1
|
Zhong BH, Nie N, Dong M. Molecular mechanisms of the obesity associated with Bardet-Biedl syndrome: An update. Obes Rev 2025; 26:e13859. [PMID: 39477210 DOI: 10.1111/obr.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 02/05/2025]
Abstract
Obesity is a prominent feature of Bardet-Biedl syndrome (BBS), which represents a major and growing public health problem. More than half of BBS patients carry mutations in one of eight genes that encode subunits of a protein complex known as the BBSome, which has emerged as a key regulator of energy and glucose homeostasis. However, the mechanisms underlying obesity in BBS are complex. Numerous studies have identified a high prevalence of insulin resistance and metabolic syndrome among individuals with BBS. However, the exact mechanisms are not fully understood. This review summarized evidence from experiments using mouse and cell models, focusing on the energy imbalance that leads to obesity in patients with BBS. The studies discussed in this review contribute to understanding the functional role of the BBSome in the obesity associated with BBS, laying the foundation for developing new preventive or therapeutic strategies for obese patients.
Collapse
Affiliation(s)
- Bang-Hua Zhong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Nie
- Comprehensive Geriatric First Ward, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Cho YJ, Lee JB, Lee Y, Lee MS, Choi J. Inhibition of Differentiation of 3T3-L1 Cells by Increasing Glioma-Associated Oncogene Expression in Chrysanthemum indicum L. Using Lactococcus lactis KCTC 3115. Prev Nutr Food Sci 2024; 29:533-545. [PMID: 39759806 PMCID: PMC11699586 DOI: 10.3746/pnf.2024.29.4.533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 01/07/2025] Open
Abstract
The inhibitory effect of Chrysanthemum indicum L. on adipocyte differentiation can be enhanced by lactic acid bacteria (LAB) fermentation. In this study, we assessed the cellulose resolution, C. indicum L. quantity, and fermentation time and process to verify the LAB selection and fermentation efficiency. In addition, the antioxidant activity, adipocyte signaling and differentiation, and hedgehog (Hh) signaling were investigated, and the changes in compounds before and after fermentation were determined by ultra-high performance liquid chromatography (UHPLC). All strains exhibited satisfactory cellulose resolution. With 20% C. indicum L., fermentation was only effective up to 24 h. The results of the antioxidant assays showed that the 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical scavenging capacities were higher in all fermentations than in unfermented C. indicum L. extract (CI). 3T3-L1 cell differentiation signaling evaluation revealed that CI inhibited adipocyte differentiation by reducing peroxisome proliferator-activated receptor-γ, CCAAT/enhancer binding protein-α, and phosphorylated AMP-activated protein kinase activity in all fermentations. In the Hh signaling analysis, CI fermented with Lactococcus lactis KCTC 3115 significantly increased glioma-associated oncogene 1 (GLI1) activity by inhibiting patched 1 activity and activating smoothened (P<0.001). UHPLC quantitative analysis revealed elevated levels of luteolin and quercetin. Fermentation with C. indicum L. and L. lactis KCTC 3115 activated GLI1, a transcription factor in the Hh signaling pathway, which enhanced the inhibition of adipocyte differentiation, indicating its potential in anti-obesity treatment. However, the exact compounds affecting GLI1 activity require further elucidation in future studies.
