1
|
de Oliveira-Higa MA, da Silva Rodrigues P, Sampaio ACS, de Camargo Coque A, Kirsten TB, Massironi SMG, Alexandre-Ribeiro SR, Mori CMC, da Silva RA, Bernardi MM. The dopaminergic D1 receptor modulates the hyperactivity of Bapa mutant mice. Behav Brain Res 2023; 452:114562. [PMID: 37394124 DOI: 10.1016/j.bbr.2023.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The mutant bate-palmas ("claps"; symbol - bapa) mice induced by the mutagenic chemical ENU present motor incoordination and postural alterations. A previous study showed that bapa mice present increased motor/exploratory behaviors during the prepubertal period due to increased striatal tyrosine hydroxylase expression, suggesting striatal dopaminergic system hyperactivity. This study aimed to evaluate the involvement of striatal dopaminergic receptors in the hyperactivity of bapa mice. Male bapa mice and their wild strain (WT) were used. Spontaneous motor behavior was observed in the open-field test, and stereotypy was evaluated after apomorphine administration. The effects of DR1 and DR2 dopaminergic antagonists (SCH-23,390; sulpiride) and the striatal DR1 and D2 receptor gene expression were evaluated. Relative to WT, bapa mice showed: 1) increased general activity for four days; 2) increased rearing and sniffing behavior and decreased immobility after apomorphine; 3) blockage of rearing behavior after the DR2 antagonist but no effect after DR1 antagonist; 4) blockage of sniffing behavior after the DR1 antagonist in bapa and WT mice but no effect after the DR2 antagonist; 5) increased immobility after the DR1 antagonist but no effect after the DR2 antagonist; 6) increased expression of striatal DR1 receptor gene and reduced the DR2 expression gene after apomorphine administration. Bapa mice showed increased activity in open field behavior. The increased rearing behavior induced by apomorphine of bapa mice resulted from the increased gene expression of the DR1 receptor.
Collapse
Affiliation(s)
- Marisa Alves de Oliveira-Higa
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Paula da Silva Rodrigues
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ana Claudia Silva Sampaio
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Alex de Camargo Coque
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thiago Berti Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Silvia Maria Gomes Massironi
- CEEpiRG - Center for Epigenetic Study and Genic Regulation, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil; Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | | | - Claudia Madalena Cabrera Mori
- Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Rodrigo Augusto da Silva
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil; CEEpiRG - Center for Epigenetic Study and Genic Regulation, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria Martha Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil.
| |
Collapse
|
2
|
Davis SW, Kiaris H, Kaza V, Felder MR. Genetic Analysis of the Stereotypic Phenotype in Peromyscus maniculatus (deer mice). Behav Genet 2023; 53:53-62. [PMID: 36422733 DOI: 10.1007/s10519-022-10124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022]
Abstract
Peromyscus maniculatus, including the laboratory stock BW, have been used as a model organism for autism spectrum disorder and obsessive-compulsive disorder because of the high occurrence of stereotypy. Several studies have identified neurological and environmental components of the phenotype; however, the heritability of the phenotype has not been examined. This study characterizes the incidence and heritability of vertical jumping stereotypy (VS) and backflipping (BF) behavior in the BW stock of the Peromyscus Genetic Stock Center, which are indicative of autism spectrum disorders. In addition, interspecies crosses between P. maniculatus and P. polionotus were also performed to further dissect genetically stereotypic behavior. The inheritance pattern of VS suggests that multiple genes result in a quantitative trait with low VS being dominant over high VS. The inheritance pattern of BF suggests that fewer genes are involved, with one allele causing BF in a dominant fashion. An association analysis in BW could reveal the underlying genetic loci associated with stereotypy in P. maniculatus, especially for the BF behavior.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, USA.,University of South Carolina, Columbia, SC, 29208, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, USA.,University of South Carolina, Columbia, SC, 29208, USA
| | - Vimala Kaza
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, USA.,University of South Carolina, Columbia, SC, 29208, USA
| | - Michael R Felder
- Department of Biological Sciences, University of South Carolina, Columbia, USA. .,University of South Carolina, Columbia, SC, 29208, USA. .,Department of Biological Sciences, University of South Carolina, 715 Sumter St, CLS Room 401, Columbia, SC, 29208, USA.
| |
Collapse
|
3
|
Gossink F, Dols A, Stek ML, Scheltens P, Nijmeijer B, Cohn Hokke P, Dijkstra A, Van Ruissen F, Aalfs C, Pijnenburg YAL. Early life involvement in C9orf72 repeat expansion carriers. J Neurol Neurosurg Psychiatry 2022; 93:93-100. [PMID: 33906932 DOI: 10.1136/jnnp-2020-325994] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansion (C9orf72RE) is the most common genetic cause of behavioural variant frontotemporal dementia (bvFTD). Since the onset of the C9orf72RE-associated disease is sometimes hard to define, we hypothesise that C9orf72RE may cause a lifelong neuropsychiatric vulnerability. The first aim of our study was to explore lifelong behavioural and personality characteristics in C9orf72RE. Second, we aimed to describe distinctive characteristics of C9orf72RE during disease course. METHODS Out of 183 patients from the Amsterdam Dementia Cohort that underwent genetic testing between 2011 and 2018, 20 C9orf72RE bvFTD patients and 23 C9orf72RE negative bvFTD patients were included. Patients and their relatives were interviewed extensively to chart their biography. Data analysis was performed through a mixed-methods approach including qualitative and quantitative analyses. RESULTS Education, type of professional career and number of intimate partners were not different between carriers and non-carriers. Carriers were more often described by their relatives as having 'fixed behavioural patterns in daily life' and with limited empathy already years before onset of bvFTD symptoms. In carriers, disease course was more often characterised by excessive buying and obsessive physical exercise than in non-carriers. CONCLUSION This is the first study thoroughly exploring biographies of bvFTD patients with C9orf72RE, revealing that subtle personality traits may be present early in life. Our study suggests that C9orf72RE exerts a lifelong neuropsychiatric vulnerability. This may strengthen hypotheses of links between neurodevelopmental and neurodegenerative diseases. Moreover, the presence of a distinct C9orf72RE -associated syndrome within the FTD spectrum opens doors for investigation of vulnerable neuronal networks.
