1
|
Tang Y, Leng J, Luo Y, Luo F. Focusing on ferroptosis in alveolar bone loss during periodontitis: From mechanisms to therapies. Int Immunopharmacol 2025; 156:114683. [PMID: 40252463 DOI: 10.1016/j.intimp.2025.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Periodontitis is an oral immunoinflammatory disease induced by bacterial infection. During periodontitis, the aggravating destruction of the alveolar bone can result in tooth movement and even tooth loss. Current conventional treatments for periodontitis primarily focus on infection control, but their effectiveness in halting and restoring alveolar bone destruction is limited. To identify additional therapeutic targets, researchers have been dedicated to investigating other pathological mechanisms underlying alveolar bone loss during periodontitis. Recently, findings indicate that ferroptosis plays a role in the development of periodontitis. Ferroptosis is a nonapoptotic type of cell death marked by iron accumulation and lipid peroxidation. Recent investigations have revealed the complex interplay of ferroptosis and inflammation. The positive feedback loop between ferroptosis and inflammation may significantly contribute to the exacerbation of alveolar bone loss. In light of the advancements in research within this field in recent years, this review intends to thoroughly summarize the processes by which ferroptosis aggravates alveolar bone loss during periodontitis, along with relevant ferroptosis-targeted therapeutic agents. By highlighting the latest advancements in this area, we hope this review will inspire researchers to develop novel therapeutic strategies for more effective inflammation control and regeneration of alveolar bone.
Collapse
Affiliation(s)
- Yuting Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyan Leng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of General Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Wang Y, Yang Y, Chen Y, Zhou Y, Zhang S, Zhu W, Zhang X, Zhu J. Qing'e Pill rectifies bone homeostasis imbalance in diabetic osteoporosis via the AGE/RAGE pathway: A network pharmacology analysis and multi-omics validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119816. [PMID: 40245968 DOI: 10.1016/j.jep.2025.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic osteoporosis (DOP), a metabolic disorder arising from diabetes mellitus, results in a hyperglycemic state that impairs bone microstructure, strength, and quality, thereby increasing the risk of fractures and complicating treatment and rehabilitation. Qing'e Pill(QEP), first recorded in the Song Dynasty's Heji Ju Fang, is renowned as an effective formula for tonifying the kidneys and strengthening bones. Its potential therapeutic mechanisms for treating DOP remain to be explored. AIM OF THE STUDY This study aimed to elucidate the therapeutic mechanism of QEP, a Chinese herbal medicine compound, in the treatment of DOP by integrating network pharmacology and laboratory analyses. MATERIALS AND METHODS Gene targets associated with DOP were identified utilizing gene databases (GeneCards, TTD, OMIM). The active ingredients of QEP were characterized via HPLC analysis. The therapeutic potential of QEP was assessed in a rat model of DOP by monitoring blood glucose levels, employing Micro-CT imaging, and conducting histological staining. In vitro experiments were performed to confirm QEP's ability to promote bone formation. Additionally, its angiogenic potential was evaluated using scratch, migration, and tube formation assays. RESULTS QEP was observed to stimulate osteogenesis and angiogenesis in vitro, modulate the AGE/RAGE signaling pathway, and foster anti-inflammatory osteogenesis. Micro-CT analysis demonstrated significant enhancements in bone density and microstructure following QEP treatment. CONCLUSION QEP enhance osteogenesis and angiogenesis via the AGE/RAGE signaling pathway, offering anti-inflammatory, hypoglycemic, and anti-osteoporotic effects. These results support the potential clinical application of QEP in managing diabetic osteoporosis.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yao Yang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuan Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yanling Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Siming Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Junchen Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China.
| |
Collapse
|
3
|
Zhang H, Chang X, Liu X, Zhang B, Wang R, Wang Y, Dai S, Yao T, Zhang Q. Silencing of LOX-1 attenuates high glucose-induced ferroptosis in THVECs via the HIF-1α/SLC7A11 signaling pathway. Exp Cell Res 2025; 446:114451. [PMID: 40015503 DOI: 10.1016/j.yexcr.2025.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/11/2025] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVES Diabetic osteoporosis (DOP) represents a significant and serious complication associated with diabetes, characterized by a complex and inadequately understood pathophysiological mechanism. Recent studies have highlighted a robust association between DOP and ferroptosis. H-type vessels play a critical role in osteoporosis, while lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is associated with endothelial dysfunction related to diabetes. In this study, we investigate how LOX-1 affects ferroptosis in H-type vascular endothelial cells (THVECs) under high glucose (HG) conditions, aiming to elucidate the molecular mechanisms involved. METHODS THVECs were isolated from rats employing an enzymatic digestion method and subsequently validated through immunofluorescence analysis. The silencing of LOX-1 was achieved via transfection with a lentiviral vector. Cell viability was assessed using the CCK-8 assay, and ROS, MMP, GSH, MDA, and Fe2+ levels were assessed utilizing specific commercial kits. Western blotting and PCR assessed LOX-1, HIF-1α, SLC7A11, and GPX4 expression levels. RESULTS In high glucose conditions, LOX-1 expression at both protein and mRNA levels increased, while ROS, MDA, and Fe2+ rose, and MMP and GSH levels fell, resulting in ferroptosis in THVECs. This condition could be reversed by silencing LOX-1 or by administering the ferroptosis inhibitor (Fer-1). Further analysis showed that silencing LOX-1 enhanced the expression of HIF-1α, SLC7A11, and GPX4, which mitigated ferroptosis in THVECs. CONCLUSIONS Downregulation of LOX-1 alleviates high glucose-induced ferroptosis in THVECs via the HIF-1α/SLC7A11 pathway. This suggests that LOX-1 functions as a critical target for regulating ferroptosis in THVECs, providing a novel insight into the pathological mechanisms associated with DOP.
