1
|
Palma JC, Fabián-Campos J, Dioses-Morales JJ, Arias-Durand AD, Espinoza-Córdova G, Gonzales-Uscamayta M, Rengifo-Maravi JC, Chire-Murillo ET, Caro Sánchez-Benites VA, Jorge-Montalvo P, Visitación-Figueroa L. Pisco, an Appellation of Origin from Peru: A review. Heliyon 2025; 11:e42251. [PMID: 39931458 PMCID: PMC11808725 DOI: 10.1016/j.heliyon.2025.e42251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Pisco is an Appellation of Origin from Peru, its name comes from the town and the port of Pisco. It is a spirit obtained exclusively by the distillation of base wine, produced along the coast of the departments of Lima, Ica, Arequipa, Moquegua, and Tacna. Pisco is classified as pure (monovarietal), acholado (blend of varieties), and green must (distilled from must with interrupted fermentation). It is distilled to proof; that the alcoholic strength upon consumption ranges between 38% and 48 % (v/v). Pisco is made using eight grapes varieties: Quebranta, Negra Criolla, Mollar, Uvina, Albilla, Moscatel, Torontel, and Italia. The production process includes the stages of grape harvest, destemming, crushing, maceration, racking, pressing, fermentation, distillation, oxidative rest, filtration, and bottling. During distillation, which takes place in falcas, alembics, and alembic with heaters, the "head" and "tail" of the distillate are discarded, and only the "heart" or body is retained for oxidative rest for at least three months before being marketed. The quality of pisco is determined by the physicochemical and organoleptic requirements outlined in the Regulations of the Appellation of Origin Pisco. The aromatic components of pisco vary by type. These included: β-phenylethanol and β-phenylethyl acetate in Quebranta Pisco; ethyl furoate, 4-vinylphenol, and 4-vinylguaiacol in Albilla Pisco; 3-methyl-1-butanol, 2-methyl-1-butanol, γ-nonalactone, β-phenylethanol, and benzyl alcohol in Moscatel Pisco; linalool, α-terpineol, geraniol, nerol, β-citronellol, and β-damascenone in Torontel Pisco; and linalool, geraniol, β-citronellol, and β-phenylethanol in Italia Pisco. Incorporation circular economy principles using solid and liquid waste from production process has been promoted. This review aims to systematize the information related to the Appellation of Origen Pisco and its production process, facilitating the development of research on quality improvements and identifying opportunities for the valorization of the residues generated during production.
Collapse
Affiliation(s)
- Juan Carlos Palma
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
- Vitivinicultural Research Center, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | | | - Jacqueline Jannet Dioses-Morales
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Amelia Devorah Arias-Durand
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Gaby Espinoza-Córdova
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Miki Gonzales-Uscamayta
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Joel C. Rengifo-Maravi
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Epifanio Teófilo Chire-Murillo
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Víctor A. Caro Sánchez-Benites
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Paola Jorge-Montalvo
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Lizardo Visitación-Figueroa
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| |
Collapse
|
2
|
Ping C, Zhao X, He C, Zheng Y, Zhang H. Comparing effects of tangerine-peel ( Citrus reticulata Blanco) age and concentration on deep-fried rabbit meat: Impact on heterocyclic aromatic amines, amino acids, and flavor compound formation. Food Chem X 2024; 24:101902. [PMID: 39469281 PMCID: PMC11513665 DOI: 10.1016/j.fochx.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Many nutritional experts recommend rabbit meat as a high-protein source. However, the high temperatures used to prepare deep-fried rabbit meat (DFRM) typically produce numerous heterocyclic aromatic amines (HAAs), a class of substances with carcinogenic risks. In this study, we chromatographically evaluate changes in the volatile compounds, amino acids, and HAAs in DFRM while employing tangerine peel (TP) as an additive. A total of 35 volatile organic compounds are detected in the TP, which increase the concentrations of sweet and umami amino acids in the DFRM. Remarkably, the TP substantially inhibits the IQ-type HAAs, particularly MeIQ, MeIQx, 4,8-DiMeIQx, and PhIP, which are produced during deep frying. Correlation analyses reveal that the histidine, aldehydes, and alcohols are strongly and positively correlated (P < 0.001) with the MeIQ, MeIQx, 4,8-DiMeIQx, and PhIP production. This study offers innovative and natural approaches for reducing HAA formation during the frying of rabbit meat.