Collapse
Affiliation(s)
- Flora Gossink
- Alzheimer Center, Department of Neurology, Location VU University Medical Center, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Annemiek Dols
- Department of Old Age psychiatry, GGZ inGeest Amsterdam locatie De Nieuwe Valerius, Amsterdam, The Netherlands
| | - Max L Stek
- Department of Old Age psychiatry, GGZ inGeest Amsterdam locatie De Nieuwe Valerius, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center, Department of Neurology, Location VU University Medical Center, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Bas Nijmeijer
- Clinical Genetics, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | | | - Anke Dijkstra
- Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Fred Van Ruissen
- Department of Clinical Genetics, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | | | - Yolande A L Pijnenburg
- Alzheimer Center, Department of Neurology, Location VU University Medical Center, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kitchenham L, Mason GJ. The neurobiology of environmentally induced stereotypic behaviours in captive animals: assessing the basal ganglia pathways and cortico-striatal-thalamo-cortical circuitry hypotheses. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The neurobiology of environmentally induced stereotypic behaviours (SBs) (e.g., pacing in zoo carnivores, crib-biting in horses, tail chasing in dogs) is hypothesized to involve altered functioning within the basal ganglia (‘Basal Ganglia (BG) Pathways Hypotheses’) and/or between the basal ganglia and cortex (‘Cortico-Striatal-Thalamo-Cortical (CSTC) Circuits Hypotheses’). We review four decades of relevant studies, critically assessing support for both hypotheses. Currently no BG Pathways or CSTC Circuits hypothesis is fully supported. While some results are partially consistent with some hypotheses (decreased subthalamic nucleus activity in deer mice and C58 mice); others (nucleus accumbens activity in mink and C57 mice) seem to reflect individual differences in SB, but not environmental effects. Yet others can be tentatively rejected: neither elevated striatal dopamine nor the cortico-striatal connection of the sensorimotor circuit seem to be involved for most species studied to date. Further research is now important for understanding the impact of captivity on animals’ functioning.
Collapse
Affiliation(s)
- Lindsey Kitchenham
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Georgia J. Mason
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
6
|
de Brouwer G, Fick A, Lombaard A, Stein DJ, Harvey BH, Wolmarans DW. Large nest building and high marble-burying: Two compulsive-like phenotypes expressed by deer mice (Peromyscus maniculatus bairdii) and their unique response to serotoninergic and dopamine modulating intervention. Behav Brain Res 2020; 393:112794. [PMID: 32619566 DOI: 10.1016/j.bbr.2020.112794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to further dissect the deer mouse (Peromyscus maniculatus bairdii) model of compulsive-like behavior with respect to two persistent-like behavioral phenotypes viz. large nest building (LNB) and high marble-burying (HMB), which may be relevant to understanding the neurobiology of different symptom dimensions in obsessive-compulsive and related disorders. Since LNB is sensitive to chronic, high dose escitalopram intervention but HMB is not, we assessed whether the two behaviors could be further distinguished based on their response to 4 weeks of uninterrupted serotoninergic intervention (i.e. escitalopram; ESC; 50 mg/kg/day), dopaminergic antagonism, i.e. flupentixol; FLU; 0.9 mg/kg/day), dopaminergic potentiation (i.e. rasagiline; RAS; 5 mg/kg/day), and their respective combinations with escitalopram (ESC/FLU and ESC/RAS). Here we show LNB to be equally responsive to chronic ESC and ESC/FLU. HMB was insensitive to either of these interventions but was responsive to ESC/RAS. Additionally, we report that scoring preoccupied interaction with marbles over several trials is an appropriate measure of compulsive-like behavioral persistence in addition to the standard marble burying test. Taken together, these data provide further evidence that LNB and HMB in deer mice have distinctive neurobiological underpinnings. Thus, the naturally occurring compulsive-like behaviors expressed by deer mice may be useful in providing a platform to test unique treatment targets for different symptom dimensions of OCD and related disorders.
Collapse
Affiliation(s)
- Geoffrey de Brouwer
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Arina Fick
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Ané Lombaard
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa.
| |
Collapse
|
7
|
Wolmarans DW, Scheepers IM, Stein DJ, Harvey BH. Peromyscus maniculatus bairdii as a naturalistic mammalian model of obsessive-compulsive disorder: current status and future challenges. Metab Brain Dis 2018; 33:443-455. [PMID: 29214602 DOI: 10.1007/s11011-017-0161-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a prevalent and debilitating condition, characterized by intrusive thoughts and repetitive behavior. Animal models of OCD arguably have the potential to contribute to our understanding of the condition. Deer mice (Permomyscus maniculatus bairdii) are characterized by stereotypic behavior which is reminiscent of OCD symptomology, and which may serve as a naturalistic animal model of this disorder. Moreover, a range of deer mouse repetitive behaviors may be representative of different compulsive-like phenotypes. This paper will review work on deer mouse behavior, and evaluate the extent to which this serves as a valid and useful model of OCD. We argue that findings over the past decade indicate that the deer mouse model has face, construct and predictive validity.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa.
| | - Isabella M Scheepers
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
- Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| |
Collapse
|
8
|
Action sequencing in the spontaneous swimming behavior of zebrafish larvae - implications for drug development. Sci Rep 2017; 7:3191. [PMID: 28600565 PMCID: PMC5466685 DOI: 10.1038/s41598-017-03144-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 01/24/2023] Open
Abstract
All motile organisms need to organize their motor output to obtain functional goals. In vertebrates, natural behaviors are generally composed of a relatively large set of motor components which in turn are combined into a rich repertoire of complex actions. It is therefore an experimental challenge to investigate the organizational principles of natural behaviors. Using the relatively simple locomotion pattern of 10 days old zebrafish larvae we have here characterized the basic organizational principles governing the swimming behavior. Our results show that transitions between different behavioral states can be described by a model combining a stochastic component with a control signal. By dividing swimming bouts into a limited number of categories, we show that similar types of swimming behavior as well as stand-stills between bouts were temporally clustered, indicating a basic level of action sequencing. Finally, we show that pharmacological manipulations known to induce alterations in the organization of motor behavior in mammals, mainly through basal ganglia interactions, have related effects in zebrafish larvae. This latter finding may be of specific relevance to the field of drug development given the growing importance of zebrafish larvae in phenotypic screening for novel drug candidates acting on central nervous system targets.
