1
|
Zheng N, Zhang Z, Liu H, Zong S, Zhang L, Cui X, Liu Y, Wang C, Chen R, Lu Z. MK886 ameliorates Alzheimer's disease by activating the PRKCI/AKT signaling pathway. Eur J Pharmacol 2025; 993:177359. [PMID: 39922422 DOI: 10.1016/j.ejphar.2025.177359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, associated with oxidative stress, neuronal apoptosis, and the accumulation of amyloid-β (Aβ) plaques. Despite advances in understanding AD pathology, effective treatments remain limited. This study aimed to investigate the therapeutic efficacy and underlying molecular mechanisms of MK886, a selective inhibitor of the 5-lipoxygenase pathway, in the context of AD. Network pharmacology analyses were employed to evaluate MK886's potential as a treatment for AD, revealing promising interactions with key molecular targets implicated in the disease. In vitro experiments demonstrated that MK886 effectively mitigated Aβ1-42 oligomer-induced oxidative stress, apoptosis, and ferroptosis in mouse hippocampal neuronal cells (HT22). These effects were validated using techniques such as immunofluorescence, JC-1 staining, TUNEL staining, and flow cytometry. In vivo studies involved administering MK886 to APPswe/PS1dE9 (APP/PS1) mice, which resulted in significant improvements in cognitive and emotional functions as assessed by the Y-maze and Morris water maze tests. Histological evaluations, including Nissl staining, immunofluorescence, and immunohistochemistry, revealed that MK886 preserved hippocampal neuron integrity and reduced Aβ deposition. Proteomics and molecular docking analyses identified the PRKCI/AKT signaling pathway as a key mediator of MK886's neuroprotective effects. This finding was further validated through Western blotting experiments incorporating an AKT inhibitor. Overall, these findings suggest that MK886 holds promise as a potential therapeutic agent for Alzheimer's disease by enhancing neuronal protection and cognitive function through the activation of the PRKCI/AKT pathway.
Collapse
Affiliation(s)
- Ni Zheng
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021, Jinan, Shandong, China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Zhi Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021, Jinan, Shandong, China
| | - Huan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Li Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Xiaolin Cui
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Cuicui Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Ruidan Chen
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021, Jinan, Shandong, China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| |
Collapse
|
2
|
Gao G, Zhang X, Cui Z, Fan M, Yan Y, Huang Y, Shi Y, Ma H, Wang Z, Su Y, Zhang Z, Xie Z. Shenghui decoction inhibits neuronal cell apoptosis to improve Alzheimer's disease through the PDE4B/cAMP/CREB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156366. [PMID: 39787692 DOI: 10.1016/j.phymed.2025.156366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Shenghui Decoction (SHD) is a frequently utilized traditional Chinese medicine formula in clinical settings for addressing cognitive impairment in elderly individuals. Nevertheless, the precise mechanism by which SHD exerts its effects on the most prevalent form of dementia, Alzheimer's disease (AD), remains to be elucidated. METHODS Temperature-induced transgenic C. elegans assess Aβ deposition and toxicity. Behavioral experiments are utilized to assess learning and memory capabilities as well as cognitive impairment in APP/PS1 mice. Immunofluorescence and immunohistochemistry are employed to identify Aβ deposits, while UHPLCOE/MS combine network pharmacology is utilized to characterize chemical composition, predict target and analyze the biological processes and signaling pathways modulated by SHD. Molecular biology methodologies confirm the functionality of regulatory pathways. Molecular docking, molecular dynamic simulations (MD) and ultrafiltration-liquid chromatography/mass spectrometry (LC/MS) are employed for the assessment of the binding interactions between active ingredients of SHD and target proteins. RESULTS SHD effectively reduced the deposition of Aβ in the head of C. elegans and mitigated its toxicity, as well as improved the learning deficits and cognitive impairment in APP/PS1 mice. Network pharmacology analyses revealed that G protein-coupled receptors (GPCRs) and cell apoptosis are the primary biological processes modulated by SHD, with KEEG results indicating that SHD regulated the cAMP signaling pathway. Subsequent experimental investigations demonstrated that SHD attenuated the loss of neurons in APP/PS1 mice, upregulated the expression of anti-apoptotic protein Bcl-2 and downregulated the expression of pro-apoptotic proteins like cleave-Caspase-3 both in vivo and in vitro. Additionally, SHD decreased intracellular AMP levels while increasing cAMP levels, leading to the phosphorylation of PKA to activate CREB. This process ultimately regulated the expression of Bcl-2, Bdnf, among others, to prevent cell apoptosis and safeguard neurons. Molecular docking, MD, and ultrafiltration-LC/MS revealed that the active constituents of SHD formed stable interactions with the cAMP hydrolysis enzyme phosphodiesterase 4B (PDE4B). CONCLUSION SHD regulated the cAMP/CREB signaling pathway to inhibit neuronal cell apoptosis and improve AD. Furthermore, it is worth noting that this mechanism may be associated with the specific and consistent binding of SHD active ingredients to PDE4B, potentially offering promising candidates for drug development aimed at addressing AD.
Collapse
Affiliation(s)
- Gai Gao
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Xiaowei Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhenghao Cui
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Mingyue Fan
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yibing Yan
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yanli Huang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yiting Shi
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Huifen Ma
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhenzhen Wang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yunfang Su
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhishen Xie
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| |
Collapse
|
3
|
Feng Y, Wang H, Hu Y, Zhang X, Miao X, Li Z, Jia J. Hederagenin ameliorates ferroptosis-induced damage by regulating PPARα/Nrf2/GPX4 signaling pathway in HT22 cells: An in vitro and in silico study. Bioorg Chem 2025; 155:108119. [PMID: 39755103 DOI: 10.1016/j.bioorg.2024.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Hederagenin (HG), derived from ivy seeds, is known to offer protection against Alzheimer's disease (AD). However, the specific molecular pathways through which it counters ferroptosis-induced neurotoxicity are not fully elucidated. This investigation seeks to delineate the processes by which HG mitigates neurotoxic effects in HT22 cells subjected to glutamate (Glu)-induced ferroptosis. METHODS HT22 cell ferroptosis was prompted by Glu exposure. Cell viability was assessed using CCK-8 and LDH assays, while Fe2+ fluorescence and assays of iron-related proteins served to gauge intracellular Fe2+ concentrations. Evaluations of mitochondrial structure and functionality employed JC-1 staining and transmission electron microscopy. Assessments of ROS, lipid peroxidation, MDA, 4-HNE, and the GSSG/GSH ratio were conducted to ascertain HG's antioxidative efficacy. The expression of proteins within the PPARα/Nrf2/GPX4 pathway was quantified via western blotting, with molecular docking (MD), and molecular dynamics simulations (MDS) used to explore protein interactions. RESULTS HG diminished the cellular toxicity triggered by Glu in HT22 cells, lowered Fe2+ within cells, and rejuvenated mitochondrial morphology and performance. Concurrently, it modulated proteins critical to Fe2+ metabolism, diminished ROS and lipid peroxidation, and elevated GSH/GSSG ratios. Enhanced PPARα/Nrf2/GPX4 protein levels were corroborated by western blot results. Furthermore, molecular docking revealed favorable binding of HG to the proteins PPARα, Nrf2, and GPX4, with binding energies of -7.751, -7.535, and -7.414 kcal/mol, respectively. MDS confirmed robust interactions between HG and these pivotal targets. CONCLUSION The evidence suggests that HG effectively mitigates Glu-induced ferroptosis in HT22 cells by activating the PPARα/Nrf2/GPX4 signaling pathway. These findings endorse HG's potential as a nutritional adjunct for AD management.
