological activities that are generally known to be exhibited by red ginseng. Our statistical model, based on available ordinal information gathered from previous literature, helped in comparing the overlapping effects of black ginseng. Black ginseng showed antioxidant effects comparable to those of red ginseng; however, this variant was inferior to red ginseng in enhancing immunity, relieving fatigue, alleviating depression/anxiety, decreasing body fat, and reducing blood pressure. We have showed a cost-efficient method to indirectly evaluate the biological effects of ginseng products using data from published articles. This method can also be used to compare the nutritional and medicinal value of herbal medicines that share similar compositions of bioactive compounds.
Collapse
Affiliation(s)
- Dong-Kyu Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (D.-K.L.); (N.P.L.); (J.E.M.); (H.M.K.); (S.J.L.)
| | - Seongoh Park
- Department of Statistics, Sungshin Women’s University, Seoul 02844, Korea;
| | - Nguyen Phuoc Long
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (D.-K.L.); (N.P.L.); (J.E.M.); (H.M.K.); (S.J.L.)
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (D.-K.L.); (N.P.L.); (J.E.M.); (H.M.K.); (S.J.L.)
| | - Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (D.-K.L.); (N.P.L.); (J.E.M.); (H.M.K.); (S.J.L.)
| | - Eugine Yang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Seul Ji Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (D.-K.L.); (N.P.L.); (J.E.M.); (H.M.K.); (S.J.L.)
| | - Johan Lim
- Department of Statistics, Seoul National University, Seoul 08826, Korea;
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (D.-K.L.); (N.P.L.); (J.E.M.); (H.M.K.); (S.J.L.)
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-7844; Fax: +82-886-7844
| |
Collapse
|
25
|
Kim YJ, Lee DY, Park HE, Yoon D, Lee B, Kim JG, Im KH, Lee YS, Lee WK, Kim JK. Serum Metabolic Profiling Reveals Potential Anti-Inflammatory Effects of the Intake of Black Ginseng Extracts in Beagle Dogs. Molecules 2020; 25:molecules25163759. [PMID: 32824755 PMCID: PMC7465512 DOI: 10.3390/molecules25163759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Black ginseng (BG) has better health benefits than white ginseng. The intake of BG changes the levels of metabolites, such as amino acids, fatty acids, and other metabolites. However, there is no research on the effect of BG extract intake on the metabolic profile of dog serum. In this study, serum metabolic profiling was conducted to investigate metabolic differences following the intake of BG extracts in beagle dogs. The beagle dogs were separated into three groups and fed either a regular diet (RD, control), RD with a medium concentration of BG extract (BG-M), or RD with a high concentration of BG extract (BG-H). Differences were observed among the three groups after the dogs ingested the experimental diet for eight weeks. The concentrations of alanine, leucine, isoleucine, and valine changed with the intake of BG extracts. Furthermore, levels of glycine and β-alanine increased in the BG-H group compared to the control and BG-M groups, indicating that BG extracts are associated with anti-inflammatory processes. Our study is the first to demonstrate the potential anti-inflammatory effect of BG extract in beagle dogs. Glycine and β-alanine are proposed as candidate serum biomarkers in dogs that can discriminate between the effects of ingesting BG-H.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (D.Y.L.); (D.Y.); (Y.-S.L.)
| | - Ho-Eun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (H.-E.P.); (W.-K.L.)
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (D.Y.L.); (D.Y.); (Y.-S.L.)
| | - Bumkyu Lee
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Korea;
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
| | - Kyung-Hoan Im
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (D.Y.L.); (D.Y.); (Y.-S.L.)
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (H.-E.P.); (W.-K.L.)
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
- Correspondence: ; Tel.: +82-32-835-8241
| |
Collapse
|
26
|
Evidence of anti-inflammatory activity of Schizandrin A in animal models of acute inflammation. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2221-2229. [PMID: 32076762 DOI: 10.1007/s00210-020-01837-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022]
Abstract
Schisandrin A (Sch A) is a lignin extracted from the fruit of Schisandra chinensis, which has potential anti-inflammatory properties and is used for treating various inflammatory diseases. In this study, we aimed to evaluate the anti-inflammatory effects of Sch A and the underlying mechanisms in animal models of acute inflammation. First, the anti-inflammatory effects of Sch A were evaluated preliminarily in an animal model of xylene-induced ear edema. Sch A pretreatment significantly decreased the degree of edema and inhibited telangiectasia in the ear. Second, a mouse model of paw edema was used to investigate the anti-inflammatory effects and mechanisms of Sch A. Pretreatment with Sch A significantly inhibited carrageenan-induced paw edema in mice. Hematoxylin-eosin (HE) staining of paw tissues demonstrated that Sch A inhibited the infiltration of inflammatory cells in the mouse model of paw edema. Enzyme-linked immunosorbent assay (ELISA) results indicated that the levels of inflammatory factors decreased. The western blot and immunohistochemical assay results revealed that the toll-like receptor 4/nuclear factor kappa-B (TLR4/NF-κB) pathway could play a role in the anti-inflammatory functions of Sch A. The findings demonstrated that Sch A exerts anti-inflammatory effects and may provide possible strategies for the treatment of inflammatory diseases.