Collapse
Affiliation(s)
- Chunyuan Ping
- Culinary College, Sichuan Tourism University, Chengdu 610100, China
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xiangdong Zhao
- Research and Development Center, Beijing Hongxi Zhiye Technology Corporation, Beijing 101499, China
| | - Congcong He
- Research and Development Center, Beijing Hongxi Zhiye Technology Corporation, Beijing 101499, China
| | - Yingying Zheng
- Research and Development Center, Beijing Hongxi Zhiye Technology Corporation, Beijing 101499, China
| | - Haibao Zhang
- Culinary College, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
3
|
Ma M, Fu H, Wang T, Xiong L, Feng P, Lu B. Widely targeted volatilomics and transcriptome analyses reveal the differences in volatile organic components in differently shaped Amomum tsao-ko fruits. BMC PLANT BIOLOGY 2024; 24:915. [PMID: 39350013 PMCID: PMC11443856 DOI: 10.1186/s12870-024-05594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Amomum tsao-ko is an important aromatic crop used in medicines and food. It can be categorized into three main types based on the fruit shape: long (L), oval (O), and round (R). However, limited information is available on the volatile substances present in differently shaped A. tsao-ko fruits. This study investigated the characteristics and biosynthesis of volatile organic compounds (VOCs) in fresh and dried A. tsao-ko fruits of different shapes using widely targeted volatilomics and transcriptome analyses. RESULTS In total, 978 VOCs, primarily terpenoids, esters, and heterocyclic compounds, were detected. The number of differentially accumulated volatile organic compounds (DAVOCs) in dried fruits of various shapes was significantly higher than that in fresh fruits, with terpenoids, esters, and heterocyclic compounds accounting for approximately 50% of the total DAVOCs. Notably, α-phellandrene, identified as a shared differential accumulated terpenoid across various fruit shapes, was detected in both fresh and dried fruits. Through transcriptome analysis, 40 candidate genes implicated in the terpenoid biosynthesis pathway were screened. An integrated analysis of the metabolome and transcriptome revealed that the structural genes HMGR-2, TPS7, TPS5-10, TPS21-3, TPS21-5, TPS21-6, TPS21-7, and TPS21-9, along with 81 transcription factors (including 17 NACs, 16 MYBs, 16 AP2/ERFs, 13 WRKYs, 13 bHLHs, and 6 bZIPs), co-regulate the biosynthesis of volatile terpenoids. CONCLUSIONS This study expands our understanding of the volatile metabolism profile of A. tsao-ko and provides a solid foundation for future investigations of the mechanisms governing fruit quality.
Collapse
Affiliation(s)
- Mengli Ma
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Tiantao Wang
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Lina Xiong
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Ping Feng
- Jinping Shili Medicinal Materials Development Co., Ltd, Jinping, Yunnan, 661500, China
| | - Bingyue Lu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China.
| |
Collapse
|
4
|
Wang X, Li W, Cui S, Wu Y, Wei Y, Li J, Hu J. Impact of tps1 Deletion and Overexpression on Terpene Metabolites in Trichoderma atroviride. J Fungi (Basel) 2024; 10:485. [PMID: 39057372 PMCID: PMC11278490 DOI: 10.3390/jof10070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Terpenoids are structurally diverse natural products that have been widely used in the pharmaceutical, food, and cosmetic industries. Research has shown that fungi produce a variety of terpenoids, yet fungal terpene synthases remain not thoroughly explored. In this study, the tps1 gene, a crucial component of the terpene synthetic pathway, was isolated from Trichoderma atroviride HB20111 through genome mining. The function of this gene in the terpene synthetic pathway was investigated by constructing tps1-gene-deletion- and overexpression-engineered strains and evaluating the expression differences in the tps1 gene at the transcript level. HS-SPME-GC-MS analysis revealed significant variations in terpene metabolites among wild-type, tps1-deleted (Δtps1), and tps1-overexpressed (Otps1) strains; for instance, most sesquiterpene volatile organic compounds (VOCs) were notably reduced or absent in the Δtps1 strain, while nerolidol, β-acorenol, and guaiene were particularly produced by the Otps1 strain. However, both the Δtps1 and Otps1 strains produced new terpene metabolites compared to the wild-type, which indicated that the tps1 gene played an important role in terpene synthesis but was not the only gene involved in T. atroviride HB20111. The TPS1 protein encoded by the tps1 gene could function as a sesquiterpene cyclase through biological information and evolutionary tree analysis. Additionally, fungal inhibition assay and wheat growth promotion assay results suggested that the deletion or overexpression of the tps1 gene had a minimal impact on fungal inhibitory activity, plant growth promotion, and development, as well as stress response. This implies that these activities of T. atroviride HB20111 might result from a combination of multiple metabolites rather than being solely dependent on one specific metabolite. This study offers theoretical guidance for future investigations into the mechanism of terpenoid synthesis and serves as a foundation for related studies on terpenoid metabolic pathways in fungi.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jindong Hu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (X.W.)