Collapse
|
9
|
Kim H, Lim CS, Kaang BK. Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder. Behav Brain Funct 2016; 12:3. [PMID: 26790724 PMCID: PMC4719705 DOI: 10.1186/s12993-016-0087-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a broad spectrum of neurodevelopmental disorders characterized by three central behavioral symptoms: impaired social interaction, impaired social communication, and restricted and repetitive behaviors. However, the symptoms are heterogeneous among patients and a number of ASD mouse models have been generated containing mutations that mimic the mutations found in human patients with ASD. Each mouse model was found to display a unique set of repetitive behaviors. In this review, we summarize the repetitive behaviors of the ASD mouse models and variations found in their neural mechanisms including molecular and electrophysiological features. We also propose potential neuronal mechanisms underlying these repetitive behaviors, focusing on the role of the cortico-basal ganglia-thalamic circuits and brain regions associated with both social and repetitive behaviors. Further understanding of molecular and circuitry mechanisms of the repetitive behaviors associated with ASD is necessary to aid the development of effective treatments for these disorders.
Collapse
Affiliation(s)
- Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
McBride SD, Parker MO. The disrupted basal ganglia and behavioural control: an integrative cross-domain perspective of spontaneous stereotypy. Behav Brain Res 2014; 276:45-58. [PMID: 25052167 DOI: 10.1016/j.bbr.2014.05.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/16/2014] [Accepted: 05/26/2014] [Indexed: 12/21/2022]
Abstract
Spontaneous stereotypic behaviour (SB) is common in many captive animal species, as well as in humans with some severe psychiatric disorders, and is often cited as being related to general basal ganglia dysfunction. Despite this assertion, there is little in the literature examining SB specifically in terms of the basal ganglia mechanics. In this review, we attempt to fill this gap by offering an integrative, cross-domain perspective of SB by linking what we currently understand about the SB phenotype with the ever-growing literature on the anatomy and functionality of the basal ganglia. After outlining current models of SB from different theoretical perspectives, we offer a broad but detailed overview of normally functioning basal ganglia mechanics, and attempt to link this with current neurophysiological evidence related to spontaneous SB. Based on this we present an empirically derived theoretical framework, which proposes that SB is the result of a dysfunctional action selection system that may reflect dysregulation of excitatory (direct) and inhibitory (indirect and hyperdirect) pathways as well as alterations in mechanisms of behavioural switching. This approach also suggests behaviours that specifically become stereotypic may reflect inbuilt low selection threshold behavioural sequences associated with early development and the species-specific ethogram or, low threshold behavioural sequences that are the result of stress-induced dopamine exposure at the time of performance.
Collapse
Affiliation(s)
- Sebastian D McBride
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
11
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
12
|
Houdayer E, Walthall J, Belluscio BA, Vorbach S, Singer HS, Hallett M. Absent movement-related cortical potentials in children with primary motor stereotypies. Mov Disord 2013; 29:1134-40. [PMID: 24259275 DOI: 10.1002/mds.25753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 10/01/2013] [Accepted: 10/18/2013] [Indexed: 11/06/2022] Open
Abstract
The underlying pathophysiologic mechanism for complex motor stereotypies in children is unknown, with hypotheses ranging from an arousal to a motor control disorder. Movement-related cortical potentials (MRCPs), representing the activation of cerebral areas involved in the generation of movements, precede and accompany self-initiated voluntary movements. The goal of this study was to compare cerebral activity associated with stereotypies to that seen with voluntary movements in children with primary complex motor stereotypies. Electroencephalographic (EEG) activity synchronized with video recording was recorded in 10 children diagnosed with primary motor stereotypies and 7 controls. EEG activity related to stereotypies and self-paced arm movements were analyzed for presence or absence of early or late MRCP, a steep negativity beginning about 1 second before the onset of a voluntary movement. Early MRCPs preceded self-paced arm movements in 8 of 10 children with motor stereotypies and in 6 of 7 controls. Observed MRCPs did not differ between groups. No MRCP was identified before the appearance of a complex motor stereotypy. Unlike voluntary movements, stereotypies are not preceded by MRCPs. This indicates that premotor areas are likely not involved in the preparation of these complex movements and suggests that stereotypies are initiated by mechanisms different from voluntary movements. Further studies are required to determine the site of the motor control abnormality within cortico-striatal-thalamo-cortical pathways and to identify whether similar findings would be found in children with secondary stereotypies.
Collapse
Affiliation(s)
- Elise Houdayer
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA; Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Baeta-Corral R, Giménez-Llort L. Bizarre behaviors and risk assessment in 3xTg-AD mice at early stages of the disease. Behav Brain Res 2013; 258:97-105. [PMID: 24144550 DOI: 10.1016/j.bbr.2013.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022]
Abstract
Bizarre behaviors (stereotyped stretching, stereotyped rearing, backward movements and jumps) were conspicuously elicited in classical unconditioned tests with different levels of anxiogenic conditions. They were characterized for the first time as early-BPSD-like symptoms in 6 month-old male and female 3xTg-AD mice. The pattern of these behaviors differed from that exhibited by their age- and gender-matched NTg counterparts. Confrontation of an open and illuminated field was the best trigger of such behaviors as compared to mild neophobia in the corner test or the choice between two compartments in the dark-light box. Here we also report that increased freezing, delayed thigmotaxis and enhancement of emotional behaviors were early BPSD-like symptoms indicative of their response to low-stressful environments. Independently of the genotype, consistent gender effects pointed toward the relevance of female gender to study bizarre behaviors and risk assessment. The identification of items of behavior and its gender component were relevant to find out bidirectional and selective behavioral long-lasting effects of postnatal handling. This early life treatment reduced freezing and most of the bizarre behaviors whereas potentiated risk assessment and the horizontal locomotor activity. In contrast, vertical exploratory activity was not modified by the treatment. The results also talk in favor of the beneficence of early-life interventions on the behavioral outcome in adulthood in both healthy and disease conditions. As shown, the consideration of bizarre behaviors and risk assessment may become an additional tool for evaluating BPSD-like symptoms in relation to preventive and/or therapeutical strategies targeted at AD. It may also have a role in the evaluation of the potential risk factors for the disease.