Collapse
Affiliation(s)
| | | | - Yunjung Lee
- Department of Hotel & Foodservice Culinary Art, JEI University, Incheon 22573, Korea
| | - Min Soo Lee
- Department of Culinary Arts & Hotel Food Service, Yeonsung University, Gyeonggi 14011, Korea
| | - Jaeyoung Choi
- Department of Culinary Arts & Hotel Food Service, Yeonsung University, Gyeonggi 14011, Korea
| |
Collapse
|
3
|
Zhang J, Liu Y, Chang J, Zhang R, Liu Z, Liang J, Wang D, Feng J, Zhao W, Xiao H. Shh Gene Regulates the Proliferation and Apoptosis of Dermal Papilla Cells to Affect Its Differential Expression in Secondary Hair Follicle Growth Cycle of Cashmere Goats. Animals (Basel) 2024; 14:2049. [PMID: 39061511 PMCID: PMC11273991 DOI: 10.3390/ani14142049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Sonic hedgehog (Shh) is a component of the Hedgehog signaling pathway, playing an important role in regulating cell proliferation, differentiation, apoptosis, and the repair of damaged organisms. To further clarify the expression pattern of Shh gene in the secondary hair follicle growth cycle of cashmere goats and its mechanism of action on secondary hair follicle papilla cells, and improve cashmere quality, in this study, we took Inner Mongolia Albas white cashmere goats as the research objects and collected skin samples at different growth stages to obtain secondary hair follicles, detected Shh and its gene expression by RT-qPCR, Western blot, immunohistochemistry, and other techniques, while we also cultured DPCs in vitro. Shh gene overexpression and interference vectors were constructed, and the effects of Shh gene on the proliferation and apoptosis of DPCs were studied through cell transfection technology. The results showed that there are significant differences in Shh and its gene expression in the secondary hair follicle growth cycle skins of cashmere goats, with the highest expression level in anagen, followed by catagen, and the lowest expression level in telogen. Shh was mainly expressed in the inner root sheath, outer root sheath, and secondary hair follicle papilla. After the overexpression of Shh gene, the proliferation and vitality of the hair papilla cells were enhanced compared to the interference group. After Shh gene interference, the apoptosis rate of the cells increased, indicating that Shh gene can regulate downstream Ptch, Smo, and Gli2 gene expression to promote the proliferation of DPCs, and thus form its expression pattern in the secondary hair follicle growth cycle of cashmere goats.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Yujing Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Jiale Chang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Ru Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Zhaomin Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Jiayue Liang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Juan Feng
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Wei Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Hongmei Xiao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| |
Collapse
|
4
|
Kim JT, Chen J, Zhou Y, Son MJ, Jeon DH, Kwon JW, Lee GY, Lee HJ. Cycloastragenol inhibits adipogenesis and fat accumulation in vitro and in vivo through activating Hedgehog signaling. Food Sci Biotechnol 2024; 33:711-720. [PMID: 38274180 PMCID: PMC10805729 DOI: 10.1007/s10068-023-01403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 01/27/2024] Open
Abstract
In this study, we investigated the effect of cycloastragenol (CAG), a triterpenoid isolated from Astragalus membranaceus roots, on regulating the adipogenesis and fat accumulation in vitro and in vivo. During the adipogenesis of 3T3-L1 cells, CAG inhibited lipid accumulation and the expression of key adipogenic factors, proliferator-activated receptor γ (PPARγ) and CCAAT enhancer binding protein α (C/EBPα) and increased the expression of Gli1, a key mediator in Hedgehog (Hh) signaling. In HFD-induced animal experiment, CAG significantly reduced body weight gain without affecting brown fat weight. In addition, CAG regulated the expression of PPARγ, C/EBPα, and Gli1 in visceral white adipose tissue (vWAT). We also confirmed the inhibitory effect of CAG on specifically targeting white adipose tissue (WAT) formation in stromal vascular fraction (SVF) cell differentiation. Taken together, these results suggest that CAG may be a potent phytochemical preventing adipogenesis and obesity via Hh signaling. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01403-0.
Collapse
Affiliation(s)
- Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 456-756 South Korea
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632 China
| | - Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 456-756 South Korea
| | - Moon Jeong Son
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 456-756 South Korea
| | - Dong Hyeon Jeon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 456-756 South Korea
| | - Jung Won Kwon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 456-756 South Korea
| | - Ga Yeon Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 456-756 South Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 456-756 South Korea
| |
Collapse
|
5
|
Monmai C, Kim JS, Baek SH. Germinated Rice Seeds Improved Resveratrol Production to Suppress Adipogenic and Inflammatory Molecules in 3T3-L1 Adipocytes. Molecules 2023; 28:5750. [PMID: 37570719 PMCID: PMC10420918 DOI: 10.3390/molecules28155750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a major risk factor for a variety of diseases and contributes to chronic inflammation. Resveratrol is a naturally occurring antioxidant that can reduce adipogenesis. In this study, the antiadipogenic and anti-inflammatory activities of resveratrol-enriched rice were investigated in 3T3-L1 adipocyte cells. Cotreatment of dexamethasone and isobutylmethylxanthin upregulated adipogenic transcription factors and signaling pathways. Subsequent treatment of adipocytes with rice seed extracts suppressed the differentiation of 3T3-L1 by downregulating adipogenic transcription factors (peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α) and signaling pathways (extracellular signal-regulated kinase 1/2 and protein kinase B Akt), this was especially observed in cells treated with germinated resveratrol-enriched rice seed extract (DJ526_5). DJ526_5 treatment also markedly reduced lipid accumulation in the cells and expression of adipogenic genes. Lipopolysaccharide (LPS)-induced inflammatory cytokines (prostaglandin-endoperoxide synthase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6) decreased in cells treated with DJ526_5. Collectively, DJ526_5 exerts antiadipogenic effects by suppressing the expression of adipogenesis transcription factors. Moreover, DJ526_5 ameliorates anti-inflammatory effects in 3T3-L1 adipocytes by inhibiting the activation of phosphorylation NF-κB p65 and ERK ½ (MAPK). These results highlight the potential of resveratrol-enriched rice as an alternative obesity-reducing and anti-inflammatory agent.
