1
|
Zhang ZH, Zhan ZY, Jiang M, Wang XY, Quan SL, Wu YL, Nan JX, Lian LH. Casting NETs on Psoriasis: The modulation of inflammatory feedback targeting IL-36/IL-36R axis. Int Immunopharmacol 2024; 142:113190. [PMID: 39306890 DOI: 10.1016/j.intimp.2024.113190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
NETosis happens when neutrophils are activated and neutrophil extracellular traps (NETs) are formed synchronously, which is a hallmark of psoriasis. However, the specific trigger that drives NET formation and the distinct contents and interaction with interleukin-36 receptor (IL-36R) of NETs remain to be further elucidated. This work identified NET formation driven by toll-like receptor (TLR) 3 ligand (especially polyinosinic-polycytidylic acid (Poly(I:C)) were enhanced by purinergic receptor P2X ligand-gated ion channel 7 receptor (P2X7R) ligands (especially adenosine 5'-triphosphate (ATP)). NET formation was accompanied by the secretion of inflammatory cytokines and characterized by IL-1β decoration. NET formation blockade decreased expressions of inflammatory cytokines and chemokines, which consequently improved inflammatory responses. Additionally, imiquimod (IMQ)-induced psoriasiform symptoms including neutrophilic infiltration tended to be time-sensitive. Mouse primary keratinocytes and mice deficient in Il1rl2, which encodes IL-36R, mitigated inflammatory responses and NET formation, thereby delaying the pathophysiology of psoriasis. Together, the findings provided the therapeutic potential for IL-36 targeting NET inhibitors in psoriasis treatment.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai Campus, Yantai, Shandong Province, China
| | - Xiang-Yuan Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Shu-Lin Quan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
2
|
Qin BF, Zhang JJ, Feng QY, Guo X, Sun HM, Song J. Specnuezhenide ameliorates hepatic fibrosis via regulating SIRT6-Mediated inflammatory signaling cascades. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118646. [PMID: 39097210 DOI: 10.1016/j.jep.2024.118646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligustrum lucidum W.T. Aiton is a traditional Chinese medicine that has long been used with high hepatoprotective therapeutic and condition value. Specnuezhenide (SP), the standard prominent secoiridoid compound of Fructus Ligustri Lucidi may ameliorate hepatic inflammation in chronic liver diseases. AIM OF THE STUDY Regulating inflammation through SIRT6-P2X7R axis has caused the emergence of novel molecular mechanism strategies for reversing hepatic fibrosis. This study focused on the mechanism of SP in modulating the liver inflammatory microenvironment in hepatic fibrosis. MATERIALS AND METHODS C57BL/6 mice with hepatic fibrosis were stimulated with thioacetamide (TAA) prior to administration of SP. Hepatic stellate cells (HSCs) or normal mouse primary hepatocytes were exposed to transforming growth factor-β (TGF-β) treatment. Meanwhile, normal mouse bone marrow-derived macrophages (BMDMs) were treated with lipopolysaccharide/adenosine triphosphate (LPS/ATP), aiming to obtain the conditioned medium. HSCs and hepatocytes were transfected with SIRT6 knockdown vector (siRNA-SIRT6) to estimate the impact of SP on the SIRT6-P2X7R/NLRP3 signaling pathway. RESULTS SP suppressed the HSCs extracellular matrix (ECM) deposition as well as pro-inflammatory cytokine levels induced by the medium of BMDMs or TGF-β. In addition, SP also significantly up-regulated SIRT6, inhibited P2X7R-NLRP3 inflammasome in HSCs and hepatocytes, and functioned as MDL-800 (a SIRT6 agonist). SP reduced the hepatocytes pyroptosis and further prevented the occurrence of inflammatory response in the liver. SP could inhibit the activation of BMDMs and impede IL-1β and IL-18 from entering extracellular regions. Moreover, deficiency of SIRT6 in HSCs or hepatocytes reduced SP's regulation of P2X7R suppression. For TAA-treated mice, SP mitigated histopathological changes, ECM accumulation, EMT process, and NETs formation in hepatic fibrosis. CONCLUSIONS Therefore, SP decreased inflammatory response via SIRT6-P2X7R/NLRP3 pathway and suppressed fibrillogenesis. These findings supported SP as the novel candidate to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, PR China
| | - Jin-Jin Zhang
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, PR China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, PR China
| | - Xin Guo
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua, Jilin Province, 134001, PR China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, PR China.
