1
|
Pan L, He B, Han Y, Yuan D, Duan X, Wang Y. Yanghe Pingchuan granules induce ferroptosis in airway smooth muscle cells to improve bronchial asthma via the METTL3/P53/SLC7A11 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156480. [PMID: 39978273 DOI: 10.1016/j.phymed.2025.156480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Recent studies have found that ferroptosis is strongly associated with the development of bronchial asthma (BA). However, the mechanism underlying the role of ferroptosis in asthma remains unclear. Yanghe Pingchuan granules (YPG) have significant curative effect in the clinical treatment of BA. In our previous study, we found that YPG inhibit pyroptosis in the airway smooth muscle cells (ASMCs) of and reducing airway inflammation. Whether ferroptosis participated in the YPG treated BA activity is an interesting project. PURPOSE The aim of this study was to investigate the protective effects and the related mechanisms of YPG against BA. METHODS We used ultra high-performance liquid chromatograph (UPLC) to analyze the composition of YPG. Ovalbumin (OVA)-induced BA models were developed in vivo. YPG was administered to rats by gavage and ASMCs were isolated and cultured using α-SMA and CCK8 was used to assess cell viability. Gene editing, m6A RNA immunoprecipitation (MeRIP), western blotting, RT-qPCR, and transmission electron microscopy (TEM) was used to assess ferroptosis protein and mRNA expression in ASMCs. Further, the mechanism of YPG-induced regulation of ferroptosis in ASMCs via the METTL3/P53/SLC7A11 signaling axis was interrogated. BA rats were used to verify the therapeutic effects and mechanism of YPG. Moreover, hematoxylin and eosin staining was used to evaluate pathological changes using animal samples, while immunofluorescence, western blotting, RT-qPCR, and TEM were used to verify the mechanism by which YPG improved BA through the METTL3/P53/SLC7A11 signaling axis. RESULTS Qualitative analysis revealed seven major components in YPG. Our in vivo and in vitro data confirm that YPG significantly induced ferroptosis in ASMCs. YPG treatment effectively increased the expression of Fe2+, P53, and PTGS2, while decreasing SLC7A11, GPX4, and FTH1 expression. Moreover, TEM data revealed that YPG-induced mitochondrial membrane rupture and ridge disappearance. Additionally, YPG significantly increased METTL3 expression levels and upregulated the levels of P53 m6A, thus promoting its degradation. Notably, overexpression of METTL3 and P53 induces ferroptosis of ASMCs BA rats. CONCLUSION We show that YPG may induce ferroptosis of ASMCs in BA rats by activating the METTL3/P53/SLC7A11 signaling pathway, thus alleviating disease symptoms.
Collapse
Affiliation(s)
- Lingyu Pan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bangfu He
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China; Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yanquan Han
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Dezhi Yuan
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xianchun Duan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yongzhong Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
2
|
Liu C, Du J, Yang J, Li J, Zhou T, Yu J, Wang X, Lin J, Liang Y, Shi R, Luo R, Shen X, Wang Y, Zhang L, Shu Z. Research on the mechanism of buyang huanwu decoction in the amelioration of age-associated memory impairment based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118819. [PMID: 39303964 DOI: 10.1016/j.jep.2024.118819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brain aging can promote neuronal damage, contributing to aging-related diseases like memory dysfunction. Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula known for tonifying qi and activating blood circulation, shows neuroprotective properties. Despite this, the specific mechanism by which BYHWD improves age-associated memory impairment (AAMI) has not been explored in existing literature. AIM OF THE STUDY This study aimed to investigate the mechanism of BYHWD in the improvement of AAMI based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". MATERIALS AND METHODS Firstly, D-galactose was performed to induce a rat model of AAMI. Learning and memory deficits was assessed by the Morris water maze test. H&E and Nissl staining were used to observe the pathological changes in neurons in the hippocampus of rats. Meanwhile, the levels of pro-inflammatory cytokines and the activation of antioxidant enzymes in rat serum were measured using ELISA. Finally, an integrated pharmacological approach was applied to explore the potential mechanism of BYHWD in improving AAMI. RESULTS Our results indicated that BYHWD significantly mitigated the pathological structure of the hippocampus, reversed the levels of IL-6, TNF-α, GSH, and CAT in the serum, and improved learning and memory in aging rats. Transcriptomics combined with network pharmacology showed that energy metabolism and the inflammatory response were the key biological pathways for BYHWD to ameliorate AAMI. Integrative analysis of the microbiome and metabolomics revealed that BYHWD has the potential to restore the balance of abundance between probiotics and harmful bacteria, and ameliorate the reprogramming of energy metabolism caused by aging in the brain. The co-occurrence network analysis demonstrated that a strong correlation between the treatment of AAMI and the stability of intestinal microecology, host metabolism, and immune network. CONCLUSION The findings of this study collectively support the notion that BYHWD has a superior therapeutic effect in an AAMI rat model. The mechanism involves regulating the "intestinal microecology-metabolism-immune function co-occurrence network" system to restore the composition of gut microbiota and metabolites. This further improves the metabolic phenotype of brain tissue and maintains the homeostasis of central nervous system's immunity, leading to an improvement in AAMI. Consequently, this study offers a unique perspective on the prevention and treatment of AAMI. And, BYHWD is also considered to be a promising preclinical treatment for improving AAMI.