Collapse
Affiliation(s)
- Yuxin Feng
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Heran Wang
- Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yazhuo Hu
- Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoxue Zhang
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - XiuLing Miao
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Zihan Li
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - JianJun Jia
- Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
4
|
Shi Y, Mi Z, Zhao W, Hu Y, Xiang H, Gan Y, Yuan S. Melatonin Mitigates Acidosis-Induced Neuronal Damage by Up-Regulating Autophagy via the Transcription Factor EB. Int J Mol Sci 2025; 26:1170. [PMID: 39940940 PMCID: PMC11818126 DOI: 10.3390/ijms26031170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Acidosis, a common feature of cerebral ischemia and hypoxia, results in neuronal damage and death. This study aimed to investigate the protective effects and mechanisms of action of melatonin against acidosis-induced neuronal damage. SH-SY5Y cells were exposed to an acidic environment to simulate acidosis, and a photothrombotic (PT) infarction model was used to establish an animal model of cerebral ischemia of male C57/BL6J mice. Both in vivo and in vitro studies demonstrated that acidosis increased cytoplasmic transcription factor EB (TFEB) levels, reduced nuclear TFEB levels, and suppressed autophagy, as evidenced by elevated p62 levels, a higher LC3-II/LC3-I ratio, decreased synapse-associated proteins (PSD-95 and synaptophysin), and increased neuronal apoptosis. In contrast, melatonin promoted the nuclear translocation of TFEB, enhanced autophagy, and reversed neuronal apoptosis. Moreover, the role of TFEB in melatonin's neuroprotective effects was validated by modulating TFEB nuclear translocation. In conclusion, melatonin mitigates acidosis-induced neuronal damage by promoting the nuclear translocation of TFEB, thereby enhancing autophagy. These findings offer new insights into potential treatments for acidosis.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharamceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China;
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Zhaoyu Mi
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Wei Zhao
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Yue Hu
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Hui Xiang
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Yaoxue Gan
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Shishan Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharamceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China;
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Health Science Center, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
5
|
Wang H, Xia H, Bai J, Wang Z, Wang Y, Lin J, Cheng C, Chen W, Zhang J, Zhang Q, Liu Q. H4K12 lactylation-regulated NLRP3 is involved in cigarette smoke-accelerated Alzheimer-like pathology through mTOR-regulated autophagy and activation of microglia. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137310. [PMID: 39862777 DOI: 10.1016/j.jhazmat.2025.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Cigarette smoke (CS), an indoor environmental pollution, is an environmental risk factor for diverse neurological disorders. However, the neurotoxicological effects and mechanisms of CS on Alzheimer's disease (AD) progression remain unclear. We found that CS accelerated the progression of AD, including increasing β-amyloid (Aβ) plaque deposition and exacerbating cognitive decline. Mechanistically, CS exposure increased the levels of NOD-like receptor protein 3 (NLRP3), which impaired autophagic flux in microglia by activating the mammalian target of rapamycin (mTOR) signal. Metabolomics analysis revealed an upregulation of lactate levels and an increase in global protein lysine lactylation in the brain tissue of CS-exposed AD-transgenic mice. Immunoprecipitation-Mass Spectrometry and chromatin immunoprecipitation assays demonstrated that CS elevates H4K12 lactylation (H4K12la) levels, which accumulate at the promoter region of NLRP3, leading to the activation of its transcription. Via inhibiting lactate or NLRP3 activation, oxamate and MCC950 alleviates these CS-induced effects. Therefore, our data suggest that the CS-induced increase in lactate levels triggers NLRP3 transcriptional activation through H4K12la, which subsequently leads to mTOR-mediated autophagy dysfunction in microglia, promoting microglial activation and resulting in Aβ plaque accumulation in AD-transgenic mice. This provides a new mechanism and potential therapeutic target for AD associated with environmental factors.
Collapse
Affiliation(s)
- Hailan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Zhongyue Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yue Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jiaheng Lin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Cheng Cheng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Weiyong Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Qingbi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
6
|
Xiao X, Guan Y, Mo H, Lv K, Chen J, Xie J, Meng Q, Liu J, Lu Y, Gao F, Chen Q. Novel insights into Cntnap4 in Alzheimer's disease: Intestinal flora interaction. Int J Biol Macromol 2024; 285:138508. [PMID: 39647729 DOI: 10.1016/j.ijbiomac.2024.138508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with unclear etiology. This study employs single-cell RNA sequencing (scRNA-seq), high-throughput transcriptome sequencing, 16s rRNA sequencing, and animal experiments to investigate the role of the contactin-associated protein like-4 (Cntnap4) gene in AD and its interaction with intestinal flora. We found that Cntnap4 deficiency in AD mice led to increased Tau protein phosphorylation, amyloid-beta plaque accumulation, and neuronal loss. Astrocytes in Cntnap4-/- mice showed impaired amyloid-beta processing. 16 s rRNA sequencing revealed distinct intestinal flora compositions between Cntnap4-/- and control mice, indicating a potential link between gut microbiota and AD progression. Notably, GABA supplementation improved cognitive impairment, restored synaptic currents, reduced amyloid-beta plaques, and increased neuronal counts. This study highlights Cntnap4's critical role in AD and suggests gut-brain axis involvement, offering novel insights for potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiaodan Xiao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan 523000, China; Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| | - Yanfei Guan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Huiyu Mo
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Kaizhao Lv
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxing Xie
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Qiguang Meng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jianqi Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Yongkeng Lu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Feng Gao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan 523000, China.