Collapse
Affiliation(s)
- Haiqi Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinying Chang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xuan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Baozhuan Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Rongrong Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yuhui Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Simeng Dai
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Tonghan Yao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Qi Zhang
- Department of Gerontology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Lan D, Li K, Ye Z, Luo Y, Li C, Li H. Mogroside V enhances bone marrow mesenchymal stem cells osteogenesis under hyperglycemic conditions through upregulating miR-10b-5p and PI3K/Akt signaling. J Orthop Surg Res 2025; 20:278. [PMID: 40082984 PMCID: PMC11907933 DOI: 10.1186/s13018-025-05684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Mogroside V (MV) is a triterpene glucoside that reportedly exhibits an array of antitumor, anti-inflammatory, hypolipidemic, and hypoglycemic properties. In prior studies, our group determined that MV was able to readily enhance osteogenic bone marrow mesenchymal stem cells (BMSCs) differentiation under high-glucose conditions through mechanisms potentially associated with miR-10b-5p and PI3K/Akt signaling activity. The precise molecular basis for these effects, however, remains to be fully elucidated. OBJECTIVE This study aims to explore the potential mechanisms by which MV regulates the osteogenic differentiation of BMSCs under hyperglycemic conditions. METHODS Femoral and tibial BMSCs were isolated from control and diabetic C57BL/6J mice. qRT-PCR was used to quantify miR-10b-5p levels. Putative miR-10b-5p target genes were predicted through bioinformatics assays and validated in a luciferase reporter assay system. miR-10b-5p expression was inhibited with an antagomiR-10b-5p construct, while PI3K/Akt pathway signaling was inhibited with LY294002. Western blotting was used to detect PI3K/Akt pathway and target gene protein levels, while Alizarin red staining was used to detect calcium nodule deposition by BMSCs. RESULTS miR-10b-5p upregulation was noted in BMSCs exposed to hyperglycemic conditions. HOXD10 was identified as a cell differentiation-related miR-10b-5p target gene in bioinformatics analyses, and the targeting relationship between the two was confirmed in a luciferase reporter assay. MV treatment elicited significantly higher levels of miR-10b-5p expression, PI3K phosphorylation, and calcium deposition, while antagomiR-10b-5p or LY294002 treatment reversed these changes, and the opposite trends were observed with respect to HOXD10 protein levels. CONCLUSION MV favors BMSCs osteogenic differentiation under high-glucose conditions through the upregulation of miR-10b-5p and the activation of PI3K/Akt signaling.
Collapse
Affiliation(s)
- Dongni Lan
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kongmei Li
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhimao Ye
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yicai Luo
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Cuiping Li
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hao Li
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Liu T, Wu XL, Fu YX, Ding T, Ning DS, Pan ZH. Calliloboapins A-L, diterpenoids from the branches and leaves of Callicarpa loboapiculata and their biological activities. Bioorg Chem 2025; 156:108234. [PMID: 39914032 DOI: 10.1016/j.bioorg.2025.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/28/2025]
Abstract
Eleven new isopimarane diterpenoids and one new ent-pimarane diterpenoid, named calliloboapins A-L (1-12), were isolated from the branches and leaves of Callicarpa loboapiculata F. P. Metcalf. Their structures and absolute configurations were established by HRESIMS, UV, IR, 1D and 2D NMR spectroscopic analyses, single crystals X-ray diffraction and ECD calculations. Structurally, compound 1 possesses an unusual tricyclo [2.2.2.0] octane structure, and compound 2 is characterized by a cyclopentane ring B. Compound 3 contains an unprecedented ten-membered ring with an oxygen bridge connecting C-8 and C-9. The anti-inflammatory activities of all isolated compounds were evaluated by LPS-induced RAW264.7 cells. Compounds 1-12 inhibited the release of NO to varying degrees, and 3, 4, 8, 11 and 12 significantly suppressed the overexpression of inducible NO synthase. Moreover, liver X receptor alpha (LXRα) was predicted to be the probable target of isolates by Swiss Target Prediction tool, and compounds 2-4, 11 and 12 increased the protein expression of ATP-binding cassette transporter (ABCA1), showing potential antiatherogenic properties.