Collapse
Affiliation(s)
- Caiyan Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieyong Du
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaming Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongfeng Luo
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
3
|
Yao Q, Wen J, Chen S, Wang Y, Wen X, Wang X, Li C, Zheng C, Li J, Ma Z, Zhan X, Xiao X, Bai Z. Shuangdan Jiedu Decoction improved LPS-induced acute lung injury by regulating both cGAS-STING pathway and inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118661. [PMID: 39159837 DOI: 10.1016/j.jep.2024.118661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangdan Jiedu Decoction (SJD) is a formula composed of six Chinese herbs with heat-removing and detoxifying, antibacterial, and anti-inflammatory effects, which is clinically used in the therapy of various inflammatory diseases of the lungs including COVID-19, but the therapeutic material basis of its action as well as its molecular mechanism are still unclear. AIM OF THE STUDY The study attempted to determine the therapeutic effect of SJD on LPS-induced acute lung injury (ALI), as well as to investigate its mechanism of action and assess its therapeutic potential for the cure of inflammation-related diseases in the clinical setting. MATERIALS AND METHODS We established an ALI model by tracheal drip LPS, and after the administration of SJD, we collected the bronchoalveolar lavage fluid (BALF) and lung tissues of mice and examined the expression of inflammatory factors in them. In addition, we evaluated the effects of SJD on the cyclic guanosine monophosphate-adenosine monophosphate synthase -stimulator of interferon genes (cGAS-STING) and inflammasome by immunoblotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS We demonstrated that SJD was effective in alleviating LPS-induced ALI by suppressing the levels of pro-inflammatory cytokines in the BALF, improving the level of lung histopathology and the number of neutrophils, as well as decreasing the inflammatory factor-associated gene expression. Importantly, we found that SJD could inhibit multiple stimulus-driven activation of cGAS-STING and inflammasome. Further studies showed that the Chinese herbal medicines in SJD had no influence on the cGAS-STING pathway and inflammasome alone at the formulated dose. By increasing the concentration of these herbs, we observed inhibitory effects on the cGAS-STING pathway and inflammasome, and the effect exerted was maximal when the six herbs were combined, indicating that the synergistic effects among these herbs plays a crucial role in the anti-inflammatory effects of SJD. CONCLUSIONS Our research demonstrated that SJD has a favorable protective effect against ALI, and its mechanism of effect may be associated with the synergistic effect exerted between six Chinese medicines to inhibit the cGAS-STING and inflammasome abnormal activation. These results are favorable for the wide application of SJD in the clinic as well as for the development of drugs for ALI from herbal formulas.
Collapse
Affiliation(s)
- Qing Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Simin Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Yan Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xinru Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xianling Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Chengwei Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Congyang Zheng
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, PR China
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Xiaohe Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Zhaofang Bai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| |
Collapse
|
4
|
Zhao A, Su J, Xu Q, Zhang J, Jiang J, Chen S, Cheng J, Chen C, Wang L, Di J, Liu X, Jiang L, Liu L, Liu Y, Liu A, Guo C. Elucidation of anti-pneumonia pharmacodynamic material basis and potential mechanisms of Xiebai San by combining spectrum-efficacy relationship and surface plasmon resonance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118609. [PMID: 39053707 DOI: 10.1016/j.jep.2024.118609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiebai San (XBS), a classic Chinese prescription, has been used for the clinical treatment of pneumonia-related diseases for thousands of years. However, the anti-pneumonia pharmacodynamic material basis of XBS and its underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to comprehensively investigate and verify the anti-pneumonia pharmacodynamic material basis and mechanisms of XBS. MATERIALS AND METHODS This study explored the anti-pneumonia activity and key pneumonia targets of XBS in lipopolysaccharide (LPS)-induced zebrafish and RAW264.7 cells in vivo and in vitro through transcriptomics, western blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The chemical fingerprint of XBS was established using high-performance liquid chromatography, and the similarities and areas of characteristic peaks of 15 batches of XBS were analyzed. Based on the spectrum-efficacy relationship, the potential anti-inflammatory components were screened according to their peak areas and efficacy using principal component analysis (PCA), bivariate correlation, and partial least squares regression analysis. Active components that bind to core targets were further screened based on surface plasmon resonance (SPR). The binding mode of proteins and components was simulated via molecular docking, which enabled the identification of the primary active components of XBS, thereby elucidating its anti-pneumonia properties. Finally, the anti-inflammatory activities of these components were verified in vitro. RESULTS XBS decreased neutrophil aggregation in zebrafish and nitric oxide (NO) secretion in RAW264.7 cells as well as suppressed the release of downstream inflammatory cytokines such as iNOS, TNF-α, IL-1β, IL-18, and CXCL10 related to TNF and JAK-STAT signaling pathways. The phosphorylation of IκBα, Akt, and Stat3 was alleviated after XBS in cells. The fingerprint similarities of 15 batches of XBS ranged from 0.381 to 0.994, with a large difference. A total of 15 characteristic peaks were identified, and the relative standard deviation of their peak areas ranged from 24.1% to 70.7%. The results of in vitro anti-inflammatory activities of 15 batches of XBS showed that all samples inhibited the expression levels of NO and nine inflammatory markers. The anti-inflammatory index of 15 batches of XBS was determined to be 0.69-0.96 based on transformation of the anti-inflammatory rate and composite index method via PCA. The spectrum-efficacy relationship model of 15 characteristic peak areas and the anti-inflammatory index showed that 7 main potential active components were related to the anti-inflammatory activity of XBS. Moreover, four components (mulberroside A, isoquercitrin, liquiritigenin, and glycyrrhizic acid) screened based on SPR had different affinities toward TNFR1, Akt1, and Stat3 proteins, and the binding modes were elucidated via molecular docking. Finally, in LPS-induced RAW264.7 cells, all four active components (at a concentration of 60 μM) significantly inhibited the expression levels of NO and inflammatory markers. CONCLUSIONS Based on the comprehensive strategy of spectrum-efficacy relationship and SPR, mulberroside A, isoquercitrin, liquiritigenin, and glycyrrhizic acid were identified as the primary pharmacodynamic active components involved in the anti-pneumonia activity of XBS and were found to intervene in TNF and JAK-STAT signaling pathways.