| |
Collapse
|
5
|
Spadafora ND, Felletti S, Chenet T, Sirangelo TM, Cescon M, Catani M, De Luca C, Stevanin C, Cavazzini A, Pasti L. The influence of drying and storage conditions on the volatilome and cannabinoid content of Cannabis sativa L. inflorescences. Anal Bioanal Chem 2024; 416:3797-3809. [PMID: 38702447 PMCID: PMC11180634 DOI: 10.1007/s00216-024-05321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The increasing interest in hemp and cannabis poses new questions about the influence of drying and storage conditions on the overall aroma and cannabinoids profile of these products. Cannabis inflorescences are subjected to drying shortly after harvest and then to storage in different containers. These steps may cause a process of rapid deterioration with consequent changes in precious secondary metabolite content, negatively impacting on the product quality and potency. In this context, in this work, the investigation of the effects of freeze vs tray drying and three storage conditions on the preservation of cannabis compounds has been performed. A multi-trait approach, combining both solid-phase microextraction (SPME) two-dimensional gas chromatography coupled to mass spectrometry (SPME-GC × GC-MS) and high-performance liquid chromatography (HPLC), is presented for the first time. This approach has permitted to obtain the detailed characterisation of the whole cannabis matrix in terms of volatile compounds and cannabinoids. Moreover, multivariate statistical analyses were performed on the obtained data, helping to show that freeze drying conditions is useful to preserve cannabinoid content, preventing decarboxylation of acid cannabinoids, but leads to a loss of volatile compounds which are responsible for the cannabis aroma. Furthermore, among storage conditions, storage in glass bottle seems more beneficial for the retention of the initial VOC profile compared to open to air dry tray and closed high-density polyethylene box. However, the glass bottle storage condition causes formation of neutral cannabinoids at the expenses of the highly priced acid forms. This work will contribute to help define optimal storage conditions useful to produce highly valuable and high-quality products.
Collapse
Affiliation(s)
- Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Simona Felletti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123, Rome, Italy
| | - Mirco Cescon
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Chiara De Luca
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Claudia Stevanin
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
- Council for Agricultural Research and Economics, CREA, Via Della Navicella 2/4, 00184, Rome, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
6
|
Kaminski KP, Hoeng J, Goffman F, Schlage WK, Latino D. Opportunities, Challenges, and Scientific Progress in Hemp Crops. Molecules 2024; 29:2397. [PMID: 38792258 PMCID: PMC11124073 DOI: 10.3390/molecules29102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
The resurgence of cannabis (Cannabis sativa L.) has been propelled by changes in the legal framework governing its cultivation and use, increased demand for hemp-derived products, and studies recognizing the industrial and health benefits of hemp. This has led to the creation of novel high-cannabidiol, low-Δ9-tetrahydrocannabinol varieties, enabling hemp crop expansion worldwide. This review elucidates the recent implications for hemp cultivation in Europe, with a focus on the legislative impacts on the cultivation practices, prospective breeding efforts, and dynamic scientific landscape surrounding this crop. We also review the current cultivars' cannabinoid composition of the European hemp market and its major differences with that of the United States.
Collapse
Affiliation(s)
| | - Julia Hoeng
- Vectura Fertin Pharma, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
7
|
Feng K, Yan YJ, Sun N, Yang ZY, Zhao SP, Wu P, Li LJ. Exogenous methyl jasmonate treatment induced the transcriptional responses and accumulation of volatile terpenoids in Oenanthe javanica (Blume) DC. Int J Biol Macromol 2024; 265:131017. [PMID: 38513909 DOI: 10.1016/j.ijbiomac.2024.131017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Water dropwort is favored by consumers for its unique flavor and medicinal value. Terpenoids were identified as the main volatile compounds related to its flavor. In this study, water dropwort was treated with different concentrations of exogenous methyl jasmonate (MeJA). The contents of volatile terpenoids were determined under various MeJA treatments. The results indicated that 0.1 mM of MeJA most effectively promoted the biosynthesis of flavor-related terpenoids in water dropwort. Terpinolene accounted the highest proportion among terpene compounds in water dropwort. The contents of jasmonates in water dropwort were also increased after exogenous MeJA treatments. Transcriptome analysis indicated that DEGs involved in the terpenoid biosynthesis pathway were upregulated. The TPS family was identified from water dropwort, and the expression levels of Oj0473630, Oj0287510 and Oj0240400 genes in TPS-b subfamily were consistent with the changes of terpene contents under MeJA treatments. Oj0473630 was cloned from the water dropwort and designated as OjTPS3, which is predicted to be related to the biosynthesis of terpinolene in water dropwort. Subcellular localization indicated that OjTPS3 protein was localized in chloroplast. Protein purification and enzyme activity of OjTPS3 protein were conducted. The results showed that the purified OjTPS3 protein catalyzed the biosynthesis of terpinolene by using geranyl diphosphate (GPP) as substrate in vitro. This study will facilitate to further understand the molecular mechanism of terpenoid biosynthesis and provide a strategy to improve the flavor of water dropwort.