| | - Qingzhuang Chen
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Department of Clinical Pharmacy, Guangzhou 514000, China.
| |
Collapse
|
7
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
8
|
Luo X, Guo X, Chen N, Peng R, Pan C, Li Z, Zhao B, Ji R, Li S. miR-155 mediated regulation of PKG1 and its implications on cell invasion, migration, and apoptosis in preeclampsia through NF-κB pathway. Biol Direct 2024; 19:121. [PMID: 39587640 PMCID: PMC11590512 DOI: 10.1186/s13062-024-00526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Preeclampsia (PE) is a severe pregnancy complication characterized by complex molecular interactions. Understanding these interactions is crucial for developing effective therapeutic strategies. METHODS This study applies a pharmacometabolomics approach to explore the roles of miR-155 and PKG1 in PE, focusing on the regulatory influence of the NF-κB signaling pathway. Blood metabolomic profiles were analyzed, and bioinformatics tools, IHC staining, Western blot (WB) analysis, and immunofluorescence (IF) localization were employed to determine the expression and function of miR-155 and PKG1. Cell invasion, migration, proliferation, and apoptosis assays were conducted to assess miR-155's modulation of PKG1. Additionally, RT-qPCR and WB analysis elucidated NF-κB-mediated regulation mechanisms. RESULTS Our findings indicate significant metabolic alterations associated with miR-155 modulation of PKG1, with NF-κB acting as a critical upstream regulator. The study demonstrates that miR-155 affects cellular functions such as invasion, migration, proliferation, and apoptosis through PKG1 modulation. Furthermore, the NF-κB signaling pathway regulates miR-155 expression, contributing to the pathological processes of PE. CONCLUSION This study provides a proof of concept for using pharmacometabolomics to understand the molecular mechanisms of PE, suggesting new therapeutic targets and advancing personalized medicine approaches. These insights highlight the potential of pharmacometabolomics to complement genomic and transcriptional data in disease characterization and treatment strategies, offering new avenues for therapeutic intervention in PE.
Collapse
Affiliation(s)
- Xiaohua Luo
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Xiaopei Guo
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Ningning Chen
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Rui Peng
- Scientific Research Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ci Pan
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Zhuyin Li
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Bing Zhao
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Ruonan Ji
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Siyu Li
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
9
|
Xiang Q, Xiang Y, Liu Y, Chen Y, He Q, Chen T, Tang L, He B, Li J. Revealing the potential therapeutic mechanism of Lonicerae Japonicae Flos in Alzheimer's disease: a computational biology approach. Front Med (Lausanne) 2024; 11:1468561. [PMID: 39606633 PMCID: PMC11598349 DOI: 10.3389/fmed.2024.1468561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background Alzheimer's disease (AD) is a degenerative brain disease without a cure. Lonicerae Japonicae Flos (LJF), a traditional Chinese herbal medicine, possesses a neuroprotective effect, but its mechanisms for AD are not well understood. This study aimed to investigate potential targets and constituents of LJF against AD. Methods Network pharmacology and bioinformatics analyses were performed to screen potential compounds and targets. Gene Expression Omnibus (GEO) datasets related to AD patients were used to screen core targets of differential expression. Gene expression profiling interactive analysis (GEPIA) was used to validate the correlation between core target genes and major causative genes of AD. The receiver operating characteristic (ROC) analysis was used to evaluate the predictive efficacy of core targets based on GEO datasets. Molecular docking and dynamics simulation were conducted to analyze the binding affinities of effective compounds with core targets. Results Network pharmacology analysis showed that 112 intersection targets were identified. Bioinformatics analysis displayed that 32 putative core targets were identified from 112 intersection targets. Only eight core targets were differentially expressed based on GEO datasets. Finally, six core targets of MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and NFE2L2 were related to AD progression and had good predictive ability based on correlation and ROC analyses. Molecular docking and dynamics simulation analyses elucidated that the component of lignan interacted with EGFR, the component of β-carotene interacted with CTNNB1 and BCL2, the component of β-sitosterol interacted with BCL2, the component of hederagenin interacted with NFKB1, the component of berberine interacted with EGFR and BCL2, and the component of baicalein interacted with NFKB1, EGFR and BCL2. Conclusion Through a comprehensive analysis, this study revealed that six core targets (MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and NFE2L2) and six practical components (lignan, β-carotene, β-sitosterol, hederagenin, berberine, and baicalein) were involved in the mechanism of action of LJF against AD. Our work demonstrated that LJF effectively treats AD through its multi-component and multi-target properties. The findings of this study will establish a theoretical basis for the expanded application of LJF in AD treatment and, hopefully, can guide more advanced experimental research in the future.
Collapse
Affiliation(s)
- Qin Xiang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, China
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Yu Xiang
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Yao Liu
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Yongjun Chen
- Department of Neurology, Nanhua Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Qi He
- Ziyang District Brain Hospital, Yiyang, China
| | - Taolin Chen
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Liang Tang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, China
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Jianming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, China
| |
Collapse
|
10
|
Wen C, Yu X, Zhu J, Zeng J, Kuang X, Zhang Y, Tang S, Zhang Q, Yan J, Shen H. Gastrodin ameliorates oxidative stress-induced RPE damage by facilitating autophagy and phagocytosis through PPARα-TFEB/CD36 signal pathway. Free Radic Biol Med 2024; 224:103-116. [PMID: 39173893 DOI: 10.1016/j.freeradbiomed.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.