Collapse
Affiliation(s)
- Ting Liu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541006, China
| | - Xiao-Lu Wu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541006, China
| | - Yu-Xia Fu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541006, China
| | - Tao Ding
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541006, China
| | - De-Sheng Ning
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541006, China
| | - Zheng-Hong Pan
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541006, China.
| |
Collapse
|
6
|
Lin YZ, Chen ZH, Yang JF, Han LJ, Yu YT, Zhan JN, Tan GC, Liu LY, Xie CL, Shan P, Jin C, Liu HX. Astaxanthin Prevents Glucocorticoid-Induced Femoral Head Osteonecrosis by Targeting Ferroptosis through the JAK2/STAT3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4270-4287. [PMID: 39903514 DOI: 10.1021/acs.jafc.4c09284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Glucocorticoid (GC) is extensively used in clinical practice, and the osteonecrosis of the femoral head caused by them is a common issue in orthopedic surgery, yet the underlying mechanisms remain unclear. Astaxanthin (AST), a potent natural antioxidant, has an unexplored impact on GC-induced osteonecrosis of the femoral head (GIONFH). This study explores the effects and mechanisms of AST in counteracting dexamethasone (Dex)-induced ferroptosis and GIONFH. We developed a rat model of GIONFH using intraperitoneal Dex injections and conducted in vitro analysis by culturing osteoblasts (OBs) with Dex treatment. We assessed the impact of AST on Dex-treated OBs using C11-BODIPY and FerroOrange staining, mitochondrial functionality tests, and protein expression analyses through Western blot and immunofluorescence. The influence of AST on bone microarchitecture of femoral head in rat was assessed using micro-CT, hematoxylin and eosin staining, immunofluorescence, and immunohistochemistry at imaging and histological levels. Our findings suggest that AST exerts an inhibitory effect on Dex-induced ferroptosis and GIONFH. In vitro, AST treatment increased glutathione and decreased malondialdehyde, lipid peroxidation, and mitochondrial-reactive oxygen species. Additionally, AST treatment also enhances the phosphorylation of STAT3, upregulates glutathione peroxidase 4 and osteogenic-related proteins, and stimulates bone formation. To delve deeper into the mechanism, the findings revealed that AST triggered activation of JAK2/STAT3 signaling. Moreover, the use of siRNA-STAT3 blocked the beneficial effect of AST in OBs cultivated with Dex. In brief, AST combats GIONFH by activating the JAK2/STAT3 pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Yu-Zhe Lin
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| | - Zi-Hao Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| | - Jian-Feng Yang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| | - Li-Jiang Han
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| | - Yi-Tian Yu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Juan-Nan Zhan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| | - Guang-Chan Tan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| | - Le-Yang Liu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| | - Cheng-Long Xie
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| | - Ping Shan
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Jin
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| | - Hai-Xiao Liu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
| |
Collapse
|
7
|
Dai L, Wang Q. Targeting ferroptosis: opportunities and challenges of mesenchymal stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2025; 16:47. [PMID: 39901210 PMCID: PMC11792594 DOI: 10.1186/s13287-025-04188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by progressive β-cell death, leading to β-cell loss and insufficient insulin secretion. Mesenchymal stem cells (MSCs) transplantation is currently one of the most promising methods for β-cell replacement therapy. However, recent studies have shown that ferroptosis is not only one of the key mechanisms of β-cell death, but also one of the reasons for extensive cell death within a short period of time after MSCs transplantation. Ferroptosis is a new type of regulated cell death (RCD) characterized by iron-dependent accumulation of lipid peroxides. Due to the weak antioxidant capacity of β-cells, they are susceptible to cytotoxic stimuli such as oxidative stress (OS), and are therefore susceptible to ferroptosis. Transplanted MSCs are also extremely susceptible to perturbations in their microenvironment, especially OS, which can weaken their antioxidant capacity and induce MSCs death through ferroptosis. In the pathophysiological process of T1DM, a large amount of reactive oxygen species (ROS) are produced, causing OS. Therefore, targeting ferroptosis may be a key way to protect β-cells and improve the therapeutic effect of MSCs transplantation. This review reviews the research related to ferroptosis of β-cells and MSCs, and summarizes the currently developed strategies that help inhibit cell ferroptosis. This study aims to help understand the ferroptosis mechanism of β-cell death and MSCs death after transplantation, emphasize the importance of targeting ferroptosis for protecting β-cells and improving the survival and function of transplanted MSCs, and provide a new research direction for stem cells transplantation therapy of T1DM in the future.
Collapse
Affiliation(s)
- Le Dai
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xiantai Avenue, Changchun City, Jilin Province, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xiantai Avenue, Changchun City, Jilin Province, China.
