1
|
Kaplan GB, Lakis GA, Zhoba H. Sleep-Wake and Arousal Dysfunctions in Post-Traumatic Stress Disorder:Role of Orexin Systems. Brain Res Bull 2022; 186:106-122. [PMID: 35618150 DOI: 10.1016/j.brainresbull.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal/startle, stress responses and insomnia. This review focuses on the importance of the orexin neural system as a novel mechanism related to the pathophysiology of PTSD. Orexinergic neurons originate in the lateral hypothalamus and project widely to key neurotransmitter system neurons, autonomic neurons, the hypothalamic-pituitaryadrenal (HPA) axis, and fear-related neural circuits. After trauma or stress, the basolateral amygdala (BLA) transmits sensory information to the central nucleus of the amygdala (CeA) and in turn to the hypothalamus and other subcortical and brainstem regions to promote fear and threat. Orexin receptors have a prominent role in this circuit as fear conditioned orexin receptor knockout mice show decreased fear expression while dual orexin receptor antagonists (DORAs) inhibit fear acquisition and expression. Orexin activation of an infralimbic-amygdala circuit impedes fear extinction while DORA treatments enhance it. Increased orexin signaling to the amygdalocortical- hippocampal circuit promotes avoidance behaviors. Orexin has an important role in activating sympathetic nervous system (SNS) activity and the HPA axis stress responses. Blockade of orexin receptors reduces fear-conditioned startle responses. In PTSD models, individuals demonstrate sleep disturbances such as increased sleep latency and more transitions to wakefulness. Increased orexin activity impairs sleep by promoting wakefulness and reducing total sleep time while DORA treatments enhance sleep onset and maintenance. The orexinergic neural system provides important mechanisms for understanding multiple PTSD behaviors and provides new medication targets to treat this often persistent and debilitating illness.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Undergraduate Program in Neuroscience, Boston University, Boston, MA, 02215 USA
| | - Hryhoriy Zhoba
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA
| |
Collapse
|
2
|
Shahsavari F, Abbasnejad M, Raoof M, Esmaeili-Mahani S. The rostral ventromedial medulla orexin 1 receptors and extracellular signal-regulated kinase in hippocampus are involved in modulation of anxiety behavior induced by dental pulp nociception in adult male rats. Arch Oral Biol 2020; 116:104778. [PMID: 32474210 DOI: 10.1016/j.archoralbio.2020.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To explore the role of rostral ventromedial medulla (RVM) orexin 1 receptors (OX1R) on orofacial nociception -induced anxiety and locomotion in rats. DESIGN Forty two adult male Wistar rats (220-270 gr) were randomly divided into 7 groups (n = 6) as follows: untreated control, capsaicin, capsaicin vehicle-treated group (sham operation), capsaicin groups pretreated by intra-RVM administration orexin 1 receptor (OX1R) agonist (orexin A) or antagonist (SB-334867) and the capsaicin groups treated by drugs vehicles (DMSO or aCSF). Orofacial nociception was induced by intradental application of capsaicin (100 μg) into the incisors of rats. Anxiety level and locomotor activity were measured by the elevated plus maze (EPM) and open field (OF) tests, respectively. Hippocampal levels of phosphorylated extracellular signal regulated Kinase (p-ERK) was also assessed by western blotting. RESULTS Intradental application of capsaicin significantly increased anxiety and decreased locomotion behaviors. Intra-RVM microinjection of orexin-A significantly prevented capsaicin-induced anxiety-like behavior and increased locomotor activity in the EPM and OF tests. These effects were inhibited by SB-334867. Furthermore, orexin-A significantly increased p-ERK levels in capsaicin-treated rats. This effect was inhibited by pretreatment of the rats with SB-334867. CONCLUSIONS The results suggest that both OX1R signaling in the RVM and hippocampal p-ERK signaling are involved in orofacial nociception-induced anxiety as well as locomotor activity.