Collapse
Affiliation(s)
- Chaojuan Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingya Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Youao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
11
|
Li X, Hu M, Zhou X, Yu L, Qin D, Wu J, Deng L, Huang L, Ren F, Liao B, Wu A, Fan D. Hederagenin inhibits mitochondrial damage in Parkinson's disease via mitophagy induction. Free Radic Biol Med 2024; 224:740-756. [PMID: 39313012 DOI: 10.1016/j.freeradbiomed.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons and the formation of α-synuclein aggregates. Mitochondrial dysfunction and oxidative stress are pivotal in PD pathogenesis, with impaired mitophagy contributing to the accumulation of mitochondrial damage. Hederagenin (Hed), a natural triterpenoid, has shown potential neuroprotective effects; however, its mechanisms of action in PD models are not fully understood. METHOD We investigated the effects of Hed on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in SH-SY5Y cells by assessing cell viability, mitochondrial function, and oxidative stress markers. Mitophagy induction was evaluated using autophagy and mitophagy inhibitors and fluorescent staining techniques. Additionally, transgenic Caenorhabditis elegans (C. elegans) models of PD were used to validate the neuroprotective effects of Hed in vivo by focusing on α-synuclein aggregation, mobility, and dopaminergic neuron integrity. RESULTS Hed significantly enhanced cell viability in 6-OHDA-treated SH-SY5Y cells by inhibiting cell death and reducing oxidative stress. It ameliorated mitochondrial damage, evidenced by decreased mitochondrial superoxide production, restored membrane potential, and improved mitochondrial morphology. Hed also induced mitophagy, as shown by increased autophagosome formation and reduced oxidative stress; these effects were diminished by autophagy and mitophagy inhibitors. In C. elegans models, Hed activated mitophagy and reduced α-synuclein aggregation, improved mobility, and mitigated the loss of dopaminergic neurons. RNA interference targeting the mitophagy-related genes pdr-1 and pink-1 partially reversed these benefits, underscoring the role of mitophagy in Hed's neuroprotective actions. CONCLUSION Hed exhibits significant neuroprotective effects in both in vitro and in vivo PD models by enhancing mitophagy, reducing oxidative stress, and mitigating mitochondrial dysfunction. These findings suggest that Hed holds promise as a therapeutic agent for PD, offering new avenues for future research and potential drug development.
Collapse
Affiliation(s)
- Xiaoqian Li
- School of Pharmacy, Department of Pharmacy, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Gui Yang, 550000, China.
| | - Mengling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Lan Deng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Lufeng Huang
- Department of Pharmacy, Jining Medical University, Rizhao, 276500, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Bin Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Dongsheng Fan
- School of Pharmacy, Department of Pharmacy, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Gui Yang, 550000, China.
| |
Collapse
|
12
|
Zhong J, Yu X, Zhong Y, Tan L, Yang F, Xu J, Wu J, Lin Z. GSK-3β inhibitor amplifies autophagy-lysosomal pathways by regulating TFEB in Parkinson's disease models. Exp Neurol 2024; 383:115033. [PMID: 39490621 DOI: 10.1016/j.expneurol.2024.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder characterized by degeneration of the substantia nigra and a marked increase in Lewy bodies in the brain, primarily manifests as motor dysfunction. Glycogen synthase kinase-3 beta (GSK-3β) is known to play a critical role in various pathological processes of neurodegenerative diseases. However, the impact of GSK-3β inhibitors on PD progression and the underlying molecular mechanisms responsible for the effects have not been fully elucidated. Using in vitro and mouse models of 1-methyl-4-phenylpyridine (MPP+)-or methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, we found that inhibition of GSK-3β activity alleviated mitochondrial damage, cell apoptosis, and neuronal cell loss by promoting the nuclear translocation of transcription factor EB (TFEB), thereby amplifying the autophagy-lysosomal pathway (ALP). Importantly, siRNA silencing of the TFEB gene impaired the GSK-3β inhibitor-mediated activation of the ALP pathway, thus negating the metabolic support required for neuronal functional improvement. Short-term treatment with the GSK-3β inhibitor significantly ameliorated motor dysfunction and improved motor coordination in model mice with MPTP-induced PD. GSK-3β inhibition increased the ALP and TFEB activities in the mice, thereby reducing α-synuclein aggregation and neuronal damage. In conclusion, our study demonstrates that inhibition of GSK-3β activity can delay the pathological processes of PD via promotion of the TFEB-ALP pathway, potentially providing a novel therapeutic target for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jiahong Zhong
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Xihui Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Yunming Zhong
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Liya Tan
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Fayou Yang
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Jialan Xu
- Department of Pharmacy, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Jianlin Wu
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| | - Zhuomiao Lin
- Department of Clinical Pharmacy, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China.
| |
Collapse
|
13
|
Zhao J, Gao G, Ding J, Liu W, Wang T, Zhao L, Xu J, Zhang Z, Zhang X, Xie Z. Astragaloside I Promotes Lipophagy and Mitochondrial Biogenesis to Improve Hyperlipidemia by Regulating Akt/mTOR/TFEB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21548-21559. [PMID: 39226078 DOI: 10.1021/acs.jafc.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The simultaneous enhancement of lipophagy and mitochondrial biogenesis has emerged as a promising strategy for lipid lowering. The transcription factor EB (TFEB) exhibits a dual role, whereby it facilitates the degradation of lipid droplets (LDs) through the process of lipophagy while simultaneously stimulating mitochondrial biogenesis to support the utilization of lipophagy products. The purpose of this study was to explore the effect of astragaloside I (AS I) on hyperlipidemia and elucidate its underlying mechanism. AS I improved serum total cholesterol and triglyceride levels and reduced hepatic steatosis and lipid accumulation in db/db mice. AS I enhanced the fluorescence colocalization of LDs and autophagosomes and promoted the proteins and genes related to the autolysosome. Moreover, AS I increased the expression of mitochondrial biogenesis-related proteins and genes, indicating that AS I promoted lipophagy and mitochondrial biogenesis. Mechanistically, AS I inhibits the protein level of p-TFEB (ser211) expression and promotes TFEB nuclear translocation. The activation of TFEB by AS I was impeded upon the introduction of the mammalian target of rapamycin (mTOR) agonist MHY1485. The inhibition of p-mTOR by AS I and the activation of TFEB were no longer observed after administration of the Akt agonist SC-79, which indicated that AS I activated TFEB to promote lipophagy-dependent on the Akt/mTOR pathway and may be a potentially effective pharmaceutical and food additive for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Jie Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Gai Gao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jing Ding
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei Liu
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Tao Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liang Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaowei Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
14
|
Ge CC, Li XY, Qiao WH, Cui C, Wang J, Gongpan P, Wu SL, Huang XY, Ma YB, Li DH, Chen XL, Geng CA. BACE1 inhibitors from the fruits of Alpinia oxyphylla have efficacy to treat T2DM-related cognitive disorder. Fitoterapia 2024; 178:106157. [PMID: 39098735 DOI: 10.1016/j.fitote.2024.106157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The fruits of Alpinia oxyphylla (Alpiniae Oxyphyllae Fructus, AOF) are one of the "Four Famous South Medicines" in China. In this study, beta-site amyloid protein precursor cleaving enzyme 1 (BACE1) was applied to explore the active components in AOF responsible for type 2 diabetes mellitus (T2DM)-related cognitive disorder. As a result, 24 compounds including three unreported ones (1, 3, 4) were isolated from AOF. Compound 1 is an unusual carbon‑carbon linked diarylheptanoid dimer, and compound 4 is the first case of 3,4-seco-eudesmane sesquiterpenoid with a 5/6-bicyclic skeleton. Four diarylheptanoids (3, 5-7), one flavonoid (9) and two sesquiterpenoids (14 and 20) showed BACE1 inhibitory activity, of which the most active 6 was revealed to be a non-competitive and anti-competitive mixed inhibitor. Docking simulation suggested that OH-4' of 6 played important roles in maintaining activity by forming hydrogen bonds with Ser36 and Ile126 residues. Compounds 3, 5, 9 and 20 displayed neuroprotective effects against amyloid β (Aβ)-induced damage in BV2 cells. Mechanism study revealed that compounds 5 and 20 downregulated the expression of BACE1 and upregulated the expression of Lamp2 to exert effects. Thus, the characteristic diarylheptanoids and sesquiterpenoids in AOF had the efficacy to alleviate T2DM-related cognitive disorder by inhibiting BACE1 activity and reversing Aβ-induced neuronal damage.