Collapse
Affiliation(s)
- R Baeta-Corral
- Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | |
Collapse
|
14
|
Abstract
Complex motor stereotypies are repetitive arm and/or hand flapping, waving and wiggling movements that begin before the age of 3 years, occur repeatedly throughout the day and stop with distraction. These movements are commonly seen in children with autism, but also appear in otherwise normally developing individuals labelled as primary. Although proposed to have a psychological and neurobiological mechanism, evidence suggests that there is an abnormality within the corticostriatal–thalamocortical circuitry or its connecting structures. Animal models include both drug-induced (i.e., via stimulants or cocaine) and spontaneously appearing prototypes. Neurochemical investigations, primarily in rodents, have identified a variety of neurotransmitter alterations, with an emphasis on dopamine or glutamate; however, findings are inconsistent. We hypothesize that, based on its various roles in controlling and modulating movements, the frontal cortex will ultimately be shown to be the prime site of abnormality in this disorder. Future studies investigating both humans and animal models are essential for attaining a greater understanding of the pathobiology underlying motor stereotypies.
Collapse
Affiliation(s)
- Sean Gao
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harvey S Singer
- Division of Pediatric Neurology, Johns Hopkins Hospital, Rubenstein Child Health Building, Suite 2158, 200 N Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Lalonde R, Strazielle C. Brain regions and genes affecting myoclonus in animals. Neurosci Res 2012; 74:69-79. [PMID: 22824643 DOI: 10.1016/j.neures.2012.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/02/2012] [Accepted: 07/12/2012] [Indexed: 01/26/2023]
Abstract
Myoclonus is defined as large-amplitude rhythmic movements. Brain regions underlying myoclonic jerks include brainstem, cerebellum, and cortex. Gamma-aminobutyric acid (GABA) appears to be the main neurotransmitter involved in myoclonus, possibly interacting with biogenic amines, opiates, acetylcholine, and glycine. Myoclonic jumping is a specific subtype seen in rodents, comprising rearing and hopping continuously against a wall. Myoclonic jumping can be seen in normal mouse strains, possibly as a result of simply being put inside a cage. Like other types, it is also triggered by changes in GABA, 5HT, and dopamine neurotransmission. Implicated brain regions include hippocampus and dorsal striatum, possibly with respect to D(1) dopamine, NMDA, and δ opioid receptors. There is reason to suspect that myoclonic jumping is underreported due to insufficient observations into mouse cages.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, UFR des Sciences Humaines et Sociales, Laboratoire de Psychologie et Neurosciences: Intégration COgnitive du NEurone à la Société (ICONES), 76821 Mont Saint-Aignan Cedex, France.
| | | |
Collapse
|
16
|
André VM, Fisher YE, Levine MS. Altered Balance of Activity in the Striatal Direct and Indirect Pathways in Mouse Models of Huntington's Disease. Front Syst Neurosci 2011; 5:46. [PMID: 21720523 PMCID: PMC3118454 DOI: 10.3389/fnsys.2011.00046] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/03/2011] [Indexed: 11/13/2022] Open
Abstract
Imbalance in the activity of striatal direct and indirect pathway neurons contributes to motor disturbances in several neurodegenerative diseases. In Huntington's disease (HD), indirect pathway [dopamine (DA) D2 receptor-expressing] medium-sized spiny neurons (MSNs) are believed to show earlier vulnerability than direct pathway MSNs. We examined synaptic activity and DA modulation in MSNs forming the direct and indirect pathways in YAC128 and BACHD mouse models of HD. To visualize the two types of MSNs, we used mice expressing enhanced green fluorescent protein under the control of the promoter for the DA D1 or D2 receptor. Experiments were performed in early symptomatic (1.5 months) and symptomatic (12 months) mice. Behaviorally, early symptomatic mice showed increased stereotypies while symptomatic mice showed decreased motor activity. Electrophysiologically, at the early stage, excitatory and inhibitory transmission onto D1-YAC128 and D1-BACHD MSNs were increased, while there was no change in D2 MSNs. DA modulation of spontaneous excitatory postsynaptic currents (sEPSCs) in slices was absent in YAC128 cells at the early stage, but was restored by treating the slices with the DA depleter tetrabenazine (TBZ). In BACHD mice TBZ restored paired-pulse ratios and a D1 receptor antagonist induced a larger decrease of sEPSCs than in D1-WT cells, suggesting increased DA tone. Finally, TBZ decreased stereotypies in BACHD mice. These results indicate that by reducing DA or antagonizing D1 receptors, increases in inhibitory and excitatory transmission in early phenotypic direct pathway neurons can be normalized. In symptomatic YAC128 mice, excitatory synaptic transmission onto D1 MSNs was decreased, while inhibitory transmission was increased in D2 MSNs. These studies provide evidence for differential and complex imbalances in glutamate and GABA transmission, as well as in DA modulation, in direct and indirect pathway MSNs during HD progression.
Collapse
Affiliation(s)
- Véronique M André
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute, University of California at Los Angeles Los Angeles, CA, USA
| | | | | |
Collapse
|
17
|
Hoffman KL. Animal models of obsessive compulsive disorder: recent findings and future directions. Expert Opin Drug Discov 2011; 6:725-37. [DOI: 10.1517/17460441.2011.577772] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Zenko M, Zhu Y, Dremencov E, Ren W, Xu L, Zhang X. Requirement for the endocannabinoid system in social interaction impairment induced by coactivation of dopamine D1 and D2 receptors in the piriform cortex. J Neurosci Res 2011; 89:1245-58. [PMID: 21557291 DOI: 10.1002/jnr.22580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 12/28/2022]
Abstract
The dopamine receptor family consists of D1-D5 receptors (D1R-D5R), and we explored the contributions of each dopamine receptor subtype in the piriform cortex (PirC) to social interaction impairment (SII). Rats received behavioral tests or electrophysiological recording of PirC neuronal activity after injection of the D1R/D5R agonist SKF38393, the D2R/D3R/D4R agonist quinpirole, or both, with or without pretreatment with dopamine receptor antagonists, D1R or D5R antisense oligonucleotides, the cannabinoid CB1 receptor antagonist AM281, or the endocannabinoid transporter inhibitor VDM11. Systemic injection of SKF38393 and quinpirole together, but not each one alone, induced SII and increased PirC firing rate, which were blocked by D1R or D2R antagonist. Intra-PirC microinfusion of SKF38393 and quinpirole together, but not each one alone, also induced SII, which was blocked by D1R antisense oligonucleotides or D2R antagonist but not by D3R or D4R antagonist or D5R antisense oligonucleotides. SII induced by intra-PirC SKF38393/quinpirole was blocked by AM281 and enhanced by VDM11, whereas neither AM281 nor VDM11 alone affected social interaction behavior. Coadministration of SKF38393 and quinpirole produced anxiolytic effects without significant effects on locomotor activity, olfaction, and acquisition of olfactory short-term memory. These findings suggest that SII induced by coactivation of PirC D1R and D2R requires the endocannabinoid system.