Collapse
Affiliation(s)
- Anyi Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiangmin Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingxia Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinzhu Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sha Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jintang Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chang Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lianmei Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jipeng Di
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianju Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Jiang
- Shandong Xianhe Pharmaceutical Co., Ltd, Shandong Dongying, 257237, China
| | - Li Liu
- Shandong Xianhe Pharmaceutical Co., Ltd, Shandong Dongying, 257237, China
| | - Yan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - An Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Cong Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Xiong L, Liu Y, Wang Y, Zhao H, Song X, Fan W, Zhang L, Zhang Y. The protective effect of Lonicera japonica Thunb. against lipopolysaccharide-induced acute lung injury in mice: Modulation of inflammation, oxidative stress, and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118333. [PMID: 38750986 DOI: 10.1016/j.jep.2024.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Various components of Lonicera japonica Thunb. (LJT) exhibit pharmacological activities, including anti-inflammatory and antioxidant effects. Nevertheless, the relationship between LJT and ferroptosis remains largely unexplored. AIM OF THE STUDY The purpose of this research was to look into the role of LJT in regulating LPS-induced ferroptosis in ALI and to compare the effects of different parts of LJT. MATERIALS AND METHODS We established a mice ALI model by treating with LPS. Administered mice with different doses of Lonicerae Japonicae Flos (LJF), Lonicera Japonica Leaves (LJL) and Lonicerae Caulis (LRC) extracts, respectively. The levels of IL-6, IL-1β, TNF-α, IL-4, IL-10, and PGE2 in bronchoalveolar lavage fluid (BALF) were measured using enzyme-linked immunosorbent assay. Furthermore, the concentrations of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), and total ferrous ions (Fe2+) in lung tissues were evaluated. Hematoxylin and eosin staining was conducted to examine the morphological structure of lung tissues. Transmission electron microscopy was used to investigate the ultrastructural morphology of mitochondria. Furthermore, the effects of LJT were evaluated via immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction analyses. Finally, employing molecular docking and molecular dynamics research techniques, we aimed to identify crucial components in LJT that might inhibit ferroptosis by targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4). RESULTS We observed that pretreatment with LJT significantly mitigated LPS-induced lung injury and suppressed ferroptosis. This was supported by reduced accumulation of pro-inflammatory cytokines, ROS, MDA, and Fe2+, along with increased levels of anti-inflammatory cytokines, SOD, GSH, Nrf2, and GPX4 in the lung tissues of ALI mice. Luteolin-7-O-rutinoside, apigenin-7-O-rutinoside, and amentoflavone in LJT exhibit excellent docking effects with key targets of ferroptosis, Nrf2 and GPX4. CONCLUSIONS Pretreatment with LJT may alleviate LPS-induced ALI, possibly by suppressing ferroptosis. Our initial results indicate that LJT activates the Nrf2/GPX4 axis, providing protection against ferroptosis in ALI. This finding offers a promising therapeutic candidate for ALI treatment.