Collapse
|
27
|
Park K, Kim Y, Kim J, Kang S, Park JS, Ahn CW, Nam JS. Supplementation with Korean Red Ginseng Improves Current Perception Threshold in Korean Type 2 Diabetes Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. J Diabetes Res 2020; 2020:5295328. [PMID: 32025522 PMCID: PMC6991165 DOI: 10.1155/2020/5295328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Many Type 2 diabetes (T2DM) patients in Korea take Korean Red Ginseng (KRG) for various reasons. In this study, we investigated the effects of KRG administration on diabetic peripheral neuropathy in T2DM patients. METHODS This study was a randomized, double-blind, placebo-controlled trial. Participants were randomly allocated to either the placebo or KRG group and took corresponding tablets for 24 weeks. The primary outcomes were changes in current perception threshold (CPT) at week 24. Secondary outcomes were altered fasting plasma glucose, HbA1c, and various metabolic and inflammatory markers at week 24. RESULTS Sixty-one patients completed the study. The CPT of the lower extremities at various frequencies exhibited significant improvements at week 24 in the KRG group. Other metabolic parameters were not altered after 24 weeks in both groups. In the subgroup analysis, CPT levels were improved in those with a longer diabetes duration or who already had neuropathy at the beginning of the study, and insulin resistance was improved in patients with a shorter diabetes duration. CONCLUSION Twenty-four week administration of KRG in T2DM patients resulted in a significant improvement in neuropathy, especially in those with a longer diabetes duration. A further, larger population study with a longer follow-up period is warranted to verify the effects of KRG on diabetic neuropathy.
Collapse
Affiliation(s)
- Kahui Park
- Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Republic of Korea
| | - YuSik Kim
- Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Republic of Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Republic of Korea
| | - Junghye Kim
- Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Republic of Korea
| | - Shinae Kang
- Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Republic of Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Republic of Korea
| | - Jong Suk Park
- Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Republic of Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Republic of Korea
| | - Chul Woo Ahn
- Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Republic of Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Republic of Korea
| | - Ji Sun Nam
- Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Republic of Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Republic of Korea
| |
Collapse
|
28
|
Fermented Garlic Ameliorates Hypercholesterolemia and Inhibits Platelet Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3030967. [PMID: 31885643 PMCID: PMC6927027 DOI: 10.1155/2019/3030967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022]
Abstract
Dietary cholesterol augments the lipid profile and induces the production and activation of platelets, leading to the development of atherosclerosis with detrimental effects on cardiovascular health. Ethnomedicine and Mediterranean diets are natural and cost-effective approaches against several ailments including cardiovascular diseases. In addition, fermented foods have attracted interest due to their increased nutrient profile and enhanced bioavailability and efficacy. Garlic is known to reduce cholesterol and inhibit platelet activation. Therefore, we examined whether fermented garlic could effectively ameliorate the effects of hypercholesterolemia and platelet functions in rats. Male Sprague-Dawley rats were fed a hypercholesterolemic diet and treated with spirulina and fermented and nonfermented preparations of garlic for one month. Platelet aggregation and granule secretion were assessed to evaluate platelet activation. Analysis of the liver and kidney weights and lipid and enzymatic profiles of the serum and whole blood analysis was performed. The expression levels of SREBP-2, ACAT-2, and HMG-CoA were assessed by RT-PCR, while ACAT-1 and ACAT-2 were assessed by real-time PCR, and histological changes in the liver and adipose tissues were analyzed. Both fermented and nonfermented garlic inhibited platelet aggregation and granule secretion; however, fermented garlic exhibited a greater inhibitory effect. In comparison with nonfermented garlic, fermented garlic significantly reduced liver weight and triglyceride concentrations. Fermented garlic also markedly abrogated the detrimental effects of steatosis on liver and adipose tissues. We conclude that fermented garlic significantly improved the lipid profile and modulated platelet functions, thereby inhibiting atherosclerosis- and platelet-related cardiovascular disorders.