Collapse
Affiliation(s)
- Fatemeh Shahsavari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran.
| | - Maryam Raoof
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran; Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Huang MC, Chen CH, Chen LY, Chang HM, Chen CK, Lin SK, Xu K. Chronic ketamine abuse is associated with orexin-A reduction and ACTH elevation. Psychopharmacology (Berl) 2020; 237:45-53. [PMID: 31377886 DOI: 10.1007/s00213-019-05342-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/25/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Ketamine has emerged as a major substance of abuse worldwide. Evidence suggests a role of orexin system in reward processing, withdrawal, and stress response. It also interacts with the stress mechanisms of hypothalamic-pituitary-adrenal (HPA) axis to regulate drug-taking behavior. The study aimed to explore the relevance of orexin and stress hormones to chronic ketamine abuse. METHODS We enrolled 67 ketamine-dependent (KD) patients and 64 controls. The levels of orexin-A, adrenocorticotropic hormone (ACTH), and cortisol were measured at baseline, 1 week, and 2 weeks after ketamine discontinuation. KD patients were assessed by Beck Depression Inventory, Beck Anxiety Inventory, and Visual Analogue Scale for ketamine craving at baseline. RESULTS Compared with the controls, KD patients had significantly lower orexin-A (0.65 ± 0.12 vs. 0.74 ± 0.10 ng/mL, p < 0.001) and increased ACTH (32.3 ± 16.3 vs. 22.3 ± 11.0 pg/mL, p = 0.008) levels at baseline, whereas cortisol levels were similar between two groups. Levels of the three markers did not correlate with ketamine use variables, craving, depression, or anxiety symptoms. The levels did not alter after 1 or 2 weeks of ketamine discontinuation. Notably, those with higher anxiety had lower orexin-A but increased cortisol levels than did those with lower anxiety. CONCLUSIONS This study showed that KD patients had persistent orexin-A reduction and stress hormone dysregulation in early abstinence. The anxious phenotype of KD might be associated with a lower orexin-A expression. These results point to a promising pathway to investigate the neurochemical mechanisms of ketamine addiction.
Collapse
Affiliation(s)
- Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, 309, Song-De Road, Xinyi District, Taipei City, 110, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei, 110, Taiwan.,Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Hsin Chen
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, 111, Sec. 3, Hsing-Long Rd, Taipei, 116, Taiwan
| | - Lian-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, 309, Song-De Road, Xinyi District, Taipei City, 110, Taiwan.,Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Hu-Ming Chang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, 309, Song-De Road, Xinyi District, Taipei City, 110, Taiwan
| | - Chih-Ken Chen
- Department of Psychiatry & Community Medicine Research Center, Chang Gung Memorial Hospital, 200, Ln 208, Ji-Jing 1st Rd, Keelung, Taiwan. .,Chang Gung University School of Medicine, 5, Fu-Hsing Rd, Gue-Shan District Taoyuan City, 333, Taiwan.
| | - Shih-Ku Lin
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, 309, Song-De Road, Xinyi District, Taipei City, 110, Taiwan. .,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei, 110, Taiwan.
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Tsuchimine S, Hattori K, Ota M, Hidese S, Teraishi T, Sasayama D, Hori H, Noda T, Yoshida S, Yoshida F, Kunugi H. Reduced plasma orexin-A levels in patients with bipolar disorder. Neuropsychiatr Dis Treat 2019; 15:2221-2230. [PMID: 31496705 PMCID: PMC6689769 DOI: 10.2147/ndt.s209023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/17/2019] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Orexins are hypothalamic neuropeptides involved in the regulation of sleep, appetite and arousal. An altered orexin system has been implicated in the pathophysiology of psychiatric disorders. This study aimed to examine whether plasma orexin-A levels differ in patients with schizophrenia, major depressive disorder (MDD), or bipolar disorder (BD) compared to in healthy controls. We also examined the possible correlations between plasma orexin-A levels and clinical variables. PATIENTS AND METHODS All participants were Japanese. The sample consisted of 80 patients with schizophrenia (42 women, 52.5%; mean age 36.8 years), 80 patients with MDD (43 women, 53.8%; 43.7 years), and 40 patients with BD (24 women, 60%; 41.1 years), as well as 80 healthy controls (48 women, 60%; 47.0 years). Plasma orexin-A levels were quantified by an enzyme-linked immunosorbent assay. RESULTS Mean orexin-A levels were significantly different across the four diagnostic groups (F=4.09; df=3; p=0.007, η2 =0.06). In particular, the patients with BD showed significantly lower orexin-A levels than did the controls. When the median value of the control group (109.8 pg/ml) was set as a cut-off value, subjects whose orexin-A levels were below the cut-off were more common in all psychiatric groups (schizophrenia: 73.8%, x2 =9.56, df=1, p=0.003, OR=2.81, 95% CI: 1.45 to 5.45, d=0.57; MDD: 78.5%, x2 =14.02, df=1, p<0.001, OR=3.65, 95% CI: 1.82 to 7.29, d=0.72; BD: 87.5%, x2 =16.0, df=1, p<0.001, OR=7.00, 95% CI: 2.49 to 19.70, d=1.07). We found no association between plasma orexin-A levels and any clinical symptoms, depression severity, or medication doses. CONCLUSION Our results suggest that plasma orexin-A levels are reduced in patients with BD.