Collapse
Affiliation(s)
- Lewen Xiong
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yan Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongwei Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaochen Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenjing Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Longfei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
6
|
Cui Y, Cui M, Wang L, Wang N, Chen Y, Lv S, Zhang L, Chen C, Yang Y, Wang F, Wang L, Cui H. Huanglian Jiedu decoction alleviates ischemia-induced cerebral injury in rats by mitigating NET formation and activiting GABAergic synapses. J Cell Mol Med 2024; 28:e18528. [PMID: 39099086 PMCID: PMC11298410 DOI: 10.1111/jcmm.18528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 08/06/2024] Open
Abstract
Huanglian Jiedu decoction (HLJD) has been used to treat ischemic stroke in clinic. However, the detailed protective mechanisms of HLJD on ischemic stroke have yet to be elucidated. The aim of this study is to elucidate the underlying pharmacological mechanisms of HLJD based on the inhibition of neuroinflammation and the amelioration of nerve cell damage. A middle cerebral artery occlusion reperfusion (MCAO/R) model was established in rats and received HLJD treatment. Effects of HLJD on neurological function was assessed based on Bederson's score, postural reflex test and asymmetry score. 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining, Hematein and eosin (HE) and Nissl staining were used to observe the pathological changes in brain. Then, transcriptomics was used to screen the differential genes in brain tissue in MCAO/R model rats following HLJD intervention. Subsequently, the effects of HLJD on neutrophil extracellular trap (NET) formation-related neuroinflammation, gamma-aminobutyric acid (GABA)ergic synapse activation, nerve cell damage and proliferation were validated using immunofluorescence, western blot and enzyme-linked immunosorbent assay (ELISA). Our results showed that HLJD intervention reduced the Bederson's score, postural reflex test score and asymmetry score in MCAO/R model rats. Pathological staining indicated that HLJD treatment decreased the cerebral infarction area, mitigated neuronal damage and increased the numbers of Nissl bodies. Transcriptomics suggested that HLJD affected 435 genes in MCAO/R rats. Among them, several genes involving in NET formation and GABAergic synapses pathways were dysregulated. Subsequent experimental validation showed that HLJD reduced the MPO+CitH3+ positive expression area, reduced the protein expression of PAD4, p-P38/P38, p-ERK/ERK and decreased the levels of IL-1β, IL-6 and TNF-α, reversed the increase of Iba1+TLR4+, Iba1+p65+ and Iba1+NLRP3+ positive expression area in brain. Moreover, HLJD increased GABA levels, elevated the protein expression of GABRG1 and GAT3, decreased the TUNEL positive expression area and increased the Ki67 positive expression area in brain. HLJD intervention exerts a multifaceted positive impact on ischemia-induced cerebral injury in MCAO/R rats. This intervention effectively inhibits neuroinflammation by mitigating NET formation, and concurrently improves nerve cell damage and fosters nerve cell proliferation through activating GABAergic synapses.
Collapse
Affiliation(s)
- Youxiang Cui
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Mingyue Cui
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Leilei Wang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Ning Wang
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Yao Chen
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Shuquan Lv
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Limin Zhang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Congai Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Yanwen Yang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Feng Wang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Lichun Wang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Huantian Cui
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| |
Collapse
|
7
|
Xie W, Chen C, Li H, Tu Y, Zhong Y, Lin Z, Cai Z. Imidacloprid-induced lung injury in mice: Activation of the PI3K/AKT/NF-κB signaling pathway via TLR4 receptor engagement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172910. [PMID: 38701926 DOI: 10.1016/j.scitotenv.2024.172910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Significant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.
Collapse
Affiliation(s)
- Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, Hong Kong.
| |
Collapse
|
8
|
Jin JB, Li J, Wang HB, Hu JB, Yang CL. Engineering of VCAM-1-targeted nanostructured lipid carriers for delivery of melatonin against acute lung injury through SIRT1/NLRP3 mediated pyroptosis signaling pathway. Int J Biol Macromol 2024; 266:130637. [PMID: 38490396 DOI: 10.1016/j.ijbiomac.2024.130637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Acute lung injury (ALI) is a prevalent and critical condition in clinical practice. Although certain pharmacological interventions have demonstrated benefits in preclinical studies, none have been proven entirely effective thus far. Therefore, the development of more efficient treatment strategies for ALI is imperative. In this study, we prepared nanostructured lipid carriers (NLCs) conjugated with anti-VCAM-1 antibodies to encapsulate melatonin (MLT), resulting in VCAM/MLT NLCs. This approach aimed to enhance the distribution of melatonin in lung vascular endothelial cells. The VCAM/MLT NLCs had an average diameter of 364 nm, high drug loading content, and a sustained drug release profile. Notably, the NLCs conjugated with anti-VCAM-1 antibodies demonstrated more specific cellular delivery mediated by the VCAM-1 receptors, increased cellular internalization, and enhanced accumulation in lung tissues. Treatment with VCAM/MLT NLCs effectively alleviated pulmonary inflammation by activating NLRP3 inflammasome-dependent pyroptosis through up-regulation of Sirtuin 1. Our findings suggest that VCAM/MLT NLCs demonstrate remarkable therapeutic effects on ALI in both in vitro and in vivo settings, making them a promising and efficient treatment strategy for ALI.
Collapse
Affiliation(s)
- Jian-Bo Jin
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China.
| | - Jing Li
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Hong-Bo Wang
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Jing-Bo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Chun-Lin Yang
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China.
| |
Collapse
|
9
|
Zhou Y, Gu J, Li J, Zhang H, Wang M, Li Y, Wang T, Wang J, Shi R. Obacunone, a Promising Phytochemical Triterpenoid: Research Progress on Its Pharmacological Activity and Mechanism. Molecules 2024; 29:1791. [PMID: 38675611 PMCID: PMC11054759 DOI: 10.3390/molecules29081791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Obacunone, a natural triterpenoid, is an active component of the herbs Dictamnus dasycarpus Turcz. and Phellodendron amurense Rupr, and an indicator of the herbs' quality. Owing to its multiple health benefits, several studies have investigated the multi-targeting potential action mechanisms of obacunone. To summarize recent developments on the pharmacological actions of obacunone and focus on the underlying molecular mechanisms and signaling networks, we searched PubMed, Europe PMC, Wiley Online Library, Web of Science, Google Scholar, Wanfang Medical Network, and China National Knowledge Infrastructure for articles published prior to March 2024. Existing research indicates obacunone has great potential to become a promising therapeutic option against tumors, fibrotic diseases, bone and cholesterol metabolism diseases, and infections of pathogenic microorganisms, among others. The paper contributes to providing up-to-date references for further research and clinical applications of obacunone.