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, PR China.
| |
Collapse
|
3
|
Qiu P, Mi A, Hong C, Huang S, Ma Q, Luo Q, Qiu J, Jiang H, Chen Y, Chen F, Yan H, Zhao J, Kong Y, Du Y, Li C, Kong D, Efferth T, Lou D. An integrated network pharmacology approach reveals that Ampelopsis grossedentata improves alcoholic liver disease via TLR4/NF-κB/MLKL pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155658. [PMID: 38981149 DOI: 10.1016/j.phymed.2024.155658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/19/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Alcohol-related liver damage is the most prevalent chronic liver disease, which creates a heavy public health burden worldwide. The leaves of Ampelopsis grossedentata have been considered a popular tea and traditional herbal medicine in China for more than one thousand years, and possess anti-inflammatory, antioxidative, hepatoprotective, and antiviral activities. PURPOSE We explored the protective effects of Ampelopsis grossedentata extract (AGE) against chronic alcohol-induced hepatic injury (alcoholic liver disease, ALD), aiming to elucidate its underlying mechanisms. METHODS Firstly, UPLC-Q/TOF-MS analysis and network pharmacology were used to identify the constituents and elucidate the potential mechanisms of AGE against ALD. Secondly, C57BL/6 mice were pair-fed the Lieber-DeCarli diet containing either isocaloric maltodextrin or ethanol, AGE (150 and 300 mg/kg/d) and silymarin (200 mg/kg) were administered to chronic ethanol-fed mice for 7 weeks to evaluate the hepatoprotective effects. Serum biochemical parameters were determined, hepatic and ileum sections were used for histologic examination, and levels of inflammatory cytokines and oxidative stress in the liver were examined. The potential molecular mechanisms of AGE in improving ALD were demonstrated by RNA-seq, Western blotting analysis, and immunofluorescence staining. RESULTS Ten main constituents of AGE were identified using UPLC-Q/TOF-MS and 274 potential ALD-related targets were identified. The enriched KEGG pathways included Toll-like receptor signaling pathway, NF-κB signaling pathway, and necroptosis. Moreover, in vivo experimental studies demonstrated that AGE significantly reduced serum aminotransferase levels and improved pathological abnormalities after chronic ethanol intake. Meanwhile, AGE improved ALD in mice by down-regulating oxidative stress and inflammatory cytokines. Furthermore, AGE notably repaired damaged intestinal epithelial barrier and suppressed the production of gut-derived lipopolysaccharide by elevating intestinal tight junction protein expression. Subsequent RNA-seq and experimental validation indicated that AGE inhibited NF-κB nuclear translocation, suppressed IκB-α, RIPK3 and MLKL phosphorylation and alleviated hepatic necroptosis in mice. CONCLUSION In this study, we have demonstrated for the first time that AGE protects against alcoholic liver disease by regulating the gut-liver axis and inhibiting the TLR4/NF-κB/MLKL-mediated necroptosis pathway. Therefore, our present work provides important experimental evidence for AGE as a promising candidate for protection against ALD.
Collapse
Affiliation(s)
- Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ai Mi
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jiang Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - He Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yufan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fangming Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Honghao Yan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinkai Zhao
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Yu Kong
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Yu Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated with Nanjing University of Chinese Medicine, Jiangsu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Dayong Lou
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China.