| |
Collapse
|
8
|
Zuo R, Cao B, Kong L, Wang F, Li S, Shan H, Guan J, Kang Q. MiR-370-3p regulate TLR4/SLC7A11/GPX4 to alleviate the progression of glucocorticoids-induced osteonecrosis of the femoral head by promoting osteogenesis and suppressing ferroptosis. J Orthop Translat 2025. [DOI: 10.1016/j.jot.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2025] Open
|
9
|
Lin C, Hu Y, Lin Z, Du L, Hu Y, Ouyang L, Xie X, Cheng P, Liao J, Lu L, Zeng R, Xia P, Hou Z, Liu G, Hu H. MMP-9 responsive hydrogel promotes diabetic wound healing by suppressing ferroptosis of endothelial cells. Bioact Mater 2025; 43:240-254. [PMID: 39386223 PMCID: PMC11461830 DOI: 10.1016/j.bioactmat.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Ferroptosis plays a crucial role in the progression of diabetic wounds, suggesting potential therapeutic strategies to target ferroptosis. Transient receptor potential ankyrin 1 (TRPA1) is a non-selective calcium channel that acts as a receptor for a variety of physical or chemical stimuli. Cinnamaldehyde (CA) is a specific TRPA1 agonist. In in vitro experiments, we observed that high glucose (HG) treatment induced endothelial cell ferroptosis, impairing cell function. CA successfully inhibited endothelial cell ferroptosis, improving migration, proliferation, and tube formation. Further mechanistic studies showed that CA-activated TRPA1-induced Ca2+ influx promoted the phosphorylation of calmodulin-dependent protein kinase II (CaMKII) and nuclear factor-E 2-related factor 2 (Nrf2) translocation, which contributed to the elevation of glutathione peroxidase 4 (GPX4), leading to the inhibition of endothelial cell ferroptosis. In addition, CA was incorporated into an MMP-9-responsive injectable duplex hybrid hydrogel (CA@HA-Gel), allowing its efficient sustained release into diabetic wounds in an inflammation-responsive manner. The results showed that CA@HA-Gel inhibited wound endothelial cell ferroptosis and significantly promoted diabetic wound healing. In summary, the results presented in this study emphasize the potential therapeutic application of CA@HA-Gel in the treatment of diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Chuanlu Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Longyu Du
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yixin Hu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Peng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ruiyin Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ping Xia
- Department of Orthopaedics, Wuhan Fourth Hospital (Puai Hospital), Wuhan, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Micro-explore Innovative Pharmaceutical Research Co., Ltd, Wuhan, Hubei, 430074, China
- Suzhou Organ-on-a-Chip System Science and Technology Co., Ltd, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
10
|
Gao K, Lv L, Li Z, Wang C, Zhang J, Qiu D, Xue H, Xu Z, Tan G. Natural Products in the Prevention of Degenerative Bone and Joint Diseases: Mechanisms Based on the Regulation of Ferroptosis. Phytother Res 2025; 39:162-188. [PMID: 39513459 DOI: 10.1002/ptr.8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024]
Abstract
Degenerative bone and joint diseases (DBJDs), characterized by osteoporosis, osteoarthritis, and chronic inflammation of surrounding soft tissues, are systemic conditions primarily affecting the skeletal system. Ferroptosis, a programmed cell death pathway distinct from apoptosis, autophagy, and necroptosis. Accumulating evidence suggests that ferroptosis is intricately linked to the pathogenesis of DBJDs, and targeting its regulation could be beneficial in managing these conditions. Natural products, known for their anti-inflammatory and antioxidant properties, have shown unique advantages in preventing DBJDs, potentially through modulating ferroptosis. This article provides an overview of the latest research on ferroptosis, with a focus on its role in the pathogenesis of DBJDs and the therapeutic potential of natural products targeting this cell death pathway, offering novel insights for the prevention and treatment of DBJDs.
Collapse
Affiliation(s)
- Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longlong Lv
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenmoji Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiahao Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daodi Qiu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Jia X, Zhang G, Yu D. Application of extracellular vesicles in diabetic osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1466775. [PMID: 39720256 PMCID: PMC11666354 DOI: 10.3389/fendo.2024.1466775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024] Open
Abstract
As the population ages, the occurrence of osteoporosis is becoming more common. Diabetes mellitus is one of the factors in the development of osteoporosis. Compared with the general population, the incidence of osteoporosis is significantly higher in diabetic patients. Diabetic osteoporosis (DOP) is a metabolic bone disease characterized by abnormal bone tissue structure due to hyperglycemia and insulin resistance, reduced bone strength and increased risk of fractures. This is a complex mechanism that occurs at the cellular level due to factors such as blood vessels, inflammation, and hyperglycemia and insulin resistance. Although the application of some drugs in clinical practice can reduce the occurrence of DOP, the incidence of fractures caused by DOP is still very high. Extracellular vesicles (EVs) are a new communication mode between cells, which can transfer miRNAs and proteins from mother cells to target cells through membrane fusion, thereby regulating the function of target cells. In recent years, the role of EVs in the pathogenesis of DOP has been widely demonstrated. In this article, we first describe the changes in the bone microenvironment of osteoporosis. Second, we describe the pathogenesis of DOP. Finally, we summarize the research progress and challenges of EVs in DOP.