Collapse
Affiliation(s)
- Yuyang Zhou
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA
| | - Jifeng Gu
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China;
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jiahui Li
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Huishan Zhang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| | - Mei Wang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| | - Yuanyuan Li
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (T.W.)
| | - Tianming Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (T.W.)
| | - Jiajie Wang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Rong Shi
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| |
Collapse
|
10
|
Ge W, Yuan G, Wang D, Dong L. Exploring the therapeutic mechanisms and prognostic targets of Biochanin A in glioblastoma via integrated computational analysis and in vitro experiments. Sci Rep 2024; 14:3783. [PMID: 38360888 PMCID: PMC10869694 DOI: 10.1038/s41598-024-53442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor and is characterized by a poor prognosis and high recurrence and mortality rates. Biochanin A (BCA) exhibits promising clinical anti-tumor effects. In this study, we aimed to explore the pharmacological mechanisms by which BCA acts against GBM. Network pharmacology was employed to identify overlapping target genes between BCA and GBM. Differentially expressed genes from the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database were visualized using VolcaNose. Interactions among these overlapping genes were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins database. Protein-protein interaction networks were constructed using Cytoscape 3.8.1. The Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Survival analyses for these genes were performed using the GEPIA2 database. The Chinese Glioma Genome Atlas database was used to study the correlations between key prognostic genes. Molecular docking was confirmed using the DockThor database and visualized with PyMol software. Cell viability was assessed via the CCK-8 assay, apoptosis and the cell cycle stages were examined using flow cytometry, and protein expression was detected using western blotting. In all, 63 genes were initially identified as potential targets for BCA in treating GBM. Enrichment analysis suggested that the pharmacological mechanisms of BCA primarily involved cell cycle inhibition, induction of cell apoptosis, and immune regulation. Based on these findings, AKT1, EGFR, CASP3, and MMP9 were preliminarily predicted as key prognostic target genes for BCA in GBM treatment. Furthermore, molecular docking analysis suggested stable binding of BCA to the target protein. In vitro experiments revealed the efficacy of BCA in inhibiting GBM, with an IC50 value of 98.37 ± 2.21 μM. BCA inhibited cell proliferation, induced cell apoptosis, and arrested the cell cycle of GBM cells. Furthermore, the anti-tumor effects of BCA on U251 cells were linked to the regulation of the target protein. We utilized integrated bioinformatics analyses to predict targets and confirmed through experiments that BCA possesses remarkable anti-tumor activities. We present a novel approach for multi-target treatment of GBM using BCA.
Collapse
Affiliation(s)
- Wanwen Ge
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Guoqiang Yuan
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Dongping Wang
- Gansu Provincial Hospital, Lanzhou, 730000, China.
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Li Dong
- Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Xu Y, Bao L, Cao S, Pang B, Zhang J, Zhang Y, Chen M, Wang Y, Sun Q, Zhao R, Guo S, Sun J, Cui X. Pharmacological effects and mechanism of Maxing Shigan decoction in the treatment of Pseudomonas aeruginosa pneumonia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117424. [PMID: 37984543 DOI: 10.1016/j.jep.2023.117424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maxing Shigan Decoction (MXSG) is a traditional Chinese Medicine effectively used in respiratory infections and bacterial pneumonia. However, the mechanism of MXSG treating acute Pseudomonas aeruginosa (P. aeruginosa) pneumonia is still unclear. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of MXSG on acute P. aeruginosa pneumonia and explore its potential mechanisms. MATERIALS AND METHODS HPLC-MS analysis was performed to analyze the chemical composition. Antibacterial effects in vitro were evaluated by minimum inhibitory concentration (MIC). Forty-five male BALB/c mice were divided into control group, model group, levofloxacin group, MXSG-L (7.7 g/kg/d), and MXSG-H group (15.4 g/kg/d). Mice were intranasal instillation with P. aeruginosa to induce acute P. aeruginosa pneumonia model. Levofloxacin and MXSG were administered by oral gavage once a day. After 3 days of treatment, the lung index measurement, micro-CT, arterial blood gas analysis, bacteria load determination, and HE staining were performed. Network pharmacological analysis and transcriptome sequencing were employed to predict the potential mechanisms of MXSG on bacterial pneumonia. The expressions of relating genes were detected by immunofluorescence, Western blot, and RT-PCR. RESULTS In vitro, MIC of P. aeruginosa is greater than 500 mg/mL. In the treatment of acute P. aeruginosa pneumonia model, MXSG significantly improved body weight loss, lung index, and pulmonary lesions. MXSG treatment also reduced the bacterial load and ameliorated oxygen saturation significantly. Transcriptomes, immunofluorescence, Western blot, and RT-PCR analysis showed MXSG treating acute P. aeruginosa pneumonia through the IL-17 signaling pathway and HIF-1α/IL-6/STAT3 signaling pathway. CONCLUSIONS We demonstrated the efficacy and mechanism of MXSG in the treatment of acute P. aeruginosa pneumonia, which provides a scientific basis for its clinical application.