Collapse
Affiliation(s)
- Shoko Tsuchimine
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8502, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8502, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8502, Japan
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8502, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8502, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8502, Japan
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8502, Japan
| | - Takamasa Noda
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo187-8551, Japan
| | - Sumiko Yoshida
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo187-8551, Japan
| | - Fuyuko Yoshida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8502, Japan
| |
Collapse
|
5
|
Sharko AC, Fadel JR, Kaigler KF, Wilson MA. Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction. Physiol Behav 2017; 178:93-102. [PMID: 27746261 PMCID: PMC5391308 DOI: 10.1016/j.physbeh.2016.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023]
Abstract
Identifying the neurobiological mechanisms that underlie differential sensitivity to stress is critical for understanding the development and expression of stress-induced disorders, such as post-traumatic stress disorder (PTSD). Preclinical studies have suggested that rodents display different phenotypes associated with extinction of Pavlovian conditioned fear responses, with some rodent populations being resistant to extinction. An emerging literature also suggests a role for orexins in the consolidation processes associated with fear learning and extinction. To examine the possibility that the orexin system might be involved in individual differences in fear extinction, we used a Pavlovian conditioning paradigm in outbred Long-Evans rats. Rats showed significant variability in the extinction of cue-conditioned freezing and extinction recall, and animals were divided into groups based on their extinction profiles based on a median split of percent freezing behavior during repeated exposure to the conditioned cue. Animals resistant to extinction (high freezers) showed more freezing during repeated cue presentations during the within trial and between trial extinction sessions compared with the group showing significant extinction (low freezers), although there were no differences between these groups in freezing upon return to the conditioned context or during the conditioning session. Following the extinction recall session, activation of orexin neurons was determined using dual label immunohistochemistry for cFos in orexin positive neurons in the hypothalamus. Individual differences in the extinction of cue conditioned fear were associated with differential activation of hypothalamic orexin neurons. Animals showing poor extinction of cue-induced freezing (high freezers) had significantly greater percentage of orexin neurons with Fos in the medial hypothalamus than animals displaying significant extinction and good extinction recall (low freezers). Further, the freezing during extinction learning was positively correlated with the percentage of activated orexin neurons in both the lateral and medial hypothalamic regions. No differences in the overall density of orexin neurons or Fos activation were seen between extinction phenotypes. Although correlative, our results support other studies implicating a role of the orexinergic system in regulating extinction of conditioned responses to threat.
Collapse
Affiliation(s)
- Amanda C Sharko
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Kris F Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA.
| |
Collapse
|
6
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
7
|
Staples LG, Cornish JL. The orexin-1 receptor antagonist SB-334867 attenuates anxiety in rats exposed to cat odor but not the elevated plus maze: an investigation of Trial 1 and Trial 2 effects. Horm Behav 2014; 65:294-300. [PMID: 24397997 DOI: 10.1016/j.yhbeh.2013.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 01/22/2023]
Abstract
The orexins are hypothalamic neuropeptides most well known for their roles in regulating feeding and sleeping behaviors. Recent findings suggest that orexin-A may also modulate anxiety, although how and when the orexin system is involved remains unclear. To address this, we investigated the dose-dependent effects of the orexin-1 receptor antagonist SB-334867 in two rodent models of anxiety: the cat odor avoidance model and the elevated plus maze. In both models we tested the effects of SB-334867 when anxiety is novel (Trial 1) and familiar (Trial 2). In the first experiment, Wistar rats were treated with vehicle or SB-334867 (5, 10 or 20mg/kg, i.p.) prior to their first or second exposure to cat odor. During Trial 1, rats treated with 10mg/kg of SB-334867 approached the cat odor stimulus more than vehicle-treated rats. During Trial 2 the effects were more marked, with 10mg/kg of SB-334867 increasing approach times, increasing the number of times rats exited the hide box to engage in exploratory behavior, and decreasing overall hide times. In addition, the 20mg/kg dose decreased general activity during Trial 2. In the second experiment, the effects of SB-334867 (10 and 20mg/kg) were tested in the elevated plus maze. There were no significant differences produced by drug treatment during either Trial 1 or Trial 2. Results suggest that SB-334867 decreases anxiety induced by some, but not all, stressors.