Collapse
Affiliation(s)
- Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Ya-Jie Yan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Nan Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Zhi-Yuan Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Shu-Ping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liang-Jun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Dugan D, Bell RJ, Brkljača R, Rix C, Urban S. A Review of the Ethnobotanical Use, Chemistry and Pharmacological Activities of Constituents Derived from the Plant Genus Geijera ( Rutaceae). Metabolites 2024; 14:81. [PMID: 38392973 PMCID: PMC11154539 DOI: 10.3390/metabo14020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Geijera Schott is a plant genus of the Rutaceae Juss. (rue and citrus) family, comprising six species which are all native to Oceania. Of the plants belonging to this genus, the most significant species that has a customary use is Geijera parviflora, which was used by Indigenous Australians, primarily as a pain reliever. Herein, a comprehensive review of the literature published on the genus Geijera from 1930 to 2023 was conducted. This is the first review for this plant genus, and it highlights the chemical constituents reported to date, together with the range of pharmacological properties described from the various species and different parts of the plant. These properties include anti-inflammatory, anti-microbial, anti-parasitic, insect repellent, analgesic, neuroactive, and anti-cancer activities. Finally, a reflection on some of the important areas for future focused studies of this plant genus is provided.
Collapse
Affiliation(s)
- Deepika Dugan
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Rachael J. Bell
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia;
| | - Colin Rix
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Sylvia Urban
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| |
Collapse
|
9
|
Staton Laws III J, Smid SD. Sesquiterpene-evoked phytochemical toxicity in PC12 neuronal cells reveals a variable degree of oxidative stress and alpha-tocopherol and glutathione-dependent protection. Curr Res Toxicol 2023; 6:100144. [PMID: 38193034 PMCID: PMC10772400 DOI: 10.1016/j.crtox.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Phytochemicals are often promoted generally as antioxidants and demonstrate variable levels of reactive oxygen species (ROS) sequestration in vitro, which attributes to their neuroprotective bioactivity. Sesquiterpenes from cannabis and essential oils may demonstrate bifunctional properties towards cellular oxidative stress, possessing pro-oxidant activities by generating ROS or scavenging ROS directly. Sesquiterpenes can also oxidize forming sesquiterpene oxides, however the relative contribution they make to the bioactivity or cytotoxicity of complex botanical extracts more generally is unclear, while selected cannabis-prevalent terpenes such as β-caryophyllene may also activate cannabinoid receptors as part of their biological activity. In the present study, we investigated selected sesquiterpenes β-caryophyllene and humulene and their oxidized forms (β-caryophyllene oxide and zerumbone, respectively) against established antioxidants (ascorbic acid, α-tocopherol, and glutathione) and in the presence of cannabinoid receptor 1 and cannabinoid receptor 2 antagonists, to gain a better understanding of the molecular and cellular mechanisms of neuroprotection versus neurotoxicity in semi-differentiated rat neuronal phaeochromocytoma (PC12) cells. Our results demonstrate that the sesquiterpenes β-caryophyllene, humulene and zerumbone possess concentration-dependent neurotoxic effects in PC12 cells. Both β-caryophyllene- and humulene-evoked toxicity was unaffected by CB1 or CB2 receptor antagonism, demonstrating this occurred independently of cannabinoid receptors. Both glutathione and α-tocopherol were variably able to alleviate the concentration-dependent loss of PC12 cell viability from exposure to β-caryophyllene, humulene and zerumbone. During 4-hour exposure to sesquiterpenes only modest increases in ROS levels were noted in PC12 cells, with glutathione co-incubation significantly inhibiting intracellular ROS production. However, significant increases in ROS levels in PC12 cells were demonstrated during 24-hour incubation with either antioxidants or sesquiterpenes individually, and with additive toxicity exhibited in combination. Overall, the results highlight a concentration-dependent profile of sesquiterpene neurotoxicity independent of cannabinoid receptors and dissociated from the formation of reactive oxygen species as a marker or correlate to the loss of cell viability.