Collapse
Affiliation(s)
- Xiaopeng Jia
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gongzi Zhang
- Department of Rehabilitation Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Deshui Yu
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
12
|
Wei F, Ruan B, Dong J, Yang B, Zhang G, Kelvin Yeung WK, Wang H, Cao W, Wang Y. Asperosaponin VI inhibition of DNMT alleviates GPX4 suppression-mediated osteoblast ferroptosis and diabetic osteoporosis. J Adv Res 2024:S2090-1232(24)00554-X. [PMID: 39647633 DOI: 10.1016/j.jare.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024] Open
Abstract
INTRODUCTION Diabetic osteoporosis (DOP) is an insidious complication of diabetes with limited therapeutic options. DOP is pathologically associated with various types of regulated cell death, but the precise role of ferroptosis in the process remains poorly understood. Asperosaponin VI (AVI), known for its clinical efficacy in treating bone fractures and osteoporosis, may exert its osteoprotective effects through mechanisms involving ferroptosis, however this has not been established. OBJECTIVES This study aimed to investigate the role of AVI in modulating ferroptosis in a mouse model of DOP and to explore the underlying mechanisms. METHODS We assessed OP alterations in femurs of DOP-conditioned mice and primary bone cells. We generated a strain of osteoblast-specific Gpx4-deficient mice. A combination of micro-CT, immunohistochemistry, immunofluorescence, methylation-specific PCR (MSP), bisulfite sequencing PCR (BSP), western blotting (WB), and AVI pull-down assays were employed to elucidate the mechanism and therapeutic target of AVI in DOP. RESULTS Our findings revealed that femurs from DOP-conditioned mice exhibited significant ferroptosis and suppression of the core anti-ferroptosis factor GPX4, mainly due to hypermethylation of the Gpx4 promoter mediated by DNA methyltransferases DNMT1and DNMT3a. Notably, treatment with AVI effectively reversed the hypermethylation, restored GPX4 expression, and reduced ferroptotic pathologies associated with DOP by inhibiting DNMT1/3a. In primarily-cultured osteoblasts and osteoclasts, AVI alleviated GPX4 suppression and reduced ferroptosis in DOP-conditioned osteoblasts through a mechanism dependent on DNMT inhibition and GPX4 restoration. Importantly, the anti-ferroptotic and osteoprotective effects of AVI were abolished in osteoblastic Gpx4 haplo-deficient mice (Gpx4Ob-/+) or when GPX4 was pharmacologically inactivated with RSL3. CONCLUSIONS Our study identifies a pivotal epigenetic ferroptotic pathway that contributes significantly to DOP and uncovers a crucial pharmacological property of AVI that is potentially effective in treating patients with DOP and related osteoporotic disorders.
Collapse
Affiliation(s)
- Fanhao Wei
- Department of Graduate School, Dalian Medical University, No.9 of West Section of Lushun South Road, Dalian 116044, China; The Yangzhou School of Clinical Medicine of Dalian Medical University, 98 West Nantong Road, Yangzhou 225001, China
| | - Binjia Ruan
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 West Nantong Road, Yangzhou 225001, China
| | - Jian Dong
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Bin Yang
- Department of Orthopaedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Road, Yangzhou 225001, China
| | - Guofu Zhang
- Department of Orthopaedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Road, Yangzhou 225001, China
| | - Wai Kwok Kelvin Yeung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongwei Wang
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, 22 Hankou Road, Nanjing 210093, China.
| | - Wangsen Cao
- Department of Orthopaedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Road, Yangzhou 225001, China; Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, 22 Hankou Road, Nanjing 210093, China; Yancheng First People's Hospital, Affiliated Hospital of Nanjing University Medical School, South People's Road, Yancheng 224006, China..
| | - Yongxiang Wang
- Department of Orthopaedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Road, Yangzhou 225001, China; Department of Orthopaedics, Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou 225001, China; The Yangzhou School of Clinical Medicine of Dalian Medical University, 98 West Nantong Road, Yangzhou 225001, China; Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 West Nantong Road, Yangzhou 225001, China.
| |
Collapse
|
13
|
Huo G, Lin Y, Liu L, He Y, Qu Y, Liu Y, Zhu R, Wang B, Gong Q, Han Z, Yin H. Decoding ferroptosis: transforming orthopedic disease management. Front Pharmacol 2024; 15:1509172. [PMID: 39712490 PMCID: PMC11659002 DOI: 10.3389/fphar.2024.1509172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
As a mechanism of cell death, ferroptosis has gained popularity since 2012. The process is distinguished by iron toxicity and phospholipid accumulation, in contrast to autophagy, apoptosis, and other cell death mechanisms. It is implicated in the advancement of multiple diseases across the body. Researchers currently know that osteosarcoma, osteoporosis, and other orthopedic disorders are caused by NRF2, GPX4, and other ferroptosis star proteins. The effective relief of osteoarthritis symptoms from deterioration has been confirmed by clinical treatment with multiple ferroptosis inhibitors. At the same time, it should be reminded that the mechanisms involved in ferroptosis that regulate orthopedic diseases are not currently understood. In this manuscript, we present the discovery process of ferroptosis, the mechanisms involved in ferroptosis, and the role of ferroptosis in a variety of orthopedic diseases. We expect that this manuscript can provide a new perspective on clinical diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guanlin Huo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Yi Qu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Bo Wang
- Department of Orthopaedics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Qing Gong
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhongyu Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongbing Yin