Collapse
Affiliation(s)
- Cui-Cui Ge
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xin-Yu Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wen-Hao Qiao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Can Cui
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ji Wang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Pianchou Gongpan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Sheng-Li Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Yan Huang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yun-Bao Ma
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Xing-Long Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China.
| | - Chang-An Geng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
15
|
Guan Y, Wang C, Li L, Dai X, Liu Y, Hsiang T, Liu S, Wang D. Structural characterization of Hericium coralloides polysaccharide and its neuroprotective function in Alzheimer's disease. Int J Biol Macromol 2024; 277:133865. [PMID: 39019356 DOI: 10.1016/j.ijbiomac.2024.133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder. Polysaccharides have been scientifically demonstrated to possess neuroprotective properties. In this study, a polysaccharide was isolated from the fruiting bodies of Hericium coralloides using hot water extraction and purified using column chromatography. This H. coralloides polysaccharide (HCP) is a galactan with a main chain of →6)-α-d-Galp-(1 → and a molecular weight of 16.06 kDa. The partial α-l-Fucp-(1 → substitution takes place at its O-2 position. The neuroprotective effects of HCP were investigated in an APP/PS1 mouse model of Alzheimer's disease. The step-down and Morris water maze tests demonstrated that HCP effectively ameliorated cognitive impairment. After 8-week treatment, HCP reduced amyloid-β plaques and phosphorylated tau protein deposition. In combination with the gut microbiota and metabolites, proteomic analysis suggested that the neuroprotective effects of HCP are associated with neuroinflammation and autophagy. Immunofluorescence and western blotting analyses confirmed that HCP facilitated the polarization of M2 microglia by augmenting autophagy flux, thereby effectively reducing levels of amyloid-β plaques and neuroinflammation. These data demonstrate that HCP effectively mitigates neuroinflammation by enhancing autophagic flux, demonstrating its potential for the treatment of AD.
Collapse
Affiliation(s)
- Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaojing Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada.
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
16
|
Guan D, Li Y, Zhao X, Wang K, Guo Y, Dong N, Cui Y, Gao Y, Wang M, Wang J, Ren Y, Shang P, Liu Y. Hederagenol improves multiple sclerosis by modulating Th17 cell differentiation. IUBMB Life 2024; 76:845-857. [PMID: 38838376 DOI: 10.1002/iub.2863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
Multiple sclerosis (MS) is a common autoimmune illness that is difficult to treat. The upregulation of Th17 cells is critical in the pathological process of MS. Hederagenol (Hed) has been shown to lower IL-17 levels, although its role in MS pathophysiology is uncertain. In this study, we explore whether Hed could ameliorate MS by modulating Th17 cell differentiation, with the goal of identifying new treatment targets for MS. The experimental autoimmune encephalomyelitis (EAE) mouse model was conducted and Hed was intraperitoneally injected into mice. The weight was recorded and the clinical symptom grade was assessed. Hematoxylin-eosin staining was carried out to determine the extent of inflammation in the spinal cord and liver. The luxol Fast Blue staining was performed to detect the pathological changes in the myelin sheath. Nerve damage was detected using NeuN immunofluorescence staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. Immunohistology approaches were used to study alterations in immune cells in the spinal cord. The proportions of T cell subsets in the spleens were analyzed by flow cytometry. RORγt levels were measured using quantitative real-time PCR or Western blot. The activity of the RORγt promoter was analyzed by Chromatin immunoprecipitation. Hed administration reduced the clinical symptom grade of EAE mice, as well as the inflammatory infiltration, demyelination, and cell disorder of the spinal cord, while having no discernible effect on the mouse weight. In addition, Hed treatment significantly reduced the number of T cells, particularly Th17 cells in the spinal cord and spleen-isolated CD4+ T cells. Hed lowered the RORγt levels in spleens and CD4+ T cells and overexpression of RORγt reversed the inhibitory effect of Hed on Th17 differentiation. Hed decreased nerve injury by modulating Th17 differentiation through the RORγt promoter. Hed regulates Th17 differentiation by reducing RORγt promoter activity, which reduces nerve injury and alleviates EAE.
Collapse
MESH Headings
- Animals
- Th17 Cells/immunology
- Th17 Cells/drug effects
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Cell Differentiation/drug effects
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/pathology
- Multiple Sclerosis/immunology
- Mice
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Female
- Oleanolic Acid/analogs & derivatives
- Oleanolic Acid/pharmacology
- Mice, Inbred C57BL
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spinal Cord/metabolism
- Spinal Cord/immunology
- Interleukin-17/metabolism
- Interleukin-17/genetics
Collapse
Affiliation(s)
- Dongsheng Guan
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yingxia Li
- The College of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xu Zhao
- Department of Pharmacy, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Kun Wang
- Department of Pharmacy, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yanke Guo
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ning Dong
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yinglin Cui
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yinghe Gao
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Mengmeng Wang
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jing Wang
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yihan Ren
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Penghui Shang
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuxuan Liu
- Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
17
|
Mitsikaris PD, Kostas S, Mourtzinos I, Menkissoglu-Spiroudi U, Papadopoulos A, Kalogiouri NP. Investigation of Rosa species by an optimized LC-QTOF-MS/MS method using targeted and non-targeted screening strategies combined with multivariate chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1100-1111. [PMID: 38439140 DOI: 10.1002/pca.3345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Plants of the Rosa genus are renowned for their pronounced and pleasant aroma and colors. OBJECTIVE The aim of this work was to develop a novel liquid chromatographic triple quadrupole time-of-flight tandem mass spectrometric (LC-QTOF-MS/MS) method for the investigation of the bioactive fingerprint of petals of different genotypes belonging to Rosa damascena and Rosa centifolia species. METHODOLOGY Central composite design (CCD) of response surface methodology (RSM) was used for the optimization of the LC-QTOF-MS/MS method. The method was validated and target, suspect, and non-target screening workflows were applied. Statistical analysis and chemometric tools were utilized to explore the metabolic fingerprint of the Rosa species. RESULTS RSM revealed that the optimal extraction parameters involved mixing 11 mg of sample with 1 mL of MeOH:H2O (70:30, v/v). Target analysis confirmed the presence of 11 analytes, all of which demonstrated low limits of quantification (LOQs; as low as 0.048 ng mg-1) and sufficient recoveries (RE: 85%-107%). In total, 28 compounds were tentatively identified through suspect analysis. Non-target analysis enabled the generation of robust OPLS-DA and HCA models that classified the samples according to their species with 100% accuracy. CONCLUSIONS A novel LC-QTOF-MS/MS method was developed and applied in the analysis of 47 R. centifolia and R. damascena flowers belonging to different genotypes.
