1
|
Oldham T, Oppedal F, Fjelldal PG, Hansen TJ. Adaptive photoperiod interpretation modulates phenological timing in Atlantic salmon. Sci Rep 2023; 13:2618. [PMID: 36788276 PMCID: PMC9929253 DOI: 10.1038/s41598-023-27583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/04/2023] [Indexed: 02/16/2023] Open
Abstract
Photoperiod, the portion of 24-h cycle during which an organism is exposed to illumination, is an important phenological cue in many animals. However, despite its influence on critical biological processes, there remain many unknowns regarding how variations in light intensity translate into perceived photoperiod. This experiment examined how light intensity variations affect perceived photoperiod in Atlantic salmon (Salmo salar) to determine whether photoperiod interpretation is, a) fixed such that anything above a minimum detection threshold is regarded as 'illumination', or b) adaptive and varies with recent light exposure. To do this we compared the frequency of smoltification and sexual maturation between groups of male parr which were exposed to one of eight light regimes on a 12:12 cycling regime (12-hour day/12-hour night). The eight regimes were divided into two treatments, four with 'High' daytime light intensity and four with 'Low' daytime light intensity. The 'High' and 'Low' intensity treatments were each sub-divided into four groups for which the subjective 'night' light intensity was 100%, 10%, 1% and 0% of the daytime light intensity, with four replicate tanks of each treatment. The results show that above a minimum detection threshold, Atlantic salmon have adaptive photoperiod interpretation which varies with recent light exposure, and that adaptive photoperiod interpretation modulates the timing of the parr-smolt transformation and sexual maturation. Further, we show that photoperiod interpretation varies between closely related families. Given the influence of phenological timing on species survival, our results reveal a critical role for integration of photoperiod interpretation in attempts to understand how geographically shifting thermal niches due to climate change will affect future populations.
Collapse
Affiliation(s)
- Tina Oldham
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway.
| | - Frode Oppedal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Tom Johnny Hansen
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| |
Collapse
|
2
|
Valchářová T, Slavík O, Horký P, Stará A, Hrušková I, Maciak M, Pešta M, Velíšek J. Stressful Daylight: Differences in Diel Rhythmicity Between Albino and Pigmented Fish. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.890874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In laboratory experiments, variously colored strains of animals, including those with albino phenotypes, are commonly used. The melanocortin theory suggests, however, that coloration phenotypes alter animal physiology and behavior. Animals with the albino phenotype show photoreceptor degradation associated with lowered visual accuracy, escape reactions, etc., presumably accompanied by prevailing nocturnal activity and lowered aggressiveness. This assumption was tested in small groups of albino and pigmented European catfish, Silurus glanis, during the diel cycle. The frequency of agonistic interactions was observed during mutual contests for shelters, and subsequently, blood plasma, brain, gill, and liver samples were collected to evaluate stress parameters. In an experimental arena with shelters, the light/dark rhythmicity of locomotor activity and aggressiveness of the two phenotypes were comparable; the peak was observed at night, and a lower peak was observed at dawn. In an experimental stream without shelters, the peak of locomotor activity occurred at night for only the pigmented phenotype. In the evaluation of 4 antioxidants and 1 oxidative stress indicator, representing a total of 15 indices, albino fish showed significant rhythmicity for 8 indices, whereas pigmented catfish showed significant rhythmicity for 5 indices. The production of blood stress parameters with the peak during the day occurred only in albino fish. A complex model was fitted with the aim of evaluating the links between behavioral and biochemical indices. Time periodicity was modeled using a sine wave and confirmed parallel courses of agonistic interactions in the catfish groups; the peak at dawn was associated with a 4.08-fold (conf. int. 3.53–4.7) increase in such interactions. The changes in glucose and superoxide dismutase concentrations varied with phenotype, while the effects of cortisol, lactate and catalase did not. In summary, the rhythmicity of locomotor activity and changes in the aggressiveness of catfish were influenced by shelter availability, and the effect of light-induced stress was more apparent in albino fish than in pigmented conspecific fish. The results suggested that laboratory-raised animals with pigmentation patterns naturally occurring in the wild show more reasonable values during experiments than those with an albino phenotype.