Collapse
Affiliation(s)
- Lauren G Staples
- Department of Psychology C3A, Macquarie University, NSW 2109, Australia.
| | | |
Collapse
|
8
|
Woods IG, Schoppik D, Shi VJ, Zimmerman S, Coleman HA, Greenwood J, Soucy ER, Schier AF. Neuropeptidergic signaling partitions arousal behaviors in zebrafish. J Neurosci 2014; 34:3142-60. [PMID: 24573274 PMCID: PMC3935080 DOI: 10.1523/jneurosci.3529-13.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/01/2014] [Accepted: 01/07/2014] [Indexed: 11/21/2022] Open
Abstract
Animals modulate their arousal state to ensure that their sensory responsiveness and locomotor activity match environmental demands. Neuropeptides can regulate arousal, but studies of their roles in vertebrates have been constrained by the vast array of neuropeptides and their pleiotropic effects. To overcome these limitations, we systematically dissected the neuropeptidergic modulation of arousal in larval zebrafish. We quantified spontaneous locomotor activity and responsiveness to sensory stimuli after genetically induced expression of seven evolutionarily conserved neuropeptides, including adenylate cyclase activating polypeptide 1b (adcyap1b), cocaine-related and amphetamine-related transcript (cart), cholecystokinin (cck), calcitonin gene-related peptide (cgrp), galanin, hypocretin, and nociceptin. Our study reveals that arousal behaviors are dissociable: neuropeptide expression uncoupled spontaneous activity from sensory responsiveness, and uncovered modality-specific effects upon sensory responsiveness. Principal components analysis and phenotypic clustering revealed both shared and divergent features of neuropeptidergic functions: hypocretin and cgrp stimulated spontaneous locomotor activity, whereas galanin and nociceptin attenuated these behaviors. In contrast, cart and adcyap1b enhanced sensory responsiveness yet had minimal impacts on spontaneous activity, and cck expression induced the opposite effects. Furthermore, hypocretin and nociceptin induced modality-specific differences in responsiveness to changes in illumination. Our study provides the first systematic and high-throughput analysis of neuropeptidergic modulation of arousal, demonstrates that arousal can be partitioned into independent behavioral components, and reveals novel and conserved functions of neuropeptides in regulating arousal.
Collapse
Affiliation(s)
- Ian G. Woods
- Department of Biology, Ithaca College, Ithaca, New York 14850, and
- Department of Molecular and Cellular Biology and
| | | | | | | | - Haley A. Coleman
- Department of Biology, Ithaca College, Ithaca, New York 14850, and
| | - Joel Greenwood
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Edward R. Soucy
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology and
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
9
|
Orexin-1 receptor antagonism fails to reduce anxiety-like behaviour in either plus-maze-naïve or plus-maze-experienced mice. Behav Brain Res 2013; 243:213-9. [PMID: 23333844 DOI: 10.1016/j.bbr.2012.12.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 11/20/2022]
Abstract
Although several lines of evidence have recently implicated orexins and their receptors in fear and anxiety, there is also a growing number of apparently inconsistent and/or negative findings. In the present study, we have used ethological methods to comprehensively profile the behavioural effects of the orexin-1 receptor antagonist SB-334867 (3-30 mg/kg) in mice exposed to the elevated plus-maze. Two experiments were performed, the first involving test-naïve animals and the second using prior undrugged experience of the maze to induce a qualitatively different emotional response to that seen on first exposure. In Experiment 1, a reference benzodiazepine (chlordiazepoxide, CDP, 15 mg/kg) produced a robust anxioselective profile comprising substantial increases in open arm exploration and reduced risk assessment without any signiifcant change in general activity levels. In contrast, SB-334867 failed to produce any behavioural effects over the dose range tested. In Experiment 2, 5 min undrugged experience of the maze 24h prior to testing increased open arm avoidance and abolished the anxiolytic efficacy of CDP. Despite this altered baseline, SB-334867 again failed to alter plus-maze behaviour. These findings agree with several recent reports that orexin receptor antagonists, such as SB-334867 and almorexant, do not alter basal anxiety levels in rats but markedly contrast with the anxiolytic-like effects of the same agents when anxiety levels have been exacerbated by fear conditioning, drug challenge or hypercapnia. This unique pattern of activity suggests that orexin receptor antagonists may have therapeutic value in those clinical anxiety disorders characterised by intense emotional arousal.