Collapse
Affiliation(s)
- Petros D Mitsikaris
- Department of Nutritional Sciences and Dietetics, Laboratory of Chemical Biology, International Hellenic University, Thessaloniki, Greece
| | - Stefanos Kostas
- School of Agriculture, Laboratory of Floriculture, Aristotle University, Thessaloniki, Greece
| | - Ioannis Mourtzinos
- School of Agriculture, Laboratory of Food Science and Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Urania Menkissoglu-Spiroudi
- Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Pesticide Science Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Papadopoulos
- Department of Nutritional Sciences and Dietetics, Laboratory of Chemical Biology, International Hellenic University, Thessaloniki, Greece
| | - Natasa P Kalogiouri
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Zhang H, Li Y, Liu Y. An updated review of the pharmacological effects and potential mechanisms of hederagenin and its derivatives. Front Pharmacol 2024; 15:1374264. [PMID: 38962311 PMCID: PMC11220241 DOI: 10.3389/fphar.2024.1374264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Hederagenin (HG) is a natural pentacyclic triterpenoid that can be isolated from various medicinal herbs. By modifying the structure of HG, multiple derivatives with superior biological activities and safety profiles have been designed and synthesized. Accumulating evidence has demonstrated that HG and its derivatives display multiple pharmacological activities against cancers, inflammatory diseases, infectious diseases, metabolic diseases, fibrotic diseases, cerebrovascular and neurodegenerative diseases, and depression. Previous studies have confirmed that HG and its derivatives combat cancer by exerting cytotoxicity, inhibiting proliferation, inducing apoptosis, modulating autophagy, and reversing chemotherapy resistance in cancer cells, and the action targets involved mainly include STAT3, Aurora B, KIF7, PI3K/AKT, NF-κB, Nrf2/ARE, Drp1, and P-gp. In addition, HG and its derivatives antagonize inflammation through inhibiting the production and release of pro-inflammatory cytokines and inflammatory mediators by regulating inflammation-related pathways and targets, such as NF-κB, MAPK, JAK2/STAT3, Keap1-Nrf2/HO-1, and LncRNA A33/Axin2/β-catenin. Moreover, anti-pathogen, anti-metabolic disorder, anti-fibrosis, neuroprotection, and anti-depression mechanisms of HG and its derivatives have been partially elucidated. The diverse pharmacological properties of HG and its derivatives hold significant implications for future research and development of new drugs derived from HG, which can lead to improved effectiveness and safety profiles.
Collapse
Affiliation(s)
- Huize Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Gao G, Zhao J, Ding J, Liu S, Shen Y, Liu C, Ma H, Fu Y, Xu J, Sun Y, Zhang X, Zhang Z, Xie Z. Alisol B regulates AMPK/mTOR/SREBPs via directly targeting VDAC1 to alleviate hyperlipidemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155313. [PMID: 38520833 DOI: 10.1016/j.phymed.2023.155313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/03/2023] [Accepted: 12/25/2023] [Indexed: 03/25/2024]
Abstract
BACKGROUND The occurrence of hyperlipidemia is significantly influenced by lipid synthesis, which is regulated by sterol regulatory element binding proteins (SREBPs), thus the development of drugs that inhibit lipid synthesis has become a popular treatment strategy for hyperlipidemia. Alisol B (ALB), a triterpenoid compound extracted from Alisma, has been reported to ameliorate no-nalcoholic steatohepatitis (NASH) and slow obesity. However, the effect of ALB on hyperlipidemia and mechanism are unclear. PURPOSE To examine the therapeutic impact of ALB on hyperlipidemia whether it inhibits SREBPs to reduce lipid synthesis. STUDY DESIGN HepG2, HL7702 cells, and C57BL/6J mice were used to explore the effect of ALB on hyperlipidemia and the molecular mechanism in vivo and in vitro. METHODS Hyperlipidemia models were established using western diet (WD)-fed mice in vivo and oleic acid (OA)-induced hepatocytes in vitro. Western blot, real-time PCR and other biological methods verified that ALB regulated AMPK/mTOR/SREBPs to inhibit lipid synthesis. Cellular thermal shift assay (CETSA), molecular dynamics (MD), and ultrafiltration-LC/MS analysis were used to evaluate the binding of ALB to voltage-dependent anion channel protein-1 (VDAC1). RESULTS ALB decreased TC, TG, LDL-c, and increased HDL-c in blood, thereby ameliorating liver damage. Gene set enrichment analysis (GSEA) indicated that ALB inhibited the biosynthesis of cholesterol and fatty acids. Consistently, ALB inhibited the protein expression of n-SREBPs and downstream genes. Mechanistically, the impact of ALB on SREBPs was dependent on the regulation of AMPK/mTOR, thereby impeding the transportation of SREBPs from endoplasmic reticulum (ER) to golgi apparatus (GA). Further investigations indicated that the activation of AMPK by ALB was independent on classical upstream CAMKK2 and LKB1. Instead, ALB resulted in a decrease in ATP levels and an increase in the ratios of ADP/ATP and AMP/ATP. CETSA, MD, and ultrafiltration-LC/MS analysis indicated that ALB interacted with VDAC1. Molecular docking revealed that ALB directly bound to VDAC1 by forming hydrogen bonds at the amino acid sites S196 and H184 in the ATP-binding region. Importantly, the thermal stabilization of ALB on VDAC1 was compromised when VDAC1 was mutated at S196 and H184, suggesting that these amino acids played a crucial role in the interaction. CONCLUSION Our findings reveal that VDAC1 serves as the target of ALB, leading to the inhibition of lipid synthesis, presents potential target and candidate drugs for hyperlipidemia.