Collapse
Affiliation(s)
- Michelle Zenko
- Institute of Mental Health Research and Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Albelda N, Joel D. Animal models of obsessive-compulsive disorder: exploring pharmacology and neural substrates. Neurosci Biobehav Rev 2011; 36:47-63. [PMID: 21527287 DOI: 10.1016/j.neubiorev.2011.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023]
Abstract
During the last 30 years there have been many attempts to develop animal models of obsessive-compulsive disorder (OCD). Most models have not been studied further following the original publication, and in the past few years, most papers present studies employing a few established animal models, exploring the neural basis of compulsive behavior and developing new treatment strategies. Here we summarize findings from the five most studied animal models of OCD: 8-OHDPAT (8-hydroxy-2-(di-n-propylamino)-tetralin hydrobromide) induced decreased alternation, quinpirole-induced compulsive checking, marble burying, signal attenuation and spontaneous stereotypy in deer mice. We evaluate each model's face validity, derived from similarity between the behavior in the model and the specific symptoms of the human condition, predictive validity, derived from similarity in response to treatment (pharmacological or other), and construct validity, derived from similarity in the mechanism (physiological or psychological) that induces behavioral symptoms and in the neural systems involved. We present ideas regarding future clinical research based on each model's findings, and on this basis, also emphasize possible new approaches for the treatment of OCD.
Collapse
Affiliation(s)
- Noa Albelda
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|
20
|
Differential electrophysiological changes in striatal output neurons in Huntington's disease. J Neurosci 2011; 31:1170-82. [PMID: 21273402 DOI: 10.1523/jneurosci.3539-10.2011] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is considerable evidence that alterations in striatal medium-sized spiny neurons (MSSNs) giving rise to the direct (D1 receptor-expressing) and indirect (D2 receptor-expressing) pathways differentially contribute to the phenotype of Huntington's disease (HD). To determine how each subpopulation of MSSN is functionally affected, we examined spontaneous excitatory postsynaptic currents (sEPSCs) and dopamine (DA) modulation in two HD mouse models, the YAC128 and the BACHD (a bacterial-artificial chromosome). These mice also expressed enhanced green fluorescent protein (EGFP) under the control of the promoter for either DA D1 or D2 receptors to identify neurons. In early symptomatic YAC128 and BACHD mice, glutamate transmission was increased in both D1 and D2 MSSNs, but in different ways. D1 cells displayed increased sEPSC frequencies and decreased paired-pulse ratios (PPRs) while D2 cells displayed larger evoked glutamate currents but no change in sEPSC frequencies or PPRs. D1 receptor modulation of sEPSCs was absent in D1-YAC128 cells at the early symptomatic stage but was restored by treating the slices with tetrabenazine. In contrast, in fully symptomatic YAC128 mice, glutamate transmission was decreased specifically in D1 cells, and D1 receptor modulation was normal in D1-YAC128 cells. Behaviorally, early symptomatic mice showed increased stereotypies that were decreased by tetrabenazine treatment. Together, these studies support differential imbalances in glutamate and DA transmission in direct and indirect pathway MSSNs. Stereotypic behavior at an early stage could be explained by increased glutamate activity and DA tone in direct pathway neurons, whereas hypokinesia at later stages could result from reduced input onto these neurons.
Collapse
|
21
|
Development of repetitive behavior in a mouse model: roles of indirect and striosomal basal ganglia pathways. Int J Dev Neurosci 2011; 29:461-7. [PMID: 21329752 DOI: 10.1016/j.ijdevneu.2011.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/02/2011] [Accepted: 02/08/2011] [Indexed: 11/21/2022] Open
Abstract
Restricted repetitive behaviors (stereotypy, compulsions, rituals) are diagnostic for autism spectrum disorder and common in related neurodevelopmental disorders. Despite their prevalence in clinical populations, underlying mechanisms associated with the development of these behaviors remain poorly understood. We examined the role of the indirect basal ganglia pathway in the development of stereotypy using deer mice. We measured neuronal metabolic activity in the subthalamic nucleus (STN) and other relevant brain regions using cytochrome oxidase (CO) histochemistry at three developmental time-points. Although no differences were observed in STN across development, significant differences were found when mice were grouped by developmental trajectory. At 6 weeks post-weaning, significantly lower CO activity in STN was found in those trajectory groups that developed high levels of repetitive behavior versus the trajectory group that did not, suggesting the development of stereotypy is associated with decreased indirect basal ganglia pathway activity. In addition, we tested the hypothesis that preferential activation of striatal striosomes relative to surrounding matrix would be associated with the development of stereotypy. No differences in the relative activation of these striatal compartments were observed across development or among trajectory groups. Our results point to dynamic changes in the indirect pathway associated with the development of repetitive behavior and extends our prior work linking reduced indirect pathway activation to stereotypy in adult deer mice.
Collapse
|
22
|
Abstract
PURPOSE Autism is a multifactorial disorder that involves impairments in social interactions and communication, as well as restricted and repetitive behaviors. About 30% of individuals with autism develop epilepsy by adulthood. The EL mouse has long been studied as a natural model of multifactorial idiopathic generalized epilepsy with complex partial seizures. Because epilepsy is a comorbid trait of autism, we evaluated the EL mouse for behaviors associated with autism. METHODS We compared the behavior of EL mice to age-matched control DDY mice, a genetically related nonepileptic strain. The mice were compared in the open field and in the light-dark compartment tests to measure activity, exploratory behavior, and restricted and repetitive behaviors. The social transmission of food preference test was employed to evaluate social communication. Home-cage behavior was also evaluated in EL and DDY mice as a measure of repetitive activity. KEY FINDINGS We found that EL mice displayed several behavioral abnormalities characteristic of autism. Impairments in social interaction and restricted patterns of interest were evident in EL mice. Activity, exploratory behavior, and restricted behavior were significantly greater in EL mice than in DDY mice. EL mice exhibited impairment in the social transmission of food preference assay. In addition, a stereotypic myoclonic jumping behavior was observed in EL mice, but was not seen in DDY mice. It is of interest to note that seizure activity within 24 h of testing exacerbated the autistic behavioral abnormalities found in EL mice. SIGNIFICANCE These findings suggest that the EL mouse expresses behavioral abnormalities similar to those seen in persons with autism. We propose that the EL mouse can be utilized as a natural model of autism and epilepsy.