Collapse
Affiliation(s)
- Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shan Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jingsheng Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Mengping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiyue Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Wang Z, Li F, Aga EB, Liang X, He C, Yin L, Xu F, Li H, Tang H, Lv C. 'Pterocephalodes hookeri-Onosma hookeri' decoction protects against LPS-induced pulmonary inflammation via inhibiting TLR4/ NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116918. [PMID: 37453619 DOI: 10.1016/j.jep.2023.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As the second-largest traditional medical system in China, Tibetan medicine has a long history and abundant resources. To promote the development of the Tibetan medicine industry, it is essential to study the pharmacological activities of Tibetan medicine based on its traditional usage methods. AIM OF THE STUDY Pneumonia has been a worldwide health problem with high morbidity and mortality rates, especially in the context of the COVID-19 epidemic. Given the unique advantages of traditional Tibetan medicine in treating pulmonary diseases, further research is warranted to develop potential anti-pneumonia drugs. MATERIALS AND METHODS In our study, the potential combined decoction from traditional Tibetan medicine was determined by the data mining method. The antioxidant activity in vitro, anti-inflammatory effects on the macrophage cell model, as well as the anti-pulmonary inflammation effects on the LPS-induced mice model, have been explored to investigate the potential anti-pneumonia role of the decoction. Additionally, we conducted network pharmacology analysis to identify the potential targets against pneumonia, which were further confirmed by western blot assays. RESULTS Following the combination therapy of Pterocephalodes hookeri (C.B.Clarke) V.Mayer & Ehrend. and Onosma hookeri var. longiflora (Duthie) A.V.Duthie ex Stapf ('P-O'), the clearance of DPPH radical and the total reducing power were all improved, as well as alleviated the toxicity. On the in vitro level, 'P-O' pre-treatment reduced the secretion of NO, TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells, while promoting the concentration of IL-10. Meanwhile, on the in vivo level, the 'P-O' pre-treating also could alleviate LPS-induced pulmonary inflammation by reducing the pulmonary edema and leakage of the lung microvascular, improving the pathological change of lung tissue and regulating the cytokines content in bronchoalveolar lavage fluid (BALF). Furthermore, network pharmacology analysis revealed that the mechanism of 'P-O' in treating pneumonia in a multi-component, multi-target, and multi-pathway network, with the TLR4/NF-κB signaling pathway playing a crucial role, as demonstrated by the western blot assay results. CONCLUSION In summary, the combination therapy of 'P-O' exhibited good antioxidant activity and anti-inflammatory activity in vitro, as well as a therapeutic effect against pulmonary inflammation in vivo. These findings provide evidence for the clinical application of 'P-O' and offer new approaches for treating pneumonia.
Collapse
Affiliation(s)
- Zhenyu Wang
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Fanglong Li
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Er-Bu Aga
- Medical College, Tibet University, Lasa, 850000, China.
| | - Xiaoxia Liang
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Changliang He
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lizi Yin
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Funeng Xu
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Haohuan Li
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Huaqiao Tang
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Cheng Lv
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
13
|
Liang L, Yue Y, Zhong L, Liang Y, Shi R, Luo R, Zhao M, Cao X, Yang M, Du J, Shen X, Wang Y, Shu Z. Anti-aging activities of Rehmannia glutinosa Libosch. crude polysaccharide in Caenorhabditis elegans based on gut microbiota and metabonomic analysis. Int J Biol Macromol 2023; 253:127647. [PMID: 37884235 DOI: 10.1016/j.ijbiomac.2023.127647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Aging is a degenerative progress, accompanied by oxidative damage, metabolic disorders and intestinal flora imbalance. Natural macromolecular polysaccharides have shown excellent anti-aging and antioxidant properties, while maintaining metabolic and intestinal homeostasis. The molecular weight, monosaccharide composition, infrared spectrum and other chemical structure information of four Rehmannia glutinosa polysaccharides (RG50, RG70, RG90, RGB) were determined, and their free radical scavenging ability was assessed. Molecular weight and monosaccharide composition analysis exhibited that RG50 (2-72 kDa), RG70 (3.2-37 kDa), RG70 (3-42 kDa), and RGB (3.1-180 kDa) were heteropolysaccharide with significant different monosaccharide species and molar ratios. We found that RG70 had the best antioxidant activity in vitro and RG70 could enhance the antioxidant enzyme system of Caenorhabditis elegans, diminished lipofuscin and reactive oxygen species levels, up-regulate the expression of daf-16, skn-1 and their downstream genes, and down-regulate the expression of age-1. Metabolomics results showed that RG70 mainly influenced glycine, serine and threonine metabolism and citric acid cycle. 16S rRNA sequencing showed that RG70 significantly up-regulated the abundance of Lachnospiraceae_NK4B4_group, which were positively correlated with amino acid metabolism and energy cycling. These results suggest that RG70 may delay aging by enhancing antioxidant effects, affecting probiotics and regulating key metabolic pathways.