Collapse
|
10
|
Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2012; 304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neuropeptides orexins and their G protein-coupled receptors, OX(1) and OX(2), were discovered in 1998, and since then, their role has been investigated in many functions mediated by the central nervous system, including sleep and wakefulness, appetite/metabolism, stress response, reward/addiction, and analgesia. Orexins also have peripheral actions of less clear physiological significance still. Cellular responses to the orexin receptor activity are highly diverse. The receptors couple to at least three families of heterotrimeric G proteins and other proteins that ultimately regulate entities such as phospholipases and kinases, which impact on neuronal excitation, synaptic plasticity, and cell death. This article is a 10-year update of my previous review on the physiology of the orexinergic/hypocretinergic system. I seek to provide a comprehensive update of orexin physiology that spans from the molecular players in orexin receptor signaling to the systemic responses yet emphasizing the cellular physiological aspects of this system.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Dept. of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
11
|
Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2012; 64:389-420. [DOI: 10.1124/pr.111.005546] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
12
|
Lungwitz EA, Molosh A, Johnson PL, Harvey BP, Dirks RC, Dietrich A, Minick P, Shekhar A, Truitt WA. Orexin-A induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiol Behav 2012; 107:726-32. [PMID: 22652097 DOI: 10.1016/j.physbeh.2012.05.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/22/2022]
Abstract
The hypothalamic neuropeptide orexin (ORX) has been implicated in anxiety, and anxiety-like behaviors. The purpose of these studies was to determine the role of ORX, specifically orexin-A (ORX-A) in the bed nucleus of the stria terminalis (BNST) on anxiety-like behaviors in rats. Rats injected with ORX-A into the BNST displayed greater anxiety-like measures in the social interaction and elevated plus maze tests compared to vehicle treated controls. Such anxiety-like behaviors were not observed when the ORX-A injections were adjacent to the BNST, in the medial septum. The anxiety-inducing effects of direct infusions of ORX-A into the BNST may be a consequence of increased activation of BNST neurons. In BNST slice preparations using patch-clamp techniques, ORX-A induced membrane depolarization and generation of action potentials in a subset of BNST neurons. The anxiety-inducing effects of ORX-A in the BNST also appear to be dependent on NMDA-type glutamate receptor activity, as pre-injecting the NMDA antagonist AP5 into the BNST blocked anxiogenic effects of local ORX-A injections. Injections of AMPA-type receptor antagonists into the BNST prior to ORX-A resulted in only a partial attenuation of anxiety-like behaviors.