Collapse
Affiliation(s)
- John Staton Laws III
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Scott D. Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
10
|
Jabbari S, Abed DZ, Zakaria ZA, Mohammadi S. Effects of Chaerophyllum macropodum Boiss. leaves essential oil in inflammatory and neuropathic pain: uncovering the possible mechanism of action. Inflammopharmacology 2023; 31:3203-3216. [PMID: 37792093 DOI: 10.1007/s10787-023-01342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Chaerophyllum macropodum Boiss. (popularly known as "Jafari farangi kohestani") is a predominant medicinal plant traditionally utilized in the treatments of peritoneal inflammation and headache in Persian folk medicine. Here, we have revealed the anti-neuropathic and anti-nociceptive activities of C. macropodum leaves essential oil (CMEO) in addition to uncovering the possible mechanisms of action. METHODS Formalin-induced paw licking model was used to assess the anti-nociceptive activity of CMEO and its major constituent, terpinolene (TP). The anti-nociceptive activity of these compounds was determined by investigating the roles of various non-opioid and NO-cGMP-K+ channels. Additionally, the anti-neuropathic potential of CMEO and TP was determined using cervical spinal cord contusion/CCS technique. RESULTS The CMEO exerted significant anti-nociceptive activity with a remarkable activity seen in the second phase of formalin-induced paw licking model and this activity were remarkably reversed by pre-treatment of naloxone (an opioid antagonist). Pretreatment with several types of NO-cGMP-potassium channel pathway meaningfully reversed the anti-nociceptive potential of CMEO in phase II of formalin model. Moreover, pre-treatment with several antagonists of non-opioid receptors revealed that only the antagonist of TRPV-1, serotonin type 3, 5-HT2, α2 adrenergic, and CB1 receptors (capsaicin, ondansetron, ketanserin, yohimbine, and SR141716A, respectively) reversed CMEO anti-nociception. CMEO and TP also remarkably reversed hyperalgesia and mechanical allodynia in the CCS technique. CONCLUSION The CMEO exerts anti-nociceptive and anti-neuropathic activities via the modulation of NO-cGMP potassium channel pathway, opioid as well as several non-opioid receptor activity. TP might partly contribute to the observed activities of CMEO.
Collapse
Affiliation(s)
- Sajjad Jabbari
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Donya Ziafatdoost Abed
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zainul Amiruddin Zakaria
- Borneo Research On Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Saeed Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Johnson AL, Verbitsky R, Hudson J, Dean R, Hamilton TJ. Cannabinoid type-2 receptors modulate terpene induced anxiety-reduction in zebrafish. Biomed Pharmacother 2023; 168:115760. [PMID: 37865998 DOI: 10.1016/j.biopha.2023.115760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Terpenes are the most extensive and varied group of naturally occurring compounds mostly found in plants, including cannabis, and have an array of potential therapeutic benefits for pathological conditions. The endocannabinoid system can potently modulate anxiety in humans, rodents, and zebrafish. The 'entourage effect' suggests terpenes may target cannabinoid CB1 and CB2 receptors, among others, but this requires further investigation. In this study we first tested for anxiety-altering effects of the predominant 'Super-Class' terpenes, bisabolol (0.001%, 0.0015%, and 0.002%) and terpinolene (TPL; 0.01%, 0.05%, and 0.1%), in zebrafish with the open field test. Bisabolol did not have an effect on zebrafish behaviour or locomotion. However, TPL caused a significant increase in time spent in the inner zone and decrease in time spent in the outer zone of the arena indicating an anxiolytic (anxiety decreasing) effect. Next, we assessed whether CB1 and CB2 receptor antagonists, rimonabant and AM630 (6-Iodopravadoline) respectively, could eliminate or reduce the anxiolytic effects of TPL (0.1%) and β-caryophyllene (BCP; 4%), another super-class terpene previously shown to be anxiolytic in zebrafish. Rimonabant and AM630 were administered prior to terpene exposure and compared to controls and fish exposed to only the terpenes. AM630, but not rimonabant, eliminated the anxiolytic effects of both BCP and TPL. AM630 modulated locomotion on its own, which was potentiated by terpenes. These findings suggest the behavioural effects of TPL and BCP on zebrafish anxiety-like behaviour are mediated by a selective preference for CB2 receptor sites. Furthermore, the CB2 pathways mediating the anxiolytic response are likely different from those altering locomotion.