Collapse
Affiliation(s)
| | | | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea; (C.M.); (J.-S.K.)
| |
Collapse
|
6
|
Hellbach F, Sinke L, Costeira R, Baumeister SE, Beekman M, Louca P, Leeming ER, Mompeo O, Berry S, Wilson R, Wawro N, Freuer D, Hauner H, Peters A, Winkelmann J, Koenig W, Meisinger C, Waldenberger M, Heijmans BT, Slagboom PE, Bell JT, Linseisen J. Pooled analysis of epigenome-wide association studies of food consumption in KORA, TwinsUK and LLS. Eur J Nutr 2023; 62:1357-1375. [PMID: 36571600 PMCID: PMC10030421 DOI: 10.1007/s00394-022-03074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Examining epigenetic patterns is a crucial step in identifying molecular changes of disease pathophysiology, with DNA methylation as the most accessible epigenetic measure. Diet is suggested to affect metabolism and health via epigenetic modifications. Thus, our aim was to explore the association between food consumption and DNA methylation. METHODS Epigenome-wide association studies were conducted in three cohorts: KORA FF4, TwinsUK, and Leiden Longevity Study, and 37 dietary exposures were evaluated. Food group definition was harmonized across the three cohorts. DNA methylation was measured using Infinium MethylationEPIC BeadChip in KORA and Infinium HumanMethylation450 BeadChip in the Leiden study and the TwinsUK study. Overall, data from 2293 middle-aged men and women were included. A fixed-effects meta-analysis pooled study-specific estimates. The significance threshold was set at 0.05 for false-discovery rate-adjusted p values per food group. RESULTS We identified significant associations between the methylation level of CpG sites and the consumption of onions and garlic (2), nuts and seeds (18), milk (1), cream (11), plant oils (4), butter (13), and alcoholic beverages (27). The signals targeted genes of metabolic health relevance, for example, GLI1, RPTOR, and DIO1, among others. CONCLUSION This EWAS is unique with its focus on food groups that are part of a Western diet. Significant findings were mostly related to food groups with a high-fat content.
Collapse
Affiliation(s)
- Fabian Hellbach
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Sebastian-Edgar Baumeister
- Institute of Health Services Research in Dentistry, Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Panayiotis Louca
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Emily R Leeming
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Olatz Mompeo
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Sarah Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Nina Wawro
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Dennis Freuer
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), Ingolstädter Landstr. 1, 85764, Munich-Neuherberg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health (HmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8A & 9, 80336, Munich, Germany
- German Heart Centre Munich, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081, Ulm, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), Ingolstädter Landstr. 1, 85764, Munich-Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8A & 9, 80336, Munich, Germany
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Jakob Linseisen
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| |
Collapse
|
7
|
Cheng MH, Zheng WY, Zhang QQ, Liu Z, Chen JF, Atta M, Qin H. Sesamol promotes browning of white adipocytes through liver-adipose crosstalk signal of hepatic fibroblast growth factor 21. J Nutr Biochem 2023; 115:109278. [PMID: 36739097 DOI: 10.1016/j.jnutbio.2023.109278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Sesamol (SEM), a lignan from sesame oil, exhibited potential benefits on obesity treatment by promoting browning of adipocytes, and the current study is aimed to explore the molecular mechanisms of SEM from the aspect of systemic liver-adipose crosstalk that mediated by hepatic fibroblast growth factor 21 (FGF21). Our in vivo data showed that SEM induced energy expenditure and white adipose tissue (WAT) browning by increasing the expression level of uncoupling protein-1 in high fat diet induced obese C57BL/6J mice. Elevated levels of circulating FGF21 associated with the increased expression of hepatic FGF21 were observed after SEM intervention. Simultaneously, the increased adipose fibroblast growth factor tyrosine kinase receptor 1/beta-klotho indicated that FGF21 sensitivity was enhanced by SEM in WAT. Furthermore, our in vitro results from HepG2 and 3T3-L1 cell lines confirmed the effects and revealed the mechanism of SEM on the white adipocytes browning. We found that with the specific inhibitors of PPARα, the SEM-mediated hepatic FGF21 expression was decreased, and with the specific inhibitors of PPARγ, the browning effect of adipocytes by SEM combining with FGF21 was significantly suppressed. Taken together, the mechanism of SEM for inducing the WAT browning might be the modulation of SEM on liver-adipose crosstalk mediated by FGF21, and the PPARs family might be the targets of SEM. The novel findings from the present study provided evidence that SEM could be a potent obesity-treating compound.