Collapse
|
29
|
Park SJ, Park M, Sharma A, Kim K, Lee HJ. Black Ginseng and Ginsenoside Rb1 Promote Browning by Inducing UCP1 Expression in 3T3-L1 and Primary White Adipocytes. Nutrients 2019; 11:nu11112747. [PMID: 31726767 PMCID: PMC6893667 DOI: 10.3390/nu11112747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated the effects of black ginseng (BG) and ginsenoside Rb1, which induced browning effects in 3T3-L1 and primary white adipocytes (PWATs) isolated from C57BL/6 mice. BG and Rb1 suppressed the expressions of CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding transcription factor-1c (SREBP-1c), whereas the expression level of peroxisome proliferator-activated receptor gamma (PPARγ) was increased. Furthermore, BG and Rb1 enhanced the protein expressions of the brown-adipocyte-specific markers PR domain containing 16 (PRDM16), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), and uncoupling protein 1 (UCP1). These results were further supported by immunofluorescence images of mitochondrial biogenesis. In addition, BG and Rb1 induced expressions of brown-adipocyte-specific marker proteins by AMP-activated protein kinase (AMPK) activation. BG and Rb1 exert antiobesity effects by inducing browning in 3T3-L1 cells and PWATs through AMPK-mediated pathway activation. We suggest that BG and Rb1 act as potential functional antiobesity food agents.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (M.P.); (A.S.)
| | - Miey Park
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (M.P.); (A.S.)
| | - Anshul Sharma
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (M.P.); (A.S.)
| | - Kihyun Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Jeolabuk-do 1500, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (M.P.); (A.S.)
- Correspondence: or ; Tel.: +82-31-750-5968; Fax: +82-31-724-4411
| |
Collapse
|
30
|
Kim SA, Shin KC, Oh DK. Complete Biotransformation of Protopanaxadiol-Type Ginsenosides into 20- O- β-Glucopyranosyl-20( S)-protopanaxadiol by Permeabilized Recombinant Escherichia coli Cells Coexpressing β-Glucosidase and Chaperone Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8393-8401. [PMID: 31291721 DOI: 10.1021/acs.jafc.9b02592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ginsenoside 20-O-β-glucopyranosyl-20(S)-protopanaxadiol or compound K is an essential ingredient in functional food, cosmetics, and traditional medicines. However, no study has reported the complete conversion of all protopanaxadiol (PPD)-type ginsenosides from ginseng extract into compound K using whole-cell conversion. To increase the production of compound K from ginseng extract using whole recombinant cells, the β-glucosidase enzyme from Caldicellulosiruptor bescii was coexpressed with a chaperone expression system (pGro7), and the cells expressing the coexpression system were permeabilized with ethylenediaminetetraacetic acid. The permeabilized cells carrying the chaperone coexpression system showed a 2.6-fold increase in productivity and yield as compared with nontreated cells, and completely converted all PPD-type ginsenosides from ginseng root extract into compound K with the highest productivity among the results reported so far. Our results will contribute to the industrial biological production of compound K.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
- Research Institute of Bioactive-Metabolome Network , Konkuk University , Seoul 05029 , Republic of Korea
| |
Collapse
|
31
|
Metwaly AM, Lianlian Z, Luqi H, Deqiang D. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects. Molecules 2019; 24:E1856. [PMID: 31091790 PMCID: PMC6572638 DOI: 10.3390/molecules24101856] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023] Open
Abstract
Black ginseng is a type of processed ginseng that is prepared from white or red ginseng by steaming and drying several times. This process causes extensive changes in types and amounts of secondary metabolites. The chief secondary metabolites in ginseng are ginsenosides (dammarane-type triterpene saponins), which transform into less polar ginsenosides in black ginseng by steaming. In addition, apparent changes happen to other secondary metabolites such as the increase in the contents of phenolic compounds, reducing sugars and acidic polysaccharides in addition to the decrease in concentrations of free amino acids and total polysaccharides. Furthermore, the presence of some Maillard reaction products like maltol was also engaged. These obvious chemical changes were associated with a noticeable superiority for black ginseng over white and red ginseng in most of the comparative biological studies. This review article is an attempt to illustrate different methods of preparation of black ginseng, major chemical changes of saponins and other constituents after steaming as well as the reported biological activities of black ginseng, its major saponins and other metabolites.
Collapse
Affiliation(s)
- Ahmed M Metwaly
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Zhu Lianlian
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| | - Huang Luqi
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Mennei South street, Dong-Cheng District, Beijing 100700, China.
| | - Dou Deqiang
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| |
Collapse
|
32
|
Alshaikh RA, Essa EA, El Maghraby GM. Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: Caffeine as a melting point modulator. Int J Pharm 2019; 563:395-405. [DOI: 10.1016/j.ijpharm.2019.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/23/2023]
|