| |
Collapse
|
4
|
Song J, Qin BF, Zhang JJ, Feng QY, Liu GC, Zhao GY, Sun HM. Regulation of the Nur77-P2X7r Signaling Pathway by Nodakenin: A Potential Protective Function against Alcoholic Liver Disease. Molecules 2024; 29:1078. [PMID: 38474588 DOI: 10.3390/molecules29051078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Alcoholic liver disease (ALD) is the main factor that induces liver-related death worldwide and represents a common chronic hepatopathy resulting from binge or chronic alcohol consumption. This work focused on revealing the role and molecular mechanism of nodakenin (NK) in ALD associated with hepatic inflammation and lipid metabolism through the regulation of Nur77-P2X7r signaling. In this study, an ALD model was constructed through chronic feeding of Lieber-DeCarli control solution with or without NK treatment. Ethanol (EtOH) or NK was administered to AML-12 cells, after which Nur77 was silenced. HepG2 cells were exposed to ethanol (EtOH) and subsequently treated with recombinant Nur77 (rNur77). Mouse peritoneal macrophages (MPMs) were treated with lipopolysaccharide/adenosine triphosphate (LPS/ATP) and NK, resulting in the generation of conditioned media. In vivo, histopathological alterations were markedly alleviated by NK, accompanied by reductions in serum triglyceride (TG), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels and the modulation of Lipin-1, SREBP1, and Nur77 levels in comparison to the EtOH-exposed group (p < 0.001). Additionally, NK reduced the production of P2X7r and NLRP3. NK markedly upregulated Nur77, inhibited P2X7r and Lipin-1, and promoted the function of Cytosporone B, a Nur77 agonist (p < 0.001). Moreover, Nur77 deficiency weakened the regulatory effect of NK on P2X7r and Lipin-1 inhibition (p < 0.001). In NK-exposed MPMs, cleaved caspase-1 and mature IL-1β expression decreased following LPS/ATP treatment (p < 0.001). NK also decreased inflammatory-factor production in primary hepatocytes stimulated with MPM supernatant. NK ameliorated ETOH-induced ALD through a reduction in inflammation and lipogenesis factors, which was likely related to Nur77 activation. Hence, NK is a potential therapeutic approach to ALD.
Collapse
Affiliation(s)
- Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Jin-Jin Zhang
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Guan-Cheng Liu
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Gui-Yun Zhao
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, China
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin 132013, China
- College of Science, Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, Beihua University, Jilin 132013, China
| |
Collapse
|
5
|
Chen P, Luo Z, Lu C, Jian G, Qi X, Xiong H. Gut-immunity-joint axis: a new therapeutic target for gouty arthritis. Front Pharmacol 2024; 15:1353615. [PMID: 38464719 PMCID: PMC10920255 DOI: 10.3389/fphar.2024.1353615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease characterized by pain. The primary goal of current treatment strategies during GA flares remains the reduction of inflammation and pain. Research suggests that the gut microbiota and microbial metabolites contribute to the modulation of the inflammatory mechanism associated with GA, particularly through their effect on macrophage polarization. The increasing understanding of the gut-joint axis emphasizes the importance of this interaction. The primary objective of this review is to summarize existing research on the gut-immune-joint axis in GA, aiming to enhance understanding of the intricate processes and pathogenic pathways associated with pain and inflammation in GA, as documented in the published literature. The refined comprehension of the gut-joint axis may potentially contribute to the future development of analgesic drugs targeting gut microbes for GA.
Collapse
Affiliation(s)
- Pei Chen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| | - Zhiqiang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengyin Lu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gonghui Jian
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Integrative Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Qi
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Qiu K, Wang S, Duan F, Sang Z, Wei S, Liu H, Tan H. Rosemary: Unrevealing an old aromatic crop as a new source of promising functional food additive-A review. Compr Rev Food Sci Food Saf 2024; 23:e13273. [PMID: 38284599 DOI: 10.1111/1541-4337.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 01/30/2024]
Abstract
Rosemary (Rosmarinus officinalis L.) is one of the most famous spice plants belonging to the Lamiaceae family as a remarkably beautiful horticultural plant and economically agricultural crop. The essential oil of rosemary has been enthusiastically welcome in the whole world for hundreds of years. Now, it is wildly prevailing as a promising functional food additive for human health. More importantly, due to its significant aroma, food, and nutritional value, rosemary also plays an essential role in the food/feed additive and food packaging industries. Modern industrial development and fundamental scientific research have extensively revealed its unique phytochemical constituents with biologically meaningful activities, which closely related to diverse human health functions. In this review, we provide a comprehensively systematic perspective on rosemary by summarizing the structures of various pharmacological and nutritional components, biologically functional activities and their molecular regulatory networks required in food developments, and the recent advances in their applications in the food industry. Finally, the temporary limitations and future research trends regarding the development of rosemary components are also discussed and prospected. Hence, the review covering the fundamental research advances and developing prospects of rosemary is a desirable demand to facilitate their better understanding, and it will also serve as a reference to provide many insights for the future promotion of the research and development of functional foods related to rosemary.
Collapse
Affiliation(s)
- Kaidi Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Fangfang Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zihuan Sang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxin Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| |
Collapse
|