Collapse
Affiliation(s)
- Andréa L Johnson
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan Verbitsky
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - James Hudson
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Rachel Dean
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Systematic combinations of major cannabinoid and terpene contents in Cannabis flower and patient outcomes: a proof-of-concept assessment of the Vigil Index of Cannabis Chemovars. J Cannabis Res 2023; 5:4. [PMID: 36755303 PMCID: PMC9906924 DOI: 10.1186/s42238-022-00170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 12/01/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Little is known about the frequency with which different combinations of phytochemicals (chemovars) arise in Cannabis flower or whether common chemovars are associated with distinct pharmacodynamics and patient health outcomes. This study created a clinically relevant, user-friendly, scalable chemovar indexing system summarizing primary cannabinoid and terpene contents and tested whether the most frequently consumed chemovars differ in their treatment effectiveness and experienced side effects. METHODS Between 09/10/2016 and 03/11/2021, 204 people used the freely available, educational mobile software application, Releaf App, to record 6309 real-time consumption sessions using 633 distinct Cannabis flower products, unique at the user level, with terpene and cannabinoid potency information. The indexing system is based on retrospective data analysis of the products' primary and secondary terpene contents and tetrahydrocannabinol (THC) and cannabidiol (CBD) potencies and yielded a total of 478 distinct chemovars. Analyses of covariances (ANCOVAs) were used to compare symptom levels and side effects experienced across the five most common chemovars before and after cannabis consumption for app users overall and for those treating chronic pain and depression or anxiety. RESULTS Examination of the five most frequently consumed chemovars showed significant differences in symptom treatment effectiveness for chronic pain and for depression and anxiety (ps < .001). While the effects varied in magnitude, the five chemovars were effective across conditions except for MC61 (mercene .01-0.49%/beta-caryophyllene .01 to 0.49%/THC 20-25%/CBD 0.01-1.0%), which exacerbated feelings of anxiety or depression. The chemovars also differed in their association with experiencing positive, negative, and context-specific side effects, with two chemovars, MC61 and MC62 (mercene .01-0.49%/beta-caryophyllene .01-0.49%/THC 20-25%/CBD 1-5%), generating two to three fewer positive side effects and as much as one more negative and two more context-specific side effects than the other three chemovars. CONCLUSIONS The findings provide "proof-of-concept" that a simple, yet comprehensive chemovar indexing system can be used to identify systematic differences in clinically relevant patient health outcomes and other common experiences across Cannabis flower products, irrespective of the product's commercial or strain name. This study was limited by self-selection into cannabis and app use and a lack of user-specific information. Further research using this chemovar indexing system should assess how distinct combinations of phytochemicals interact with user-level characteristics to produce general and individualized Cannabis consumption experiences and health outcomes, ideally using randomized methods to assess differences in effects across chemovars.
Collapse
|
13
|
Shuai SY, Liu SS, Liu XJ, Zhang GS, Zheng Q, Yue PF, Yang M, Hu PY. Essential oil of Ligusticum chuanxiong Hort. Regulated P-gp protein and tight junction protein to change pharmacokinetic parameters of temozolomide in blood, brain and tumor. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115646. [PMID: 36031103 DOI: 10.1016/j.jep.2022.115646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The existence of the blood-brain barrier/blood tumor barrier (BBB/BTB) severely restricts the effectiveness of anti-tumor drugs, thus glioma is still an incurable disease with a high fatality rate. Chuanxiong (Ligusticum chuanxiong Hort., Umbelliferae) was used as a messenger drug to increase the distribution of drugs in brain tissue, and its application in Chinese herbal formula for treating glioma was also the highest. AIM OF THE STUDY Our previous researches showed that essential oil (EO) of chuanxiong could promote temozolomide (TMZ) entry into glioma cells in vitro and enhance TMZ-induced anticancer efficiency in vivo, and therefore, the aim of this study was to investigate whether EO could increase the concentration accumulation of TMZ in brain or tumor of C6 glioma rats and the related mechanisms. MATERIALS AND METHODS The pharmacokinetics were conducted in C6 glioma rats by