Collapse
Affiliation(s)
- Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yimin Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongfeng Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Xu M, Yue Y, Huang J. Efficacy evaluation and metabolomics analysis of Huanglian Jiedu decoction in combination with donepezil for Alzheimer's disease treatment. J Pharm Biomed Anal 2023; 235:115610. [PMID: 37542831 DOI: 10.1016/j.jpba.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive disease with continuous brain changes and has caused a severe burden on families and society. Huanglian Jiedu Decoction (HLJD) is a classic traditional Chinese medicine formula that can improve AD animals' cognitive impairment. This study recruited 50 AD patients who were divided into two groups, one receiving donepezil (DON) treatment and the other receiving DON + HLJD treatment for 3 months. The curative effect, inflammatory and oxidative stress levels were analyzed. The PES-D/11, MMSE, and ADL scales were used to evaluate traditional Chinese medicine syndrome elements, cognitive function, mental state, and life ability. There were no significant differences between the two groups in baseline characteristics and vital sign indicators. After drug treatment, the results showed that AD patients with HLJD combined with DON treatment didn't increase the adverse effects and had good compliance. HLJD combined with DON could improve the disease syndrome, making the differences in PES-D/11, MMSE, and ADL scores before and after the intervention larger. Furthermore, both DON and DON+HLJD treatment inhibited the levels of IL-6, IL-1β, TNF-α, and MDA, raised SOD level, and HLJD enhances the inhibitory effect of DON on inflammation and oxidative stress. IL-6, IL-1β, TNF-α, and MDA levels were significantly correlated with curative effect. Moreover, this study found 107 (206) up-regulated metabolites and 1430 (145) down-regulated metabolites in urine (serum) and conducted differential metabolite screening and correlation analysis suggesting that HLJD may interfere with oxidative stress and inflammation in AD by regulating lipid metabolism and glutamic acid metabolism. Arachidonic acid, diaminopimelic acid, and 1-Aminocyclopropanecarboxylic acid may play an important role in HLJD to improve AD.
Collapse
Affiliation(s)
- Manfei Xu
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, Zhejiang 310000, China.
| | - Yuebing Yue
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, Zhejiang 310000, China.
| | - Jie Huang
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
15
|
Tang S, Liang Y, Wang M, Lei J, Peng Y, Tao Q, Ming T, Yang W, Zhang C, Guo J, Xu H. Qinhuo Shanggan oral solution resolves acute lung injury by down-regulating TLR4/NF- κB signaling cascade and inhibiting NLRP3 inflammasome activation. Front Immunol 2023; 14:1285550. [PMID: 37954597 PMCID: PMC10634205 DOI: 10.3389/fimmu.2023.1285550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Acute lung injury (ALI) is a common condition, particularly in the COVID-19 pandemic, which is distinguished by sudden onset of respiratory insufficiency with tachypnea, oxygen-refractory cyanosis, reduced lung compliance and diffuse infiltration of pulmonary alveoli. It is well-established that increasing activity of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling axis and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation are associated with the pathogenesis of ALI. Since ALI poses a huge challenge to human health, it is urgent to tackle this affliction with therapeutic intervention. Qinhuo Shanggan oral solution (QHSG), a traditional Chinese herbal formula, is clinically used for effective medication of various lung diseases including ALI, with the action mechanism obscure. In the present study, with the rat model of lipopolysaccharide (LPS)-induced ALI, QHSG was unveiled to ameliorate ALI by alleviating the pathological features, reversing the alteration in white blood cell profile and impeding the production of inflammatory cytokines through down-regulation of TLR4/NF-κB signaling cascade and inhibition of NLRP3 inflammasome activation. In LPS-stimulated RAW264.7 mouse macrophages, QHSG was discovered to hinder the generation of inflammatory cytokines by lessening TLR4/NF-κB signaling pathway activity and weakening NLRP3 inflammasome activation. Taken together, QHSG may resolve acute lung injury, attributed to its anti-inflammation and immunoregulation by attenuation of TLR4/NF-κB signaling cascade and inhibition of NLRP3 inflammasome activation. Our findings provide a novel insight into the action mechanism of QHSG and lay a mechanistic foundation for therapeutic intervention in acute lung injury with QHSG in clinical practice.
Collapse
Affiliation(s)
- Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenyu Yang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Zhang Y, Xi Y, Yang C, Gong W, Wang C, Wu L, Wang D. Short-Chain Fatty Acids Attenuate 5-Fluorouracil-Induced THP-1 Cell Inflammation through Inhibiting NF-κB/NLRP3 Signaling via Glycerolphospholipid and Sphingolipid Metabolism. Molecules 2023; 28:molecules28020494. [PMID: 36677551 PMCID: PMC9864921 DOI: 10.3390/molecules28020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
5-Fluorouracil (5-FU) is a common anti-tumor drug, but there is no effective treatment for its side effect, intestinal mucositis. The inflammatory reaction of macrophages in intestinal mucosa induced by 5-FU is an important cause of intestinal mucositis. In this study, we investigated the anti-inflammatory effects of the three important short-chain fatty acids (SCFAs), including sodium acetate (NaAc), sodium propionate (NaPc), and sodium butyrate (NaB), on human mononuclear macrophage-derived THP-1 cells induced by 5-FU. The expressions of intracellular ROS, pro-inflammatory/anti-inflammatory cytokines, as well as the nuclear factor-κB/NLR family and pyrin domain-containing protein 3 (NF-κB/NLRP3) signaling pathway proteins were determined. Furthermore, the cell metabolites were analyzed by untargeted metabolomics techniques. Our results revealed that the three SCFAs inhibited pro-inflammatory factor expressions, including IL-1β and IL-6, when treated with 5-FU (p < 0.05). The ROS expression and NF-κB activity of 5-FU-treated THP-1 cells were inhibited by the three SCFAs pre-incubated (p < 0.05). Moreover, NLRP3 knockdown abolished 5-FU-induced IL-1β expression (p < 0.05). Further experiments showed that the three SCFAs affected 20 kinds of metabolites that belong to amino acid and phosphatidylcholine metabolism in THP-1 cells. These significantly altered metabolites were involved in amino acid metabolism and glycerolphospholipid and sphingolipid metabolism. It is the first time that three important SCFAs (NaAc, NaPc, and NaB) were identified as inhibiting 5-FU-induced macrophage inflammation through inhibiting ROS/NF-κB/NLRP3 signaling pathways and regulating glycerolphospholipid and sphingolipid metabolism.