- Orthopedic Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Pei L, Yao Z, Liang D, Yang K, Tao L. Mitochondria in skeletal system-related diseases. Biomed Pharmacother 2024; 181:117505. [PMID: 39499974 DOI: 10.1016/j.biopha.2024.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 12/21/2024] Open
Abstract
Skeletal system-related diseases, such as osteoporosis, arthritis, osteosarcoma and sarcopenia, are becoming major public health concerns. These diseases are characterized by insidious progression, which seriously threatens patients' health and quality of life. Early diagnosis and prevention in high-risk populations can effectively prevent the deterioration of these patients. Mitochondria are essential organelles for maintaining the physiological activity of the skeletal system. Mitochondrial functions include contributing to the energy supply, modulating the Ca2+ concentration, maintaining redox balance and resisting the inflammatory response. They participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes and myocytes to external stimuli. In this review, we describe the pathogenesis of skeletal system diseases, focusing on mitochondrial function. In addition to osteosarcoma, a characteristic of which is active mitochondrial metabolism, mitochondrial damage occurs during the development of other diseases. Impairment of mitochondria leads to an imbalance in osteogenesis and osteoclastogenesis in osteoporosis, cartilage degeneration and inflammatory infiltration in arthritis, and muscle atrophy and excitationcontraction coupling blockade in sarcopenia. Overactive mitochondrial metabolism promotes the proliferation and migration of osteosarcoma cells. The copy number of mitochondrial DNA and mitochondria-derived peptides can be potential biomarkers for the diagnosis of these disorders. High-risk factor detection combined with mitochondrial component detection contributes to the early detection of these diseases. Targeted mitochondrial intervention is an effective method for treating these patients. We analyzed skeletal system-related diseases from the perspective of mitochondria and provided new insights for their diagnosis, prevention and treatment by demonstrating the relationship between mitochondria and the skeletal system.
Collapse
Affiliation(s)
- Liang Pei
- Department of Pediatrics, Shengjing Hospital of China Medical University, China
| | - Zhuo Yao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Dong Liang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| |
Collapse
|
15
|
Zhang M, Zhang Y, He J, Wang X, Wang Y, Li L, Tao L, Zhang M, Shen X. Gastrodin attenuates diabetic cardiomyopathy characterized by myocardial fibrosis by inhibiting the KLK8-PAR1 signaling axis. Chin Med 2024; 19:164. [PMID: 39578836 PMCID: PMC11583739 DOI: 10.1186/s13020-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM), characterized by myocardial fibrosis, is a major cause of mortality and morbidity in diabetic patients; the inhibition of cardiac fibrosis is a fundamental strategy for treating DCM. Gastrodin (GAS), a compound extracted from Gastrodia elata protects against DCM, but the molecular mechanism underlying its antifibrotic effect has not been elucidated. METHODS In vivo, the effects of GAS were investigated using C57BL/6 mice with DCM, which was induced by administering a high-sugar, high-fat (HSF) diet and streptozotocin (STZ). We assessed the cardiac function in these mice and detected histopathological changes in their hearts and the degree of cardiac fibrosis. In vitro, neonatal rat cardiac fibroblasts (CFs) were transformed into myofibroblasts by exposing them to high glucose combined with high palmitic acid (HG-PA), and CFs were induced by pEX-1 (pGCMV/MCS/EGFP/Neo) plasmid-mediated overexpression of KLK8, which contains the rat KLK8 gene. The KLK8 siRNA was knocked down to study the effects of GAS on CF differentiation, collagen synthesis, and cell migration by specific mechanisms of action of GAS. RESULTS GAS attenuated pathological changes in the hearts of DCM mice, rescued impaired cardiac function, and attenuated cardiac fibrosis. Additionally, the results of molecular docking analysis showed that GAS binds to kinin-releasing enzyme-related peptidase 8 (KLK8) to inhibit the increase in protease-activated receptor-1 (PAR-1), thus attenuating myocardial fibrosis. Specifically, GAS attenuated the transformation of neonatal rat CFs to myofibroblasts exposed to HG-PA. Overexpressing KLK8 promoted CF differentiation, collagen synthesis, and cell migration, and KLK8 siRNA attenuated HG-PA-induced CF differentiation, collagen synthesis, and cell migration. Further studies revealed that a PAR-1 antagonist, but not a PAR-2 antagonist, could attenuate CF differentiation, collagen synthesis, and cell migration. Additionally, GAS inhibited KLK8 upregulation and PAR1 activation, thus blocking the differentiation, collagen synthesis, and cell migration of HG-PA-exposed CFs and triggering TGF-β1/Smad3 signaling. CONCLUSION GAS alleviated pathological changes in the hearts of DCM model mice induced by an HSF diet combined with STZ. KLK8 mediated HG-PA-induced differentiation, collagen synthesis, and the migration of CFs. GAS attenuated the differentiation, collagen synthesis, and migration of CFs by inhibiting the KLK8-PAR1 signaling axis, a process in which TGF-β1 and Smad3 are involved.
Collapse
Affiliation(s)
- MingShan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang , 561113, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guian New District, Guiyang, 561113, Guizhou, China
| | - YuFei Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guian New District, Guiyang, 561113, Guizhou, China
| | - JingGang He
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guian New District, Guiyang, 561113, Guizhou, China
| | - XinRui Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guian New District, Guiyang, 561113, Guizhou, China
| | - YinYin Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guian New District, Guiyang, 561113, Guizhou, China
| | - LinYan Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guian New District, Guiyang, 561113, Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China.