administering either TMZ alone or combined with EO through oral routes. TMZ concentration in blood, brain and tumor was detected using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and then pharmacokinetic parameters were calculated. The changed expressions of P-gp protein, tight junction occludin, claudin-5 and zonula occludens-1 (ZO-1) in brain of glioma rats were studied by Western blot to clarify the mechanism. Finally, the chemical composition of EO was analyzed by gas chromatography-massspectrometry (GC-MS). RESULTS The results showed that EO significantly affected the pharmacokinetic parameters such as Tmax, Cmax and CL (p < 0.01), but did not significantly change the AUC(0→∞) of TMZ in blood (p > 0.05). However, EO markedly improved the AUC(0→∞)of TMZ in brain and tumor (p < 0.01). The calculate drug targeting index was greater than 1, indicating that EO could promote the distribution of TMZ to the brain and tumor. Western blot analysis showed that EO significantly inhibited the expression of P-gp, tight junction protein claudin-5, occludin and ZO-1. And meanwhile, the expressions of P-gp, claudin-5 and occludin also markedly down-regulated in EO-TMZ co-administration treatment. GC-MS analysis of the TIC component of EO was (E)-Ligustilide (36.93%), Terpinolene (7.245%), gamma-terpinene (7.225%) etc. CONCLUSION: EO could promote the distribution of TMZ in the brain and tumor of C6 glioma rats, which may attribute to down-regulate the expression of P-gp, claudin-5 and occludin.
Collapse
Affiliation(s)
- Shu-Yuan Shuai
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Shan-Shan Liu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Xiao-Jin Liu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Guo-Song Zhang
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Qin Zheng
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Peng-Fei Yue
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Ming Yang
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Peng-Yi Hu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
14
|
Konieczka P, Wojtasik-Kalinowska I, Poltorak A, Kinsner M, Szkopek D, Fotschki B, Juśkiewicz J, Banach J, Michalczuk M. Cannabidiol affects breast meat volatile compounds in chickens subjected to different infection models. Sci Rep 2022; 12:18940. [PMID: 36344735 PMCID: PMC9640543 DOI: 10.1038/s41598-022-23591-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
No study has demonstrated the use of dietary Cannabis-derived cannabidiol (CBD) to alter the stress response in chickens or examined its effects on meat volatile compounds (VOCs). Here, we subjected chickens to dysbiosis via C. perfringens infection or Escherichia coli lipopolysaccharide (LPS) treatment and investigated the potential link between meat VOCs and cecal bacterial activity and the ameliorative effect of CBD. The cecal bacterial production of short-chain fatty acids (SCFAs) was closely correlated with meat VOCs. CBD supplementation reduced the formation of breast meat spoilage VOCs, including alcohols, trimethylamine and pentanoic acid, in the challenged birds, partly by decreasing cecal putrefactive SCFA production. Meat VOC/cecal SCFA relationships differed according to the challenge, and CBD attenuated the effects of C. perfringens infection better than the effects of LPS challenge on meat VOCs. These findings provide new insights into the interactions among bioactive agent supplementation, gut microbiota activity and meat properties in birds.
Collapse
Affiliation(s)
- Paweł Konieczka
- grid.413454.30000 0001 1958 0162Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland ,grid.412607.60000 0001 2149 6795Department of Poultry Science and Apiculture, University of Warmia and Mazury, Oczapowskiego 5, 10-718 Olsztyn, Poland
| | - Iwona Wojtasik-Kalinowska
- grid.13276.310000 0001 1955 7966Department of Technique and Food Development, Warsaw University of Life Sciences, 159C Nowoursynowska, 02-776 Warsaw, Poland
| | - Andrzej Poltorak
- grid.13276.310000 0001 1955 7966Department of Technique and Food Development, Warsaw University of Life Sciences, 159C Nowoursynowska, 02-776 Warsaw, Poland
| | - Misza Kinsner
- grid.413454.30000 0001 1958 0162Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Dominika Szkopek
- grid.413454.30000 0001 1958 0162Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Bartosz Fotschki
- grid.413454.30000 0001 1958 0162Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Juśkiewicz
- grid.413454.30000 0001 1958 0162Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Banach
- grid.425118.b0000 0004 0387 1266Institute of Natural Fibres and Medicinal Plants – National Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland
| | - Monika Michalczuk
- grid.13276.310000 0001 1955 7966Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
15
|