Collapse
Affiliation(s)
- Ming-Hui Cheng
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Wen-Ya Zheng
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Quan-Quan Zhang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Zhu Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Jing-Fang Chen
- Changsha Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Mahnoor Atta
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
8
|
Kim HY, Kang HG, Choi YJ, Kim HM, Jeong HJ. Caudatin attenuates inflammatory reaction by suppressing JNK/AP-1/NF-κB/caspase-1 pathways in activated HMC-1 cells. Food Sci Biotechnol 2023; 32:1101-1109. [PMID: 36683865 PMCID: PMC9844171 DOI: 10.1007/s10068-023-01251-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
One of the interfering factors in Coronavirus disease 2019 (COVID-19) is the cytokine storm, which contributes to hyperinflammation. Mast cells cause COVID-19 hyperinflammation by increasing inflammatory cytokine levels. We investigated whether caudatin, an active compound of Cynanchum auriculatum, could suppress inflammatory response signaling in human mast cell line, HMC-1 cells. Caudatin suppressed activation of c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1) in HMC-1 cells. Caudatin suppressed nuclear translocation of catalytic subunit (p65) of nuclear factor (NF)-κB by blocking IκBα phosphorylation and degradation. Caudatin also reduced levels of activated-caspase-1 protein and activation of caspase-1. Non-toxic caudatin doses inhibited the mRNA expression and protein synthesis of pro-inflammatory cytokines. A significant finding was that caudatin inhibited JNK/AP-1/NF-κB/caspase-1 signaling molecules, reducing the secretion of inflammatory cytokines. Consequently, we propose that caudatin might be used as a material in health functional foods to alleviate mast cell-mediated inflammatory conditions like COVID-19.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, 31499 Republic of Korea
| | - Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan, 31499 Republic of Korea
| | - Yu-Jin Choi
- Department of Food Science & Technology, Hoseo University, 20 Hoseo-ro, 79 Beon-gil, Baebang-eup, Asan, 31499 Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701 Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, 31499 Republic of Korea ,Department of Bio-Convergence System, Graduate School, Hoseo University, Asan, 31499 Republic of Korea ,Department of Food Science & Technology, Hoseo University, 20 Hoseo-ro, 79 Beon-gil, Baebang-eup, Asan, 31499 Republic of Korea
| |
Collapse
|
9
|
Tian S, Zhao H, Song H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit Rev Food Sci Nutr 2022; 64:5039-5056. [PMID: 36397728 DOI: 10.1080/10408398.2022.2148090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
10
|
Compound of Cynanchum wilfordii and Humulus lupulus L. Ameliorates Menopausal Symptoms in Ovariectomized Mice. Reprod Sci 2022; 30:1625-1636. [PMID: 36333646 DOI: 10.1007/s43032-022-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Cynanchum wilfordii and Humulus lupulus L. have been used for their various pharmacological properties in South Korea as a traditional medicine or health functional food, respectively, and their intake may relieve menopausal symptoms. The purpose of current study was to determine the effect of compound of Cynanchum wilfordii and Humulus lupulus L. (CWHL) in menopausal symptoms of ovariectomized (OVX) mice. OVX mice received CWHL or caudatin (an active ingredient of CWHL) once daily for 7 weeks. Values for hypothalamic serotonin (5-HT), dopamine, norepinephrine, estrogen receptor (ER)-β, 5-HT1A, and 5-HT2A were significantly enhanced, while value for hypothalamic monoamine oxidase A was reduced in CWHL and caudatin groups compared with the OVX group. CWHL and caudatin significantly reduced tail skin temperature and rectal temperature of OVX mice through partial recovering of the levels of serum estrogen, nitric oxide, follicle-stimulating hormone, luteinizing hormone, and receptor-activator of the NF-κB ligand (RANKL). Moreover, CWHL and caudatin improved bone mineral density via decreasing levels of serum RANKL, tartrate-resistant acid phosphatase, and collagen type 1 cross-linked N-telopeptide and improving levels of serum alkaline phosphatase, osteoprotegerin, and osteocalcin compared with the OVX group without adverse effects such as dyslipidemia. CWHL increased uterine ER-β levels but did not change uterus and vaginal weights. Taken together, the results indicate that CWHL may relieve menopausal symptoms by controlling depression-, hot flashes-, and osteoporosis-associated biomarkers. Therefore, we propose that CWHL might be a safe and potential candidate for management of menopause as a health functional food.