Collapse
|
3
|
Lee R, Tapia A, Kaladchibachi S, Grandner MA, Fernandez FX. Meta-analysis of light and circadian timekeeping in rodents. Neurosci Biobehav Rev 2021; 123:215-229. [PMID: 33513413 DOI: 10.1016/j.neubiorev.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
We conducted a meta-analysis of papers published over the past half-century (1964-2017) that quantified the phase-shifting effects of timed light exposure on rodent locomotor rhythms. Descriptive statistics were tabulated in order to explore the extent to which these studies were generalizable across species, sex, age, circadian timing, and light sources. Attempts at understanding photic resetting were primarily targeted at younger male animals, with particular emphases placed on characterizing the pacemaker systems of C57BL/6 mice and Syrian hamsters during the parts of their subjective night most sensitive to delivery of white-fluorescent light. With subsequent analyses restricted to these rodent models, we then assessed the relationship between luminous exposure (via broadspectrum emission) and phase-shifting through a series of linear regressions. Monotonically increasing illuminance-response functions were noted at most circadian times surveyed. In the aggregate, our results show that previous research conducted on light's regulation of circadian timekeeping has been skewed in design with respect to several important biological variables. This bias might limit translation of phototherapy-relevant data to women and older individuals.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Amaris Tapia
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | | | - Michael A Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
4
|
Kumar D, Soni SK, Kronfeld-Schor N, Singaravel M. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel, Funambulus pennantii. Chronobiol Int 2020; 37:1693-1708. [PMID: 33044096 DOI: 10.1080/07420528.2020.1826959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Several studies have reported activity patterns of various diurnal species from the order Rodentia, in which most of the species are nocturnal. Most of these studies have been performed under controlled laboratory conditions. These studies found that most of these species change their activity patterns when held under laboratory conditions, have a diverse masking response to light, and their activity pattern is influenced by the presence of a running wheel. Squirrels are reported to be strictly diurnal both in the field as well as in laboratory settings, and, therefore, form an interesting species to study to better understand the switch to diurnality. The aim of the current study is to characterize the masking response and temporal organization of wheel-running activity rhythms in the palm squirrel, Funambulus pennantii, under semi-natural (NLD) and controlled laboratory conditions using different lighting schedules. Squirrels were housed individually in a resting cage with running wheel under NLD (n = 10) and squared 12:12 h of light-dark cycle (LD) (n = 20). After stable entrainment under the LD condition, squirrels were divided into two groups. One group was housed under constant darkness (DD) (n = 10) and another group under constant light (LL) (n = 10). Following the stable free-running rhythm under DD and LL, the LD condition was reinforced. The kinetics of the endogenous pacemaker was studied following a 6 h phase advance or delay of LD cycle. Further, palm squirrels were subjected to a 3.5: 3.5 h LD cycle to evaluate the masking response to light and dark. Squirrels demonstrated stable, clear, robust, and strict diurnal activity rhythm during NLD and LD. In DD and LL, F. pennantii free-ran from the phase of the previous LD cycle, and the free-running period was longer in LL than in DD. The percentage of activity during the light phase was significantly higher in NLD and LD (above 96%) compared to activity during the subjective day in the DD and LL conditions (above 91%). The alpha/rho ratio was significantly higher in the LL compared to other lighting schedules. Further, all ten squirrels re-entrained to both 6 h advance and delay shifts within 11 days. In the ultradian cycle, significant positive masking of light was evident in nine of ten squirrels. These results suggest that the: (i) circadian system of F. pennantii is stable and functional under various lighting conditions; (ii) basic temporal organization in activity pattern remained unaltered even in the presence of a running wheel; (iii) diurnality is the inherent trait of F. pennantii, and (iv) behavioral activity rhythms are governed by both the circadian clock and external masking. Thus, palm squirrels can be used as a suitable diurnal model in circadian biology to study the underlying mechanisms of diurnality and effects of different light schedules, wavelengths, and non-photic cues on physiological and behavioral parameters.
Collapse
Affiliation(s)
- Dhanananajay Kumar
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India.,Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) , Varanasi, India
| | - Sanjeev Kumar Soni
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India
| | - Noga Kronfeld-Schor
- Ecological and Evolutionary Physiology Laboratory, Faculty of Life Sciences, Tel Aviv University , Tel-Aviv, Israel
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India
| |
Collapse
|
5
|
González MMC. Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents. Front Neurol 2018; 9:609. [PMID: 30116218 PMCID: PMC6084421 DOI: 10.3389/fneur.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.