Collapse
Affiliation(s)
- Elizabeth A Lungwitz
- Graduate Program in Medical Neuroscience, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Strawn JR, Pyne-Geithman GJ, Ekhator NN, Horn PS, Uhde TW, Shutter LA, Baker DG, Geracioti TD. Low cerebrospinal fluid and plasma orexin-A (hypocretin-1) concentrations in combat-related posttraumatic stress disorder. Psychoneuroendocrinology 2010; 35:1001-7. [PMID: 20116928 DOI: 10.1016/j.psyneuen.2010.01.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 12/26/2009] [Accepted: 01/06/2010] [Indexed: 12/01/2022]
Abstract
The hypothalamic neuropeptide, orexin-A has a number of regulatory effects in humans and pre-clinical evidence suggests a link to neuroendocrine systems known to be pathophysiologically related to posttraumatic stress disorder (PTSD). However, there are no reports of central nervous system (CNS) or peripheral orexin-A concentrations in patients with PTSD, or any anxiety disorder. Cerebrospinal fluid (CSF) and plasma levels of orexin-A were serially determined in patients with PTSD and healthy comparison subjects to characterize the relationships between orexin-A (in the CNS and peripheral circulation) and central indices of monoaminergic neurotransmission and to determine the degree to which CNS orexin-A concentrations reflect those in the circulating blood. CSF and plasma samples were obtained serially over a 6-h period in 10 male combat veterans with chronic PTSD and 10 healthy male subjects through an indwelling subarachnoid catheter. Orexin-A concentrations were determined in plasma and CSF and CSF levels of the serotonin metabolite, 5-hydroxyindolacetic acid (5-HIAA), and the dopamine metabolite, homovanillic acid (HVA), were determined over the sampling period. CSF and plasma orexin-A concentrations were significantly lower in the patients with PTSD as compared with healthy comparison subjects at all time points. In addition, CSF orexin-A concentrations strongly and negatively correlated with PTSD severity as measured by the Clinician-Administered PTSD Scale (CAPS) in patients with PTSD. Peripheral and CNS concentrations of orexin-A were correlated in the healthy comparison subjects and peripheral orexin-A also correlated with CNS serotonergic tone. These findings suggest low central and peripheral orexin-A activity in patients with chronic PTSD are related to symptom severity and raise the possibility that orexin-A is part of the pathophysiological mechanisms of combat-related PTSD.
Collapse
Affiliation(s)
- Jeffrey R Strawn
- Department of Psychiatry, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0559, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Di Sebastiano AR, Yong-Yow S, Wagner L, Lehman MN, Coolen LM. Orexin mediates initiation of sexual behavior in sexually naive male rats, but is not critical for sexual performance. Horm Behav 2010; 58:397-404. [PMID: 20541554 PMCID: PMC2917508 DOI: 10.1016/j.yhbeh.2010.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
The hypothalamic neuropeptide orexin mediates arousal, sleep, and naturally rewarding behaviors, including food intake. Male sexual behavior is altered by orexin receptor-1 agonists or antagonists, suggesting a role for orexin-A in this naturally rewarding behavior. However, the specific role of endogenous orexin-A or B in different elements of male sexual behavior is currently unclear. Therefore, the current studies utilized markers for neural activation and orexin cell-specific lesions to test the hypothesis that orexin is critical for sexual motivation and performance in male rats. First, cFos expression in orexin neurons was demonstrated following presentation of a receptive or non-receptive female without further activation by different elements of mating. Next, the functional role of orexin was tested utilizing orexin-B conjugated saporin, resulting in orexin cell body lesions in the hypothalamus. Lesions were conducted in sexually naive males and subsequent sexual behavior was recorded during four mating trials. Lesion males showed shortened latencies to mount and intromit during the first, but not subsequent mating trials, suggesting lesions facilitated initiation of sexual behavior in sexually naive, but not experienced males. Likewise, lesions did not affect sexual motivation in experienced males, determined by runway tests. Finally, elevated plus maze tests demonstrated reduced anxiety-like behaviors in lesioned males, supporting a role for orexin in anxiety associated with initial exposure to the female in naive animals. Overall, these findings show that orexin is not critical for male sexual performance or motivation, but may play a role in arousal and anxiety related to sexual behavior in naive animals.
Collapse
Affiliation(s)
- Andrea R. Di Sebastiano
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Sabrina Yong-Yow
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Lauren Wagner
- Department of Cell Biology, Neurobiology, and Anatomy; University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael N. Lehman
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Lique M. Coolen
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Abstract
The high prevalence and comorbidity of anxiety and sleep problems, especially insomnia, suggest an important underlying relationship between these disorders. In this article, we highlight two theoretical models explaining this co-occurrence, provide a brief update on the association between anxiety-insomnia and anxiety-cataplexy in general, and review more specifically sleep problems in generalized anxiety, post-traumatic stress disorder, and panic disorder. We also explore sleep paralysis as an anxiety-sleep event. Our goal with this examination of selective anxiety-sleep problems is to provide clues about diagnostic and treatment approaches and frame strategies for future research.
Collapse
|