Collapse
|
11
|
Zhou Y, Kim JT, Qiu S, Lee SB, Park HJ, Soon MJ, Lee HJ. 1,3,5,8-Tetrahydroxyxanthone suppressed adipogenesis via activating Hedgehog signaling in 3T3-L1 adipocytes. Food Sci Biotechnol 2022; 31:1473-1480. [PMID: 36060569 PMCID: PMC9433504 DOI: 10.1007/s10068-022-01130-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we investigated the effect of 1,3,5,8-tetrahydroxyxanthone (THX) on the adipogenesis of 3T3-L1 adipocytes. THX, a xanthone isolated from Gentianella acuta, inhibited lipid accumulation in 3T3-L1 adipocytes and reduced the protein levels of the key adipogenic transcriptional factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), in a dose-dependent manner. In addition, THX enhanced the transcriptional activity of Gli1 known as the key indicator of Hedgehog (Hh) signaling activity and increased the expression of Gli1 and its upstream regulator Smo. The Smo activator SAG exerted the similar effect with THX on regulating Gli1, Smo, PPARγ and C/EBPα expression, which led to the suppression of fat formation in 3T3-L1 adipocytes. Furthermore, we found that the inhibitory effect of THX on adipogenesis was derived from regulation of the early stage of adipogenesis. These results suggest that THX suppresses the differentiation of adipocyte through Hh signaling and may be considered as a potent agent for the prevention of obesity.
Collapse
Affiliation(s)
- Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Shuai Qiu
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Seung Beom Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Ho Jin Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Moon Jeong Soon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| |
Collapse
|
12
|
Qiu S, Chen J, Kim JT, Zhou Y, Moon JH, Lee SB, Park HJ, Lee HJ. Suppression of Adipogenesis and Fat Accumulation by Vitexin Through Activation of Hedgehog Signaling in 3T3-L1 Adipocytes. J Med Food 2022; 25:313-323. [PMID: 35320011 DOI: 10.1089/jmf.2021.k.0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many studies have demonstrated that adipogenesis is associated with obesity, and the Hedgehog (Hh) signaling pathway regulates adipogenesis and obesity. Following the screening study of the chemical library evaluating the effect of vitexin on Gli1 transcriptional activity, vitexin was chosen as a candidate for antiadipogenic efficacy. Vitexin significantly reduced lipid accumulation and suppressed C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome proliferator-activated receptor γ) expression, which are known as key adipogenic factors in the early stages of adipogenesis by activating Hh signaling. Furthermore, Hh inhibitor GANT61 reversed the effect of AMP-activated protein kinase (AMPK) activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide), indicating that Hh signaling is an upstream regulator of AMPK in 3T3-L1 cells. Vitexin suppressed adipogenesis by regulating Hh signaling and phosphorylation of AMPK, leading to the inhibition of fat formation. These results suggest that vitexin can be considered a potent dietary agent in alleviating lipid accumulation and obesity.
Collapse
Affiliation(s)
- Shuai Qiu
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, China
| | - Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Ji Hyun Moon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Seung Beom Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Ho Jin Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|