Collapse
Affiliation(s)
- Mónica M C González
- Sección Cronobiología y Sueño, Instituto Ferrero de Neurología y Sueño, Buenos Aires, Argentina
| |
Collapse
|
6
|
Abstract
Although inbred domesticated strains of rats and mice serve as traditional mammalian animal models in biomedical research, the nocturnal habits of these rodents make them inappropriate for research that requires a model with human-like diurnal activity rhythms. We conducted a literature review and recorded locomotor activity data from four rodent species that are generally considered to be diurnally active, the Mongolian gerbil ( Meriones unguiculatus), the degu ( Octodon degus), the African (Nile) grass rat ( Arvicanthis niloticus), and the antelope ground squirrel ( Ammospermophilus leucurus). Our data collected under 12-hour light/dark cycles confirmed and expanded the existing literature in showing that the activity rhythms of antelope ground squirrels and African grass rats are stronger and more concentrated in the light phase of the light/dark cycle than the activity rhythms of Mongolian gerbils and degus, making the former two species preferable and more reliable as models of consistent diurnal activity in the laboratory. Among the two more strongly diurnal species, antelope ground squirrels are more exclusively diurnal and have more robust activity rhythms than African grass rats. Although animals of these two species are not currently available from commercial suppliers, African grass rats are indigenous to a wide area across the north of Africa and thus available to researchers in the eastern hemisphere, whereas antelope ground squirrels can be found throughout much of western North America's desert country and, therefore, are more easily accessible to North American researchers.
Collapse
Affiliation(s)
- Roberto Refinetti
- 1 Circadian Rhythm Laboratory, Department of Psychological Science, Boise State University, USA
| | - G J Kenagy
- 2 Department of Biology and Burke Museum, University of Washington, USA
| |
Collapse
|
7
|
Hanai M, Yoshikuni M, Hikita H. Effect of Dietary Protein Levels on Protein Nutritional Status in Growing Female Rats Kept under Constant Darkness. J Nutr Sci Vitaminol (Tokyo) 2018; 63:372-378. [PMID: 29332898 DOI: 10.3177/jnsv.63.372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to clarify the effects of dietary protein levels on protein nutritional status in rats kept under constant darkness. Thirty-six 4-wk-old female rats (F344 strain) were divided into six groups. Each group was given a diet with one of three different protein levels and kept under normal light and dark cycles (7:00-19:00 light period/19:00-7:00 dark period, N group) or under constant darkness (D group) for 4 wk. The protein levels of the diets were 10%, 20%, and 30% casein. The six groups are referred to as the N10%, N20%, N30%, D10%, D20%, and D30% groups. Body weight gain was low in the D groups, and that in the D30% group was much lower than that in the N30% group. The D30% group retained less nitrogen than the N30% group. As for the amount of urinary nitrogen excreted every 4 h, the values for the D-groups were higher than those for the N-groups in the 11:00-15:00 periods, and that for the D30% group was higher than that for the N30% group in the 15:00-19:00 periods, which means that protein catabolism was higher in the D30% group. It was shown that when rats kept under constant darkness were fed a high-protein diet for 4 wk, their nitrogen retention decreased and their protein nutritional state dropped.
Collapse
Affiliation(s)
- Miho Hanai
- Department of Nutrition and Life Science, Kanagawa Institute of Technology
| | - Miko Yoshikuni
- Department of Nutrition and Life Science, Kanagawa Institute of Technology
| | - Haruna Hikita
- Department of Nutrition and Life Science, Kanagawa Institute of Technology
| |
Collapse
|
8
|
Abstract
In mammals, light entrains endogenous circadian pacemakers by inducing daily phase shifts via a photoreceptor mechanism recently discovered in retinal ganglion cells. Light that is comparable in intensity to moonlight is generally ineffective at inducing phase shifts or suppressing melatonin secretion, which has prompted the view that circadian photic sensitivity has been titrated so that the central pacemaker is unaffected by natural nighttime illumination. However, the authors have shown in several different entrainment paradigms that completely dark nights are not functionally equivalent to dimly lit nights, even when nighttime illumination is below putative thresholds for the circadian visual system. The present studies extend these findings. Dim illumination is shown here to be neither a strong zeitgeber, consistent with published fluence response curves, nor a potentiator of other zeitgebers. Nevertheless, dim light markedly alters the behavior of the free-running circadian pacemaker. Syrian hamsters were released from entrained conditions into constant darkness or dim narrowband green illumination (~0.01 lx, 1.3 × 10-9 W/cm2, peak λ = 560 nm). Relative to complete darkness, constant dim light lengthened the period by ~0.3 h and altered the waveform of circadian rhythmicity. Among animals transferred from long day lengths (14 L:10 D) into constant conditions, dim illumination increased the duration of the active phase (α) by ~3 h relative to complete darkness. Short day entrainment (8 L:16 D) produced initially long α that increased further under constant dim light but decreased under complete darkness. In contrast, dim light pulses 2 h or longer produced effects on circadian phase and melatonin secretion that were small in magnitude. Furthermore, the amplitude of phase resetting to bright light and nonphotic stimuli was similar against dimly lit and dark backgrounds, indicating that the former does not directly amplify circadian inputs. Dim illumination markedly alters circadian waveform through effects on α, suggesting that dim light influences the coupling between oscillators theorized to program the beginning and end of subjective night. Physiological mechanisms responsible for conveying dim light stimuli to the pacemaker and implications for chronotherapeutics warrant further study.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Psychology, University of California, San Diego, La Jolla, CA 92093, usa.