Collapse
|
23
|
Tanimura Y, Vaziri S, Lewis MH. Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists. Behav Brain Res 2010; 210:116-22. [PMID: 20178817 DOI: 10.1016/j.bbr.2010.02.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 11/18/2022]
Abstract
Repetitive behaviors are diagnostic for autism and common in related neurodevelopmental disorders. Despite their clinical importance, underlying mechanisms associated with the expression of these behaviors remain poorly understood. Our lab has previously shown that the rates of spontaneous stereotypy in deer mice (Peromyscus maniculatus) were negatively correlated with enkephalin content, a marker of striatopallidal but not striatonigral neurons. To investigate further the role of the indirect basal ganglia pathway, we examined neuronal activation of the subthalamic nucleus (STN) using cytochrome oxidase (CO) histochemistry in high- and low-stereotypy mice. CO activity in STN was significantly lower in high-stereotypy mice and negatively correlated with the frequency of stereotypy. In addition, exposure to environmental enrichment, which attenuated stereotypy, normalized the activity of STN. Co-administration of the adenosine A(2A) receptor agonist CGS21680 and the A(1) receptor agonist CPA attenuated stereotypy dose-dependently. The significant reduction associated with the lowest dose of the drug combination tested was due to its effects on mice with lower baseline levels of stereotypy. Higher doses of the drug combination were required to show robust behavioral effects, and presumably requisite activation of the indirect pathway, in high-stereotypy mice. These findings support that decreased indirect pathway activity is linked to the expression of high levels of stereotypy in deer mice and that striatal A(1) and A(2A) receptors may provide promising therapeutic targets for the treatment of repetitive behaviors in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yoko Tanimura
- Departments of Psychiatry and Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | | | | |
Collapse
|
24
|
Roux JC, Villard L. Biogenic amines in Rett syndrome: the usual suspects. Behav Genet 2009; 40:59-75. [PMID: 19851857 DOI: 10.1007/s10519-009-9303-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/07/2009] [Indexed: 12/25/2022]
Abstract
Rett syndrome (RTT) is a severe postnatal neurological disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. In affected children, most biological parameters, including brain structure, are normal (although acquired microcephaly is usually present). However, in recent years, a deficit in bioaminergic metabolism has been identified at the cellular and molecular levels, in more than 200 patients. Recently available transgenic mouse strains with a defective Mecp2 gene also show abnormalities, strongly suggesting that there is a direct link between the function of the MECP2 protein and the metabolism of biogenic amines. Biogenic amines appear to have an important role in the pathophysiology of Rett syndrome, for several reasons. Firstly, biogenic amines modulate a large number of autonomic and cognitive functions. Secondly, many of these functions are affected in RTT patients. Thirdly, biogenic amines are the only neurotransmitters that have repeatedly been found to be altered in RTT patients. Importantly, pharmacological interventions can be envisaged to try to counteract the deficits observed. Here, we review the available human and mouse data and present how they have been and could be used in the development of pharmacological treatments for children affected by the syndrome. Given our current knowledge and the tools available, modulating biogenic amine metabolism may prove to be the most promising strategy for improving the life quality of Rett syndrome patients in the short term.
Collapse
|
25
|
Abstract
Restricted, repetitive behaviors (RRBs) are heterogeneous ranging from stereotypic body movements to rituals to restricted interests. RRBs are most strongly associated with autism but occur in a number of other clinical disorders as well as in typical development. There does not seem to be a category of RRB that is unique or specific to autism and RRB does not seem to be robustly correlated with specific cognitive, sensory or motor abnormalities in autism. Despite its clinical significance, little is known about the pathophysiology of RRB. Both clinical and animal models studies link repetitive behaviors to genetic mutations and a number of specific genetic syndromes have RRBs as part of the clinical phenotype. Genetic risk factors may interact with experiential factors resulting in the extremes in repetitive behavior phenotypic expression that characterize autism. Few studies of individuals with autism have correlated MRI findings and RRBs and no attempt has been made to associate RRB and post-mortem tissue findings. Available clinical and animal models data indicate functional and structural alterations in cortical-basal ganglia circuitry in the expression of RRB, however. Our own studies point to reduced activity of the indirect basal ganglia pathway being associated with high levels of repetitive behavior in an animal model. These findings, if generalizable, suggest specific therapeutic targets. These, and perhaps other, perturbations to cortical basal ganglia circuitry are mediated by specific molecular mechanisms (e.g., altered gene expression) that result in long-term, experience-dependent neuroadaptations that initiate and maintain repetitive behavior. A great deal more research is needed to uncover such mechanisms. Work in areas such as substance abuse, OCD, Tourette syndrome, Parkinson's disease, and dementias promise to provide findings critical for identifying neurobiological mechanisms relevant to RRB in autism. Moreover, basic research in areas such as birdsong, habit formation, and procedural learning may provide additional, much needed clues. Understanding the pathophysioloy of repetitive behavior will be critical to identifying novel therapeutic targets and strategies for individuals with autism.
Collapse
Affiliation(s)
- Mark Lewis
- University of Florida, Gainesville, FL, USA,
| | | |
Collapse
|
26
|
Tanimura Y, Ogoegbunam FC, Lewis MH. Amphetamine-induced sensitization and spontaneous stereotypy in deer mice. Pharmacol Biochem Behav 2009; 92:670-5. [PMID: 19324069 DOI: 10.1016/j.pbb.2009.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/07/2009] [Accepted: 03/16/2009] [Indexed: 11/26/2022]
Abstract
Stereotyped behavior is commonly observed in neurodevelopmental disorders (e.g., autism, intellectual and developmental disability) and in a wide variety of animal species maintained in restricted environments. Stereotyped behavior can also be induced by psychostimulants, an effect potentiated by repeated intermittent exposure to these drugs (behavioral sensitization). The present study evaluated whether similar neuroadaptations in cortical-basal ganglia circuitry underlie the expression and development of spontaneous stereotypy and psychostimulant-induced sensitization. Sensitization was induced in deer mice with the degree of sensitization being dependent on housing condition but not age or environmental context. Environmentally enriched animals showed the least behavioral sensitization. Despite demonstrating robust sensitization in both older and younger animals, independent of context, behavioral sensitization was not associated with any alteration in the development or expression of spontaneous stereotypy in deer mice. Moreover, the frequency of baseline spontaneous stereotypy did not predict response to amphetamine challenge in either sensitized or non-sensitized mice. Thus, the present findings do not support the notion that sensitization-related neuroadaptations in cortical-basal ganglia circuitry are similar to those neuroadaptations that underlie spontaneous or environmentally linked stereotypy.