Collapse
Affiliation(s)
- Yanyan Zhang
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Yue Xi
- Medical Laboratory Department, Huai’an Second People’s Hospital, Huai’an 223022, China
| | - Changshui Yang
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weijuan Gong
- School of Medicine, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.G.); (D.W.)
| | - Chengyin Wang
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Liang Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Correspondence: (W.G.); (D.W.)
| |
Collapse
|
17
|
Shi K, Wang Y, Xiao Y, Tu J, Zhou Z, Cao G, Liu Y. Therapeutic effects and mechanism of Atractylodis rhizoma in acute lung injury: Investigation based on an Integrated approach. Front Pharmacol 2023; 14:1181951. [PMID: 37168993 PMCID: PMC10164760 DOI: 10.3389/fphar.2023.1181951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Acute lung injury (ALI) is characterized by an excessive inflammatory response. Atractylodes lancea (Thunb.) DC. is a traditional chinese medicine with good anti-inflammatory activity that is commonly used clinically for the treatment of lung diseases in China; however, its mechanism of against ALI is unclear. We clarified the therapeutic effects of ethanol extract of Atractylodis rhizoma (EEAR) on lipopolysaccharide (LPS)-induced ALI by evaluation of hematoxylin-eosin (HE) stained sections, the lung wet/dry (W/D) ratio, and levels of inflammatory factors as indicators. We then characterized the chemical composition of EEAR by ultra-performance liquid chromatography and mass spectrometry (UPLC-MS) and screened the components and targets by network pharmacology to clarify the signaling pathways involved in the therapeutic effects of EEAR on ALI, and the results were validated by molecular docking simulation and Western blot (WB) analysis. Finally, we examined the metabolites in rat lung tissues by gas chromatography and mass spectrometry (GC-MS). The results showed that EEAR significantly reduced the W/D ratio, and tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) levels in the lungs of ALI model rats. Nineteen components of EEAR were identified and shown to act synergetically by regulating shared pathways such as the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathways. Ferulic acid, 4-methylumbelliferone, acetylatractylodinol, atractylenolide I, and atractylenolide III were predicted to bind well to PI3K, AKT and MAPK1, respectively, with binding energies < -5 kcal/mol, although only atractylenolide II bound with high affinity to MAPK1. EEAR significantly inhibited the phosphorylation of PI3K, AKT, p38, and ERK1/2, thus reducing protein expression. EEAR significantly modulated the expression of metabolites such as D-Galactose, D-Glucose, serine and D-Mannose. These metabolites were mainly concentrated in the galactose and amino acid metabolism pathways. In conclusion, EEAR alleviates ALI by inhibiting activation of the PI3K-AKT and MAPK signaling pathways and regulating galactose metabolism, providing a new direction for the development of drugs to treat ALI.
Collapse
Affiliation(s)
- Kun Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan, China
| | - Guosheng Cao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan, China
- *Correspondence: Guosheng Cao, ; Yanju Liu,
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan, China
- *Correspondence: Guosheng Cao, ; Yanju Liu,
| |
Collapse
|
18
|
Short-Chain Fatty Acids Weaken Ox-LDL-Induced Cell Inflammatory Injury by Inhibiting the NLRP3/Caspase-1 Pathway and Affecting Cellular Metabolism in THP-1 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248801. [PMID: 36557935 PMCID: PMC9786193 DOI: 10.3390/molecules27248801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Short-chain fatty acids (SCFAs) are important anti-inflammatory metabolites of intestinal flora. Oxidized low-density lipoprotein (ox-LDL)-induced macrophage activation is critical for the formation of atherosclerosis plaque. However, the association between SCFAs and ox-LDL-induced macrophage activation with respect to the formation of atherosclerosis plaque has not yet been elucidated. The present study investigated whether SCFAs (sodium acetate, sodium propionate, and sodium butyrate) can affect ox-LDL-induced macrophage activation and potential signaling pathways via regulation of the expression of the NLRP3/Caspase-1 pathway. Using human monocyte-macrophage (THP-1) cells as a model system, it was observed that ox-LDL not only induced cell inflammatory injury but also activated the NLRP3/Caspase-1 pathway. The exogenous supplementation of three SCFAs could significantly inhibit cell inflammatory injury induced by ox-LDL. Moreover, three SCFAs decreased the expression of IL-1β and TNF-α via the inactivation of the NLRP3/Caspase-1 pathway induced by ox-LDL. Furthermore, three SCFAs affected cellular metabolism in ox-LDL-induced macrophages, as detected by untargeted metabolomics analysis. The results of the present study indicated that three SCFAs inhibited ox-LDL-induced cell inflammatory injury by blocking the NLRP3/Caspase-1 pathway, thereby improving cellular metabolism. These findings may provide novel insights into the role of SCFA intervention in the progression of atherosclerotic plaque formation.
Collapse
|