| | | | | |
Collapse
|
9
|
Slavík O, Horký P, Wackermannová M. How does agonistic behaviour differ in albino and pigmented fish? PeerJ 2016; 4:e1937. [PMID: 27114883 PMCID: PMC4841223 DOI: 10.7717/peerj.1937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/24/2016] [Indexed: 01/17/2023] Open
Abstract
In addition to hypopigmentation of the skin and red iris colouration, albino animals also display distinct physiological and behavioural alterations. However, information on the social interactions of albino animals is rare and has mostly been limited to specially bred strains of albino rodents and animals from unique environments in caves. Differentiating between the effects of albinism and domestication on behaviour in rodents can be difficult, and social behaviour in cave fish changes according to species-specific adaptations to conditions of permanent darkness. The agonistic behaviours of albino offspring of pigmented parents have yet to be described. In this study, we observed agonistic behaviour in albino and pigmented juvenile Silurus glanis catfish. We found that the total number of aggressive interactions was lower in albinos than in pigmented catfish. The distance between conspecifics was also analysed, and albinos showed a tendency towards greater separation from their same-coloured conspecifics compared with pigmented catfish. These results demonstrate that albinism can be associated with lower aggressiveness and with reduced shoaling behaviour preference, as demonstrated by a tendency towards greater separation of albinos from conspecifics.
Collapse
Affiliation(s)
- Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague , Prague , Czech Republic
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague , Prague , Czech Republic
| | - Marie Wackermannová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague , Prague , Czech Republic
| |
Collapse
|
10
|
Slavík O, Horký P, Wackermannová M. How does agonistic behaviour differ in albino and pigmented fish? PeerJ 2016. [PMID: 27114883 DOI: 10.7717/peerj.1937.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to hypopigmentation of the skin and red iris colouration, albino animals also display distinct physiological and behavioural alterations. However, information on the social interactions of albino animals is rare and has mostly been limited to specially bred strains of albino rodents and animals from unique environments in caves. Differentiating between the effects of albinism and domestication on behaviour in rodents can be difficult, and social behaviour in cave fish changes according to species-specific adaptations to conditions of permanent darkness. The agonistic behaviours of albino offspring of pigmented parents have yet to be described. In this study, we observed agonistic behaviour in albino and pigmented juvenile Silurus glanis catfish. We found that the total number of aggressive interactions was lower in albinos than in pigmented catfish. The distance between conspecifics was also analysed, and albinos showed a tendency towards greater separation from their same-coloured conspecifics compared with pigmented catfish. These results demonstrate that albinism can be associated with lower aggressiveness and with reduced shoaling behaviour preference, as demonstrated by a tendency towards greater separation of albinos from conspecifics.