Collapse
Affiliation(s)
- Yoko Tanimura
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
27
|
A novel method for automatic quantification of psychostimulant-evoked route-tracing stereotypy: application to Mus musculus. Psychopharmacology (Berl) 2008; 196:591-602. [PMID: 18097652 PMCID: PMC2562621 DOI: 10.1007/s00213-007-0994-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Route-tracing stereotypy is a powerful behavioral correlate of striatal function that is difficult to quantify. Measurements of route-tracing stereotypy in an automated, high throughput, easily quantified, and replicable manner would facilitate functional studies of this central nervous system region. OBJECTIVE We examined how t-pattern sequential analysis (Magnusson Behav Res Meth Instrum Comput 32:93-110, 2000) can be used to quantify mouse route-tracing stereotypies. This method reveals patterns by testing whether particular sequences of defined states occur within a specific time interval at a probability greater than chance. RESULTS Mouse home-cage locomotor patterns were recorded after psychostimulant administration (GBR 12909, 0, 3, 10, and 30 mg/kg; d-amphetamine, 0, 2.5, 5, and 10 mg/kg). After treatment with GBR 12909, dose-dependent increases in the number of found patterns and overall pattern length and depth were observed. Similar findings were seen after treatment with d-amphetamine up to the dosage where focused stereotypies dominated behavioral response. For both psychostimulants, detected patterns displayed similar morphological features. Pattern sets containing a few frequently repeated patterns of greater length/depth accounted for a greater percentage of overall trial duration in a dose-dependant manner. This finding led to the development of a t-pattern-derived route-tracing stereotypy score. Compared to scores derived by manual observation, these t-pattern-derived route-tracing stereotypy scores yielded similar results with less within-group variability. These findings remained similar after reanalysis with removal of patterns unmatched after human scoring and after normalization of locomotor speeds at low and high ranges. CONCLUSIONS T-pattern analysis is a versatile and robust pattern detection and quantification algorithm that complements currently available observational phenotyping methods.
Collapse
|
28
|
Korff S, Stein DJ, Harvey BH. Stereotypic behaviour in the deer mouse: pharmacological validation and relevance for obsessive compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:348-55. [PMID: 17888556 DOI: 10.1016/j.pnpbp.2007.08.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 11/18/2022]
Abstract
Stereotypy is an important manifestation of obsessive compulsive disorder (OCD). OCD involves disturbed serotonin and dopamine pathways, and demonstrates a selective response to serotonin reuptake inhibitors (SRI), with limited to no response to noradrenaline reuptake inhibitors (NRI). Deer mice (Peromyscus maniculatus bairdii) engage in various spontaneous stereotypic behaviours, including somersaulting, jumping and pattern running, and has to date not been explored for possible relevance for OCD. We studied the population diversity of spontaneous stereotypy in these animals, followed by assessing behavioural response to chronic high and low dose SRI (viz. fluoxetine) and NRI (viz. desipramine) treatment (both 10 mg/kg; 20 mg/kg x 21 days). We also studied behavioural responses to the 5-HT(2A/C) agonist, meta-chlorophenylpiperazine (mCPP) and the D2 agonist, quinpirole (2 mg/kg and 5 mg/kg respectively x 4 days). Deer mice showed a distinct separation into high and low stereotypic behaviour populations, with high and low dose fluoxetine, but not desipramine, significantly reducing stereotypic behaviour in both populations. A significant attenuation of stereotypy was also observed in both groups following quinpirole or mCPP challenge. In its response to drug treatment, spontaneous stereotypic behaviour in deer mice demonstrates predictive validity for OCD. States of spontaneous stereotypy are attenuated by 5-HT(2A/C) and dopamine D2 receptor agonists.
Collapse
Affiliation(s)
- Schaun Korff
- Unit for Drug Research and Development, School of Pharmacy (Pharmacology), North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa
| | | | | |
Collapse
|
29
|
Smith JN, Liu J, Espino MA, Cobb GP. Age dependent acute oral toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in deer mice (Peromyscus maniculatus). CHEMOSPHERE 2007; 67:2267-73. [PMID: 17275885 DOI: 10.1016/j.chemosphere.2006.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 12/01/2006] [Accepted: 12/05/2006] [Indexed: 05/13/2023]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transforms anaerobically into N-nitroso compounds: hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX). Exposure to these N-nitroso metabolites may occur in areas contaminated with explosives, as anaerobic degradation occurs via some bacteria and is one remediation strategy used for RDX. Few papers report acute oral toxicity and none have evaluated age dependent toxicity of RDX or its N-nitroso metabolites. Median lethal dose (LD50) was determined in deer mice (Peromyscus maniculatus) of three age classifications 21 d, 50 d, and 200 d for RDX, MNX, and TNX using the US EPA up-and-down procedure (UDP). Hexahydro-1,3,5-trinitro-1,3,5-triazine and N-nitroso metabolites caused similar overt signs of toxicity. Median lethal dose for 21 d deer mice were 136, 181, and 338 mg/kg for RDX, MNX, and TNX, respectively. Median lethal dose for 50 d deer mice were 319, 575, and 338 mg/kg for RDX, MNX, and TNX, respectively. Median lethal dose for 200 d deer mice were 158, 542, and 999 mg/kg for RDX, MNX, and TNX, respectively. These data suggest that RDX is the most potent compound tested, and age dependent toxicity may exist for all compounds and could play a role in RDX and RDX N-nitroso metabolite ecological risk evaluation of terrestrial wildlife at RDX contaminated sites.