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guian New District, Guiyang, 561113, Guizhou, China.
| | - Min Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang , 561113, Guizhou, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China.
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guian New District, Guiyang, 561113, Guizhou, China.
| |
Collapse
|
16
|
Zheng X, Ye FC, Sun T, Liu FJ, Wu MJ, Zheng WH, Wu LF. Delay the progression of glucocorticoid-induced osteoporosis: Fraxin targets ferroptosis via the Nrf2/GPX4 pathway. Phytother Res 2024; 38:5203-5224. [PMID: 39192711 DOI: 10.1002/ptr.8310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) commonly accelerates bone loss, increasing the risk of fractures and osteonecrosis more significantly than traditional menopausal osteoporosis. The extracellular environment influenced by glucocorticoids heightens fracture and osteonecrosis risks. Fraxin (Fra), a key component of the traditional Chinese herbal remedy Cortex Fraxini, is known for its wide-ranging pharmacological effects, but its impact on GIOP remains unexplored. This investigation aims to delineate the effects and underlying mechanisms of Fra in combating dexamethasone (Dex)-induced ferroptosis and GIOP. We established a mouse model of GIOP via intraperitoneal injections of Dex and cultured osteoblasts with Dex treatment for in vitro analysis. We evaluated the impact of Fra on Dex-treated osteoblasts through assays such as C11-BODIPY and FerroOrange staining, mitochondrial functionality tests, and protein expression analyses via Western blot and immunofluorescence. The influence of Fra on bone microarchitecture of GIOP in mice was assessed using microcomputerized tomography, hematoxylin and eosin staining, double-labeling with Calcein-Alizarin Red S, and immunohistochemistry at imaging and histological levels. Based on our data, Fra prevented Dex-induced ferroptosis and bone loss. In vitro, glutathione levels increased and malondialdehyde, lipid peroxidation, and mitochondrial reactive oxygen species decreased. Fra treatment also increases nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and COL1A1 expression and promotes bone formation. To delve deeper into the mechanism, the findings revealed that Fra triggered the activation of Nrf2/GPX4 signaling. Moreover, the use of siRNA-Nrf2 blocked the beneficial effect of Fra in osteoblasts cultivated with Dex. Fra effectively combats GIOP by activating the Nrf2/GPX4 signaling pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Fang-Chen Ye
- The First School of Medicine, Nanfang Medical University, Guangzhou, China
| | - Tao Sun
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Fei-Jun Liu
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Ming-Jian Wu
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Wen-Hao Zheng
- Department of Orthopaedic, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling-Feng Wu
- Department of Orthopedics, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| |
Collapse
|
17
|
Liu Y, Feng Q, Zou L, Zhu C, Xia W. Oligoasthenozoospermia is alleviated in a mouse model by [Gly14]-humanin-mediated attenuation of oxidative stress and ferroptosis. Andrology 2024. [PMID: 39435863 DOI: 10.1111/andr.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Oligoasthenozoospermia is a common cause of male infertility, for which effective treatments are urgently needed. Humanin (HN) is a peptide associated with this condition. OBJECTIVES To investigate the ameliorative effect of [Gly14]-Humanin (HNG) on oligoasthenozoospermia and the mechanisms. MATERIALS AND METHODS Mice were treated with cyclophosphamide (CP) to construct a mice model of oligoasthenozoospermia. The resulting model mice were treated with saline or HNG. Subsequently, the testis weights, organ indices, testicular structure, sperm counts and motilities, litter sizes, and serum testosterone concentrations of the mice were determined. Differential gene expression in testicular tissues was determined by RNA sequencing. TM3, TM4, GC1, and GC2 cells were exposed to erastin to induce ferroptosis, followed by treatment with HNG or HNG + ML385 (a nuclear factor erythroid 2-related factor 2 inhibitor). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and ferrous ions (Fe2+) were determined and their expression of ferroptosis-related proteins was determined by immunofluorescence and western blot. RESULTS The HNG treatment improved testis and sperm parameters and increased litter size and serum testosterone concentrations in model mice. Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis revealed significant differential expression of ferroptosis-related genes. The expression of ferroptosis-related proteins increased in testicular tissues after the HNG treatment. The concentrations of ROS, MDA, and Fe2+ decreased and the concentrations of GSH increased in testicular tissues and in TM3 and TM4 cells after HNG treatment. In vitro experiments confirmed that HNG activated the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 (Nrf2/GPX4) pathway. However, these effects of HNG were blocked by ML385 treatment. DISCUSSION AND CONCLUSION HNG demonstrated a therapeutic effect on oligoasthenozoospermia in a mouse model by reducing oxidative stress and ferroptosis. In TM3 and TM4 cells, HNG attenuated cellular oxidative stress and inhibited ferroptosis via the Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Yumeng Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
18