Collapse
Affiliation(s)
- Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague , Prague , Czech Republic
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague , Prague , Czech Republic
| | - Marie Wackermannová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague , Prague , Czech Republic
| |
Collapse
|
11
|
Juárez-Tapia CR, Torres-Mendoza D, Durán P, Miranda-Anaya M. Short-day photoperiod disrupts daily activity and facilitates anxiety–depressive behaviours in gerbilMeriones unguiculatus. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1066545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Gu C, Ramkisoensing A, Liu Z, Meijer JH, Rohling JHT. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus. J Biol Rhythms 2014; 29:16-27. [PMID: 24492879 DOI: 10.1177/0748730413516752] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mammals, the central clock in the suprachiasmatic nucleus (SCN) controls physiological and behavioral circadian rhythms and is entrained to the external light-dark cycle. The ability of the SCN to entrain can be measured by exposing the animal to a light-dark cycle with a duration that deviates from 24 h (T-cycles); a wider entrainment range reflects a higher ability to entrain. The neurons of the SCN are either light responsive or light unresponsive and are mutually synchronized. The coupling and synchronization between individual SCN neurons and between groups of neurons within the SCN influence the SCN's ability to entrain. Some studies suggest that enhanced coupling decreases the entrainment range, whereas others suggest that enhanced coupling increases the entrainment range. The latter results are surprising, as they are not consistent with the prevalent assumption that the SCN is a limit cycle oscillator that has larger phase shifts when the amplitude is smaller. Here, we used the Poincaré and Goodwin models to test entrainment properties using various proportions of neurons that are responsive to an external stimulus. If all neurons receive external input, the SCN shows limit cycle behavior in all conditions. If all neurons do not receive light input, we found that the entrainment range of the SCN was positively related to coupling strength when coupling was weak. When coupling strength was stronger and above a critical value, the entrainment range was negatively correlated with coupling strength. The results obtained from our simulations were confirmed by analytical studies. Thus, the limit cycle behavior of the SCN appears to be critically dependent on the coupling strength among the neurons and the proportion of neurons that respond to the entraining stimulus.
Collapse
Affiliation(s)
- Changgui Gu
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | |
Collapse
|
13
|
Georg B, Rask L, Hannibal J, Fahrenkrug J. The Light-InducedFOSResponse in Melanopsin Expressing HEK-293 Cells is Correlated with Melanopsin Quantity and Dependent on Light Duration and Irradiance. Photochem Photobiol 2014; 90:1069-76. [DOI: 10.1111/php.12298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/29/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Birgitte Georg
- Department of Clinical Biochemistry; Faculty of Health Sciences; Bispebjerg Hospital; University of Copenhagen; Copenhagen NV Denmark
| | - Lene Rask
- Department of Clinical Biochemistry; Faculty of Health Sciences; Bispebjerg Hospital; University of Copenhagen; Copenhagen NV Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry; Faculty of Health Sciences; Bispebjerg Hospital; University of Copenhagen; Copenhagen NV Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry; Faculty of Health Sciences; Bispebjerg Hospital; University of Copenhagen; Copenhagen NV Denmark
| |
Collapse
|
14
|
Ben-Cherif W, Dridi I, Aouam K, Ben-Attia M, Reinberg A, Boughattas NA. Circadian variation of Valproic acid pharmacokinetics in mice. Eur J Pharm Sci 2013; 49:468-73. [PMID: 23707469 DOI: 10.1016/j.ejps.2013.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/28/2013] [Accepted: 05/12/2013] [Indexed: 12/13/2022]
Abstract
Valproic acid (VPA) is currently one of the most commonly used antiepileptic drugs. This study aims to investigate whether VPA pharmacokinetics varied according to circadian dosing-time. A single dose of VPA (350 mgkg(-1)) was administered by intraperitonally (i.p.) route to a total of 132 mice synchronized for 3 weeks to 12h light (rest span) and 12 h dark (activity span). Four different circadian times (1, 7, 13 and 19 HALO) of drug injection were used (33 mice/circadian time). At each circadian time, blood samples were withdrawn at (0 h) and at 0.083, 0.166, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2 and 3h after VPA injection. Plasma VPA concentrations were determined by an EMIT method. There were no significant differences in T(max) of VPA whatever the circadian-time of injections (T(max)=0.166 h). However, there were relevant differences in C(max) between the four circadian groups (p<0.005), it varied between 386 ± 30.86 mg L(-1) in mice treated at 7 HALO and 824 ± 39.85 mg L(-1) in mice treated at 19 HALO. The AUC(0-∞) was significantly two times higher when VPA was administered at 19 HALO as compared to the injection at 7 HALO. Drug dosing at 7 HALO resulted in highest Cl(T) value: 0.405 ± 0.006 L h(-1)kg(-1), whereas Cl(T) was significantly slower when VPA was administered at 19 HALO (0.157 ± 0.009 L h(-1)kg(-1)) (p<0.0001). The AUC(0-∞) was significantly 2-fold higher when VPA was administered at 19 HALO (2216.65 ± 138.91 mg h(-1)L(-1)) as compared to the injection at 7 HALO (864.09 ± 16.82 mg h(-1)L(-1)) (p<0.0001). Cosinor analysis showed circadian rhythm in different pharmacokinetic parameters. C(max) and AUC(0-∞) have a significant circadian rhythm with an acrophase located at 20.16 HALO ± 0.16 h (the middle of the active span) (p<0.001), whereas Cl(T) and Vd showed a significant circadian rhythm with an acrophase located respectively at 7.86 HALO ± 0.57 h and 6.13 HALO ± 0.07 h (the middle of the rest span) (p<0.001). The large circadian variation of VPA pharmacokinetic processes might be involved in the mechanisms of circadian rhythm in murine toxicity since the optimal tolerance corresponded to the time which induces lowest C(max) and AUC values.