Collapse
Affiliation(s)
- Gai Gao
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Jie Zhao
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Jing Ding
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Shuyan Liu
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yanyan Shen
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Changxin Liu
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Huifen Ma
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yu Fu
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yiran Sun
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Xiaowei Zhang
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| |
Collapse
|
20
|
Fu J, Lin J, Dai Z, Lin B, Zhang J. Hypoxia-associated autophagy flux dysregulation in human cancers. Cancer Lett 2024; 590:216823. [PMID: 38521197 DOI: 10.1016/j.canlet.2024.216823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
A general feature of cancer is hypoxia, determined as low oxygen levels. Low oxygen levels may cause cells to alter in ways that contribute to tumor growth and resistance to treatment. Hypoxia leads to variations in cancer cell metabolism, angiogenesis and metastasis. Furthermore, a hypoxic tumor microenvironment might induce immunosuppression. Moreover, hypoxia has the potential to impact cellular processes, such as autophagy. Autophagy refers to the catabolic process by which damaged organelles and toxic macromolecules are broken down. The abnormal activation of autophagy has been extensively recorded in human tumors and it serves as a regulator of cell growth, spread to other parts of the body, and resistance to treatment. There is a correlation between hypoxia and autophagy in human malignancies. Hypoxia can regulate the activity of AMPK, mTOR, Beclin-1, and ATGs to govern autophagy in human malignancies. Furthermore, HIF-1α, serving as an indicator of low oxygen levels, controls the process of autophagy. Hypoxia-induced autophagy has a crucial role in regulating the growth, spread, and resistance to treatment in human malignancies. Hypoxia-induced regulation of autophagy can impact other mechanisms of cell death, such as apoptosis. Chemoresistance and radioresistance have become significant challenges in recent years. Hypoxia-mediated autophagy plays a crucial role in determining the response to these therapeutic treatments.
Collapse
Affiliation(s)
- Jiding Fu
- Department of Intensive Care Unit, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Zili Dai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Baisheng Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China.
| |
Collapse
|
21
|
Yin H, Liu R, Bie L. Gastrodin ameliorates neuroinflammation in Alzheimer's disease mice by inhibiting NF-κB signaling activation via PPARγ stimulation. Aging (Albany NY) 2024; 16:8657-8666. [PMID: 38752930 PMCID: PMC11164526 DOI: 10.18632/aging.205831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024]
Abstract
AIM We investigated the effects and targets of gastrodin (GAS) for improving cognitive ability in Alzheimer's disease (AD). METHODS The targets and mechanisms of GAS were analyzed by network pharmacology. Morris water and eight-arm radial mazes were used to detect the behaviors of 7-months-old APP/PS1 mice. The levels of IBA-1 and PPARγ were examined by histochemical staining, nerve cells were detected by Nissl staining, inflammatory cytokines were measured by ELISA, and protein expressions were monitored by Western blotting. The neurobehavioral effects of GAS on mice were detected after siRNA silencing of PPARγ. Microglia were cultured in vitro and Aβ1-42 was used to simulate the pathology of AD. After treatment with GAS, the levels of inflammatory cytokines and proteins were assayed. RESULTS Network pharmacological analysis revealed that PPARγ was the action target of GAS. By stimulating PPARγ, GAS inhibited NF-κB signaling activation and decreased neuroinflammation and microglial activation, thereby ameliorating the cognitive ability of AD mice. After silencing PPARγ, GAS could not further improve such cognitive ability. Cellular-level results demonstrated that GAS inhibited microglial injury, reduced tissue inflammation, and activated PPARγ. CONCLUSIONS GAS can regulate microglia-mediated inflammatory response by stimulating PPARγ and inhibiting NF-κB activation, representing a mechanism whereby it improves the cognitive behavior of AD.
Collapse
Affiliation(s)
- Haoyuan Yin
- Department of Neurovascular Surgery, Bethune First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Renjie Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Li Bie
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
22
|
Zhao L, Shi H, Zhang F, Xue H, Han Q. Hederagenin protects against myocardial ischemia-reperfusion injury via attenuating ALOX5-mediated ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3411-3424. [PMID: 37955689 DOI: 10.1007/s00210-023-02829-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Hederagenin (HDG), a medical herb, is known for its beneficial activities against diverse diseases. The cardioprotective effect of HDG has been preliminarily disclosed, but the efficacy and underlying mechanism by which HDG protects against myocardial ischemia-reperfusion (MI/R) injury have not been elucidated yet. To simulate MI/R injury, the left anterior descending artery was occluded for 30 min and then reperfusion for 120 min in a rat model, and the cellular model of hypoxia-reoxygenation (H/R) injury was constructed in H9c2 cardiomyocytes. Hematoxylin-eosin, Prussian blue, and 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) staining were conducted to assess the histological injury, iron deposition, and myocardial infarction. Myocardial enzymes and oxidative stress-related factors were detected using their commercial kits. Lipid peroxidation was measured using BODIPY581/591 probe, and iron content was detected. Cell counting kit (CCK)-8, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and flow cytometry assays were performed to assess cell viability and apoptosis. Protein levels were investigated by western blot. The interaction between HDG and 5-lipoxygenase (ALOX5) was verified using molecular docking. Our findings indicated that HDG significantly attenuated myocardial dysfunction by reducing infarction and myocardial injury. HDG significantly attenuated myocardial apoptosis in vitro and in vivo, as well as alleviating oxidative stress via reducing reactive oxygen species (ROS) and maintaining the balance between antioxidant and oxidant enzymes. Meanwhile, HDG inhibited I/R-induced ferroptosis in myocardium and cardiomyocytes, including reducing lipid peroxidation and iron level. Moreover, the binding relationship between HDG and ALOX5 was verified, and HDG could concentration dependently downregulate ALOX5. Furthermore, ALOX5 overexpression eliminated the inhibition of HDG on H/R-induced apoptosis, oxidative stress, and ferroptosis in H9c2 cardiomyocytes. HDG ameliorated myocardial dysfunction and cardiomyocyte injury by reducing apoptosis, oxidative stress, and ferroptosis through inhibiting ALOX5, providing a new perspective on the prevention and treatment of MI/R injury.