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Gu S, Wang J, Yu S, Zhang S, Gao T, Yan D, Xie R, Gu M, Yu M, Zhang Z, Lou Z, Ding X, Chen Y, Li C. Berberine ameliorates nonalcoholic fatty liver disease-induced bone loss by inhibiting ferroptosis. Bone 2024; 185:117114. [PMID: 38723878 DOI: 10.1016/j.bone.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) may contribute to osteoporosis. Berberine is a traditional Chinese medicine and was recently shown to be beneficial in NAFLD. However, little is known about its impact on bone loss induced by NAFLD. AIM We aimed to explore the role of berberine in bone loss and determine its underlying mechanisms in NAFLD. METHODS C57BL/6 mice were fed a high-fat high-fructose high-glucose diet (HFFGD) for 16 weeks to establish a NAFLD mouse model. The mice were administered berberine (300 mg/kg/d) by gavage, and fatty liver levels and bone loss indicators were tested. RESULTS Berberine significantly improved HFFGD-induced weight gain, hepatic lipid accumulation and increases in serum liver enzymes, thereby alleviating NAFLD. Berberine increased trabecular number (Tb. N), trabecular thickness (Tb. Th), bone volume to tissue volume ratio (BV/TV), and decreased trabecular separation (Tb. Sp) and restored bone loss in NAFLD. Mechanistically, berberine significantly inhibited ferroptosis and 4-hydroxynonenal (4-HNE), prostaglandin-endoperoxide synthase 2 (PTGS2), and transferrin (TF) levels and increased ferritin heavy chain (FTH) levels in the femurs of HFFGD-fed mice. Moreover, berberine also activated the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling pathway. CONCLUSION Berberine significantly ameliorates bone loss induced by NAFLD by activating the SLC7A11/GSH/GPX4 signaling pathway and inhibiting ferroptosis. Therefore, berberine may serve as a therapeutic agent for NAFLD-induced bone loss.
Collapse
Affiliation(s)
- Shaobo Gu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Junzhuo Wang
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Siyi Yu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Shunyao Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ting Gao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Deyi Yan
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Runxiang Xie
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Mengli Gu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Mengli Yu
- Department of Gastroenterology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zongkai Zhang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Zhongze Lou
- Central Laboratory of the Medical Research Center, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Department of Psychosomatic Medicine, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Xiaoyun Ding
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China.
| | - Yi Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Chunxiao Li
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China.
| |
Collapse
|
21
|
Zhang Y, Li M, Lou P, Zhang M, Shou D, Tong P. miRNA-seq analysis of high glucose induced osteoblasts provides insight into the mechanism underlying diabetic osteoporosis. Sci Rep 2024; 14:13441. [PMID: 38862780 PMCID: PMC11166950 DOI: 10.1038/s41598-024-64391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
The present study aims to explore the etiology of Diabetic osteoporosis (DOP), a chronic complication associated with diabetes mellitus. Specifically, the research seeks to identify potential miRNA biomarkers of DOP and investigated role in regulating osteoblasts. To achieve this, an animal model of DOP was established through the administration of a high-sugar and high-fat diet, and then injection of streptozotocin. Bone microarchitecture and histopathology analysis were analyzed. Rat calvarial osteoblasts (ROBs) were stimulated with high glucose (HG). MiRNA profiles of the stimulated osteoblasts were compared to control osteoblasts using sequencing. Proliferation and mineralization abilities were assessed using MTT assay, alkaline phosphatase, and alizarin red staining. Expression levels of OGN, Runx2, and ALP were determined through qRT-PCR and Western blot. MiRNA-sequencing results revealed increased miRNA-702-5p levels. Luciferase reporter gene was utilized to study the correlation between miR-702-5p and OGN. High glucose impaired cell proliferation and mineralization in vitro by inhibiting OGN, Runx2, and ALP expressions. Interference with miR-702-5p decreased OGN, Runx2, and ALP levels, which were restored by OGN overexpression. Additionally, downregulation of OGN and Runx2 in DOP rat femurs was confirmed. Therefore, the miRNA-702-5p/OGN/Runx2 signaling axis may play a role in DOP, and could be diagnostic biomarker and therapeutic target for not only DOP but also other forms of osteoporosis.
Collapse
Affiliation(s)
- Yang Zhang
- The First Affilffiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Institute of Orthopeadics and Traumatology, Hangzhou, China
| | - Mengying Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pengqiang Lou
- The First Affilffiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Institute of Orthopeadics and Traumatology, Hangzhou, China
| | - Minjie Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Peijian Tong
- The First Affilffiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Institute of Orthopeadics and Traumatology, Hangzhou, China.
| |
Collapse
|
22
|
Chen Y, Zhao W, Hu A, Lin S, Chen P, Yang B, Fan Z, Qi J, Zhang W, Gao H, Yu X, Chen H, Chen L, Wang H. Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J Transl Med 2024; 22:409. [PMID: 38693581 PMCID: PMC11064363 DOI: 10.1186/s12967-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic β-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.
Collapse
Affiliation(s)
- Yili Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wen Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - An Hu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Shi Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing Yang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhirong Fan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji Qi
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenhui Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huanhuan Gao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiubing Yu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haiyun Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| | - Haizhou Wang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|