Collapse
Affiliation(s)
- Wafa Ben-Cherif
- Laboratory of Pharmacology, Faculty of Medecine, University of Monastir, 5019 Monastir, Tunisia.
| | | | | | | | | | | |
Collapse
|
15
|
Hannibal J, Georg B, Fahrenkrug J. Differential expression of melanopsin mRNA and protein in Brown Norwegian rats. Exp Eye Res 2013. [DOI: 10.1016/j.exer.2012.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Alagaili A, Mohammed O, Bennett N, Oosthuizen M. Lights Out, Let's Move About: Locomotory Activity Patterns of Wagner's Gerbil from the Desert of Saudi Arabia. AFRICAN ZOOLOGY 2012. [DOI: 10.3377/004.047.0201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Wyse CA. Does human evolution in different latitudes influence susceptibility to obesity via the circadian pacemaker? Bioessays 2012; 34:921-4. [DOI: 10.1002/bies.201200067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Krug S, McKinley Brewer J, Bois AS, Bittman EL. Effects of the duper mutation on circadian responses to light. J Biol Rhythms 2011; 26:293-304. [PMID: 21775288 DOI: 10.1177/0748730411411570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The circadian mutation duper in Syrian hamsters shortens the free-running circadian period (τ(DD)) by 2 hours when expressed on a tau mutant (τ(ss)) background and by 1 hour on a wild-type background. We have examined the effects of this mutation on phase response curves and entrainment. In contrast to wild types, duper hamsters entrained to 14L:10D with a positive phase angle. Super duper hamsters (expressing duper on a τ(ss) background) showed weak entrainment, while τ(ss) animals either completely failed to entrain or showed sporadic entrainment with episodes of relative coordination. As previously reported, wild-type and τ(ss) hamsters show low amplitude resetting in response to 15-minute light pulses after short-term (10 days) exposure to DD. In contrast, super duper hamsters show high amplitude resetting. This effect is attributable to the duper allele, as hamsters carrying duper on a wild-type background also show large phase shifts. Duper mutants that were born and raised in DD also showed high amplitude resetting in response to 15-minute light pulses, indicating that the effect of the mutation on PRC amplitude is not an aftereffect of entrainment to 14L:10D. Hamsters that are heterozygous for duper do not show amplified resetting curves, indicating that for this property, as for determination of free-running period, the mutant allele is recessive. In a modified Aschoff type II protocol, super duper and duper hamsters show large phase shifts as soon as the second day of DD. Despite the amplification of the PRC in super duper hamsters, the induction of Period1 gene expression in the SCN by light is no greater in these mutants than in wild-type animals. Period2 expression in the SCN did not differ between super duper and wild-type hamsters exposed to light at CT15, but albumin site D-binding protein (Dbp) mRNA showed higher basal levels and greater light induction in the SCN of super duper compared to wild-type animals. These results indicate that the duper mutation alters the amplitude of the circadian oscillator and further distinguish it from the tau mutation.