Collapse
Affiliation(s)
- Li Zhao
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Hongtao Shi
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Fan Zhang
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Honghong Xue
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Qinghua Han
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
- Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
23
|
Gu Z, Lv X, Guo Y, Qi M, Ge B. Total flavonoids of Cynomorium songaricum attenuates cognitive defects in an Aβ 1-42 -induced Alzheimer's disease rat model by activating BDNF/TrkB signaling transduction. Neuroreport 2023; 34:825-833. [PMID: 37851367 PMCID: PMC10609675 DOI: 10.1097/wnr.0000000000001960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disorder characterized by cognitive dysfunction and BDNF/TrkB is a well-conceived anti-AD signaling. Cynomorium songaricum Rupr. ( C. songaricum ) is a herb with promising neuroprotective effects and the function is majorly attributed to flavonoids. The current study attempted to explore the effects of total flavonoids of C. songaricum (CS) on AD model by focusing on changes in BDNF/TrkB axis. AD model was induced in rats via transcranial injection of Aβ 1-42 and AD symptoms treated with CS of three doses. Donepezil was used as the positive control. Changes in rat memory and learning abilities, brain histological, apoptosis, production of neurotransmitters, BDNF/TrkB axis, and apoptosis-related markers were measured. The injection of Aβ 1-42 induced cognitive dysfunction in AD rats. The integrity of brain tissue structure was destructed and apoptosis was induced in AD rats, in which was found the increased production of AChE and Aβ 1-42 , and decreased production of ChAT, ACH. At the molecular level, the expression of BDNF, TrkB, and Bcl-2 was suppressed, while the expression of Bax, caspase-3, and caspase-9 was induced. After the administration of CS, the memory and learning abilities of rats were improved, the production of neurotransmitter was restored, ordered arrangement of pyramidal cells was retained, and neuron apoptosis was inhibited. The attenuation of Aβ 1-42 -indcued impairments was associated with the activation of BDNF/TrkB axis and blockade of apoptosis-related pathways. Collectively, CS can improve learning and memory abilities in Aβ 1-42 -induced AD model rats. which may depend on the activation of the hippocampal BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Zhirong Gu
- Department of Pharmacy, Gansu Provincial People’s Hospital
| | - Xin Lv
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yan Guo
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mei Qi
- Department of Pharmacy, Gansu Provincial People’s Hospital
| | - Bin Ge
- Department of Pharmacy, Gansu Provincial People’s Hospital
| |
Collapse
|
24
|
Huang X, Shen QK, Guo HY, Li X, Quan ZS. Pharmacological overview of hederagenin and its derivatives. RSC Med Chem 2023; 14:1858-1884. [PMID: 37859723 PMCID: PMC10583830 DOI: 10.1039/d3md00296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023] Open
Abstract
Hederagenin is a pentacyclic triterpenoid isolated from plants and widely distributed in a variety of medicinal plants. By integrating and analyzing external related literature reports, the latest research progress on the pharmacological effects and structural modification of hederagenin was reviewed. Hederagenin has a wide range of pharmacological activities, including antitumor, anti-inflammatory, antidepressant, anti-neurodegenerative, antihyperlipidemic, antidiabetic, anti-leishmaniasis, and antiviral activities. Among them, it shows high potential in the field of anti-tumor treatment. This paper also reviews the structural modifications of hederagenin, including carboxyl group modifications and two hydroxyl group modifications. Future research on hederagenin will focus on prolonging its half-life, improving its bioavailability and structural modification to enhance its pharmacological activity, accelerating the preclinical research stage of hederagenin for it to enter the clinical research stage as soon as possible.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University Yanji Jilin 133002 China
| |
Collapse
|
25
|
Zhang L, Li Z, Zhang L, Qin Y, Yu D. Dissecting the multifaced function of transcription factor EB (TFEB) in human diseases: From molecular mechanism to pharmacological modulation. Biochem Pharmacol 2023; 215:115698. [PMID: 37482200 DOI: 10.1016/j.bcp.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The transcription factor EB (TFEB) is a transcription factor of the MiT/TFE family that translocations from the cytoplasm to the nucleus in response to various stimuli, including lysosomal stress and nutrient starvation. By activating genes involved in lysosomal function, autophagy, and lipid metabolism, TFEB plays a crucial role in maintaining cellular homeostasis. Dysregulation of TFEB has been implicated in various diseases, including cancer, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, infectious diseases, and inflammatory diseases. Therefore, modulating TFEB activity with agonists or inhibitors may have therapeutic potential. In this review, we reviewed the recently discovered regulatory mechanisms of TFEB and their impact on human diseases. Additionally, we also summarize the existing TFEB inhibitors and agonists (targeted and non-targeted) and discuss unresolved issues and future research directions in the field. In summary, this review sheds light on the crucial role of TFEB, which may pave the way for its translation from basic research to practical applications, bringing us closer to realizing the full potential of TFEB in various fields.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuan Qin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
26
|
Skała E, Szopa A. Dipsacus and Scabiosa Species-The Source of Specialized Metabolites with High Biological Relevance: A Review. Molecules 2023; 28:molecules28093754. [PMID: 37175164 PMCID: PMC10180103 DOI: 10.3390/molecules28093754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The genera Dipsacus L. and Scabiosa L. of the Caprifoliaceae family are widely distributed in Europe, Asia, and Africa. This work reviews the available literature on the phytochemical profiles, ethnomedicinal uses, and biological activities of the most popular species. These plants are rich sources of many valuable specialized metabolites with beneficial medicinal properties, such as triterpenoid derivatives, iridoids, phenolic acids, and flavonoids. They are also sources of essential oils. The genus Dipsacus has been used for centuries in Chinese and Korean folk medicines to treat bone (osteoporosis) and joint problems (rheumatic arthritis). The Korean Herbal Pharmacopoeia and Chinese Pharmacopoeia include Dipsaci radix, the dried roots of D. asperoides C.Y.Cheng & T.M.Ai. In addition, S. comosa Fisch. ex Roem & Schult. and S. tschiliiensis Grunning are used in traditional Mongolian medicine to treat liver diseases. The current scientific literature data indicate that these plants and their constituents have various biological properties, including inter alia antiarthritic, anti-neurodegenerative, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities; they have also been found to strengthen tendon and bone tissue and protect the liver, heart, and kidney. The essential oils possess antibacterial, antifungal, and insecticidal properties. This paper reviews the key biological values of Dipsacus and Scabiosa species, as identified by in vitro and in vivo studies, and presents their potential pharmacological applications.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|