Phytochemical Profile, Preliminary Toxicity, and Antioxidant Capacity of the Essential Oils of Myrciaria floribunda (H. West ex Willd.) O. Berg. and Myrcia sylvatica (G. Mey) DC. (Myrtaceae). Antioxidants (Basel) 2022; 11:antiox11102076. [PMID: 36290799 PMCID: PMC9658195 DOI: 10.3390/antiox11102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oils (EOs) of Myrciaria floribunda (Mflo) and Myrcia sylvatica (Msyl) (Myrtaceae) were obtained by hydrodistillation. The analysis of volatile constituents was performed by GC/MS. Preliminary toxicity was assessed on Artemia salina Leach. The antioxidant capacity was measured by the ABTS•+ and DPPH• radical inhibitory activities. The results indicate that the Mflo EO had the highest yield (1.02%), and its chemical profile was characterized by high levels of hydrocarbon (65.83%) and oxygenated (25.74%) monoterpenes, especially 1,8-cineole (23.30%), terpinolene (22.23%) and α-phellandrene (22.19%). Regarding the Msyl EO, only hydrocarbon (51.60%) and oxygenated (46.52%) sesquiterpenes were identified in the sample, with (Z)-α-trans-bergamotene (24.57%), α-sinensal (13.44%), and (Z)-α-bisabolene (8.33%) at higher levels. The EO of Mflo exhibited moderate toxicity against A. salina (LC50 = 82.96 ± 5.20 µg.mL−1), while the EO of Msyl was classified as highly toxic (LC50 = 2.74 ± 0.50 µg.mL−1). In addition, relative to Trolox, the EOs of Mflo and Msyl showed significant inhibitory effects (p < 0.0001) against the DPPH• radical. This study contributes to the expansion of chemical and biological knowledge on the EOs of Myrtaceae species from the Amazon region.
Collapse
|
16
|
de Moraes ÂAB, de Jesus Pereira Franco C, Ferreira OO, Varela ELP, do Nascimento LD, Cascaes MM, da Silva DRP, Percário S, de Oliveira MS, de Aguiar Andrade EH. Myrcia paivae O.Berg ( Myrtaceae) Essential Oil, First Study of the Chemical Composition and Antioxidant Potential. Molecules 2022; 27:molecules27175460. [PMID: 36080231 PMCID: PMC9458249 DOI: 10.3390/molecules27175460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
The Myrtaceae family is one of the most representative in the Amazon. Several species have high added-value pharmacological potential. In order to contribute to the knowledge of the aromatic profile of Myrtaceae species from the Amazon, the present study presents the first report on the productivity, chemical composition, and antioxidant profile of the essential oil (EO) of Myrcia paivae. Dry leaves of the species were submitted to hydrodistillation to obtain their EO. The EO performance was calculated on a moisture-free basis and the analysis of the chemical profile was carried out by GC/MS. The determination of the antioxidant capacity was assessed by means of the antioxidant capacity equivalent to the inhibition Trolox of the ABTS•+ and DPPH• radicals. The results indicate that EO performance was equivalent to 1.69%. As for the chemical composition, hydrocarbon monoterpenes were predominant in the sample (>77%); terpinolene (14.70%), α-phellandrene (14.69%), γ-terpinene (9.64%), sylvestrene (7.62%), α-thujene (6.46%), and α-pinene (6.39%) were the constituents with higher content. Regarding the antioxidant capacity, the results show that the EO presented good results in the inhibition of ABTS•+ (0.886 ± 0.226 mM L−1) and DPPH• (2.90 ± 0.083 mM L−1), which can be attributed to the high monoterpene content in the sample.
Collapse
Affiliation(s)
- Ângelo Antônio Barbosa de Moraes
- Faculdade de Engenharia Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
- Laboratório Adolpho Ducke—Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
| | | | - Oberdan Oliveira Ferreira
- Laboratório Adolpho Ducke—Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
| | - Everton Luiz Pompeu Varela
- Faculdade de Engenharia Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
- Laboratório de Pesquisas em Estresse Oxidativo, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
| | - Lidiane Diniz do Nascimento
- Laboratório Adolpho Ducke—Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
| | - Márcia Moraes Cascaes
- Faculdade de Engenharia Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
| | - Dehon Ricardo Pereira da Silva
- Laboratório Adolpho Ducke—Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
| | - Sandro Percário
- Faculdade de Engenharia Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
- Laboratório de Pesquisas em Estresse Oxidativo, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
| | - Mozaniel Santana de Oliveira
- Laboratório Adolpho Ducke—Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
- Correspondence: or
| | - Eloisa Helena de Aguiar Andrade
- Faculdade de Engenharia Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
- Laboratório Adolpho Ducke—Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
| |
Collapse
|