Collapse
Affiliation(s)
- Stefanie Krug
- Department of Biology and Program in Neuroscience and Behavior, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
19
|
van der Merwe I, Oosthuizen MK, Chimimba CT, Bennett NC. Circadian rhythms of locomotor activity in the reddish‐grey musk shrew (Eulipotyphla: Soricidae) from South Africa. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2010.00789.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- I. van der Merwe
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - M. K. Oosthuizen
- Department of Zoology and Entomology, Mammal Research Institute (MRI), University of Pretoria, Pretoria, South Africa
| | - C. T. Chimimba
- Department of Zoology & Entomology, DST‐NRF Centre of Excellence for Invasion Biology (CIB), University of Pretoria, Pretoria, South Africa
| | - N. C. Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Zoology and Entomology, Mammal Research Institute (MRI), University of Pretoria, Pretoria, South Africa
- Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
El Moussaouiti R, Bouhaddou N, Sabbar M, Cooper HM, Lakhdar-Ghazal N. Phase and period responses of the jerboa Jaculus orientalis to short light pulses. Chronobiol Int 2010; 27:1348-64. [PMID: 20795880 DOI: 10.3109/07420528.2010.504315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The phase and period responses to short light pulses were studied in the jerboa, a seasonal, hibernating, nocturnal rodent from the Atlas region in Morocco. The jerboa, which is a saltatory species, showed precise activity onsets and offsets under a light-dark (LD) cycle using infrared captors to record locomotor activity. When released into constant darkness (DD), the majority of animals showed a circadian period (tau) < 24 h (mean tau = 23.89 +/- 0.13 h) and a lengthening of the activity span, alpha. Animals were subsequently exposed to up to eight 15-min light pulses, each separated by at least 2 wks, for up to 160 days in DD. During this span, most individuals maintained robust circadian rhythmicity, with clearly defined activity onsets and offsets, similar levels of total activity, duration of alpha, and percent activity occurring during the subjective night. The phase response curve (PRC) is typical of other nocturnal rodents, with light eliciting delays during late subjective day and early subjective night (CT8-CT19) and advances during late subjective night to early subjective day (CT19-CT2). A dead zone, when light had no effect on phase, is observed during mid-subjective day (CT3-CT8). A few individuals showed large (> 9 h) Type 0 phase resetting near the singularity region (CT19) that resulted in a complete phase reversal, but otherwise displayed normal phase-shifting responses at other CT times. The tau response curve showed a decrease in period from early to late subjective night with increases at other times, but these changes were small (maximum < 9 min) and highly variable. There was a distinct tendency for animals that had an initial short tau in DD to conserve a short tau during the series of light pulses and, inversely, for animals with long tau to conserve a long tau. This suggests possible constraints on the plasticity of variation of tau in relation to the endogenous period of the animal.
Collapse
Affiliation(s)
- Rachid El Moussaouiti
- Equipe de Recherche sur les Rythmes Biologiques et Environnement (ERRBE), Faculte des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
| | | | | | | | | |
Collapse
|
21
|
Perret M, Gomez D, Barbosa A, Aujard F, Théry M. Increased late night response to light controls the circadian pacemaker in a nocturnal primate. J Biol Rhythms 2010; 25:186-96. [PMID: 20484690 DOI: 10.1177/0748730410368244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian endogenous circadian clock, the suprachiasmatic nuclei, receives environmental inputs, namely the light-dark cycle, through photopigments located in the eye and from melanopsin-expressing retinal ganglion cells. The authors investigated the influence of light wavelength and intensity on the synchronization of the rest-activity rhythm of the gray mouse lemur, a nocturnal Malagasy primate. Animals were tested at different irradiance levels (320, 45, 13, and 6 nmol x m(-2) x s(- 1)) under several light wavelengths (from 400 to 610 nm). Several parameters including circadian period, activity, and body temperature waveforms were used to assess synchronization to a 12:12 light-dark cycle in comparison to control treatments (12:12 white light or continuous darkness). Entrainment of the circadian rest-activity cycle increased with light intensity. It was more efficient for mid wavelengths relative to shorter or longer wavelengths but not coincident with melanopsin maximal sensitivity, suggesting other photoreceptors are likely involved in lemurs' photoentrainment. The authors obtained a novel synchronization pattern characterized by a clear synchronization to lights-on only without phasing to lights-off. Changes in photo-responsiveness at dusk and dawn highlight differential responses of evening and morning oscillators in the circadian clock.
Collapse
Affiliation(s)
- Martine Perret
- UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Département d'Ecologie et Gestion de la Biodiversité, Brunoy, France.
| | | | | | | | | |
Collapse
|
22
|
Hagenauer MH, Lee TM. Circadian organization of the diurnal Caviomorph rodent,Octodon degus. BIOL RHYTHM RES 2008. [DOI: 10.1080/09291010701683425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|