Collapse
Affiliation(s)
- Jordan N Smith
- The Institute of Environmental and Human Health, The Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | |
Collapse
|
30
|
Lewis MH, Tanimura Y, Lee LW, Bodfish JW. Animal models of restricted repetitive behavior in autism. Behav Brain Res 2006; 176:66-74. [PMID: 16997392 PMCID: PMC3709864 DOI: 10.1016/j.bbr.2006.08.023] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 08/10/2006] [Accepted: 08/17/2006] [Indexed: 11/28/2022]
Abstract
Restricted, repetitive behavior, along with deficits in social reciprocity and communication, is diagnostic of autism. Animal models relevant to this domain generally fall into three classes: repetitive behavior associated with targeted insults to the CNS; repetitive behavior induced by pharmacological agents; and repetitive behavior associated with restricted environments and experience. The extant literature provides potential models of the repetitive behavioral phenotype in autism rather than attempts to model the etiology or pathophysiology of restricted, repetitive behavior, as these are poorly understood. This review focuses on our work with deer mice which exhibit repetitive behaviors associated with environmental restriction. Repetitive behaviors are the most common category of abnormal behavior observed in confined animals and larger, more complex environments substantially reduce the development and expression of such behavior. Studies with this model, including environmental enrichment effects, suggest alterations in cortical-basal ganglia circuitry in the development and expression of repetitive behavior. Considerably more work needs to be done in this area, particularly in modeling the development of aberrant repetitive behavior. As mutant mouse models continue to proliferate, there should be a number of promising genetic models to pursue.
Collapse
Affiliation(s)
- Mark H Lewis
- McKnight Brain Institute and Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
31
|
Heldt SA, Ressler KJ. Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion. Brain Res 2006; 1073-1074:229-39. [PMID: 16442084 PMCID: PMC2561201 DOI: 10.1016/j.brainres.2005.12.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/08/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
The habenula complex modulates the activity of dopamine and serotonin systems in the brain. An important question remains whether there is a link between habenula dysfunction and monoamine-related disorders, such as schizophrenia. In this study, we describe an interaction between habenula lesions and stress that produces long-lasting effects on behavior. Mice received control lesions or bilateral electrolytic lesions of the habenula and were tested for fear-potentiated startle and freezing measures of conditioned fear. They were also tested for prepulse inhibition (PPI) and locomotor activity in the presence or absence of a dopaminergic agonist (apomorphine) or an atypical antipsychotic with mixed dopamine/serotonin antagonist properties (clozapine). There were no detectable effects of habenula lesions on fear conditioning and no effects on PPI in the absence of stress. However, following conditioned fear stress, habenula-lesioned animals showed decreased PPI which normalized with clozapine. Lesioned animals also showed diminished activity at baseline, with hyperlocomotion following apomorphine. These data support the hypothesis that the habenula may be normally involved in stress-dependent regulation of monoamine systems.
Collapse
Affiliation(s)
- Scott A Heldt
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes Research Center, Emory University, 954 Gatewood Dr., Atlanta, GA 30329, USA.
| | | |
Collapse
|
32
|
Patrick KS, Williard RL, VanWert AL, Dowd JJ, Oatis JE, Middaugh LD. Synthesis and Pharmacology of Ethylphenidate Enantiomers: The Human Transesterification Metabolite of Methylphenidate and Ethanol. J Med Chem 2005; 48:2876-81. [PMID: 15828826 DOI: 10.1021/jm0490989] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ethanol elevates methylphenidate (1) plasma concentrations and yields the metabolite ethylphenidate (2). The therapeutic implications are under investigation. The IC(50) for dopamine reuptake inhibition by (+)-2 was 27 nM compared to 367 nM for cocaine and 1730 nM for (-)-2. Binding selectivity for dopamine versus norepinephrine transporters was greater for (+)-2 than for cocaine. Intraperitoneal (+)-2 was approximately half as active as (+)-1 in stimulating mouse motor activity at 5 mg/kg, but (+)-2 was as active as (+)-1 at 10 mg/kg.
Collapse
Affiliation(s)
- Kennerly S Patrick
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Environmental restriction or deprivation early in development can induce social, cognitive, affective, and motor abnormalities similar to those associated with autism. Conversely, rearing animals in larger, more complex environments results in enhanced brain structure and function, including increased brain weight, dendritic branching, neurogenesis, gene expression, and improved learning and memory. Moreover, in animal models of CNS insult (e.g., gene deletion), a more complex environment has attenuated or prevented the sequelae of the insult. Of relevance is the prevention of seizures and attenuation of their neuropathological sequelae as a consequence of exposure to a more complex environment. Relatively little attention, however, has been given to the issue of sensitive periods associated with such effects, the relative importance of social versus inanimate stimulation, or the unique contribution of exercise. Our studies have examined the effects of environmental complexity on the development of the restricted, repetitive behavior commonly observed in individuals with autism. In this model, a more complex environment substantially attenuates the development of the spontaneous and persistent stereotypies observed in deer mice reared in standard laboratory cages. Our findings support a sensitive period for such effects and suggest that early enrichment may have persistent neuroprotective effects after the animal is returned to a standard cage environment. Attenuation or prevention of repetitive behavior by environmental complexity was associated with increased neuronal metabolic activity, increased dendritic spine density, and elevated neurotrophin (BDNF) levels in brain regions that are part of cortical-basal ganglia circuitry. These effects were not observed in limbic areas such as the hippocampus.
Collapse
Affiliation(s)
- Mark H Lewis
- McKnight Brain Institute and Department of Psychiatry, University of Florida, Gainesville, Florida 32601, USA.
| |
Collapse
|
34
|
Muller JM, Brunelli SA, Moore H, Myers MM, Shair HN. Maternally modulated infant separation responses are regulated by D2-family dopamine receptors. Behav Neurosci 2005; 119:1384-8. [PMID: 16300444 DOI: 10.1037/0735-7044.119.5.1384] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although dopamine is necessary for mammalian adult pair-bond formation and maternal behavior, its function in infant social behavior and attachment has been less thoroughly explored. The vocalization rate of an isolated rat pup is influenced by recent social contact. Interactions with the dam potentiate vocalization rate. Interactions with littermates or adult males do not. Systemic administration of the D2-family agonist quinpirole specifically blocked maternal potentiation at doses that did not alter vocalization rate in an isolation prior to dam contact. This result was not explained by quinpirole's effects on body temperature or locomotion. The results are consistent with a role for dopamine in infant social behavior.
Collapse
Affiliation(s)
- Jeff M Muller
- Department of Developmental Psychobiology, New York State Psychiatric Institute, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|