1
|
Vazquez JI, Gascue V, Quintana L, Migliaro A. Understanding daily rhythms in weakly electric fish: the role of melatonin on the electric behavior of Brachyhypopomus gauderio. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:7-18. [PMID: 37002418 DOI: 10.1007/s00359-023-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Living organisms display molecular, physiological and behavioral rhythms synchronized with natural environmental cycles. Understanding the interaction between environment, physiology and behavior requires taking into account the complexity of natural habitats and the diversity of behavioral and physiological adaptations. Brachyhypopomus gauderio is characterized by the emission of electric organ discharges (EOD), with a very stable rate modulated by social and environmental cues. The nocturnal arousal in B. gauderio coincides with a melatonin-dependent EOD rate increase. Here, we first show a daily cycle in both the EOD basal rate (EOD-BR) and EOD-BR variability of B. gauderio in nature. We approached the understanding of the role of melatonin in this natural behavior through both behavioral pharmacology and in vitro assays. We report, for the first time in gymnotiformes, a direct effect of melatonin on the pacemaker nucleus (PN) in in vitro preparation. Melatonin treatment lowered EOD-BR in freely moving fish and PN basal rate, while increasing the variability of both. These results show that melatonin plays a key role in modulating the electric behavior of B. gauderio through its effect on rate and variability, both of which must be under a tight temporal regulation to prepare the animal for the challenging nocturnal environment.
Collapse
Affiliation(s)
- Juan I Vazquez
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Valentina Gascue
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Quintana
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Adriana Migliaro
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Abstract
The electric organ discharges (EODs) produced by weakly electric fish have long been a source of scientific intrigue and inspiration. The study of these species has contributed to our understanding of the organization of fixed action patterns, as well as enriching general imaging theory by unveiling the dual impact of an agent's actions on the environment and its own sensory system during the imaging process. This Centenary Review firstly compares how weakly electric fish generate species- and sex-specific stereotyped electric fields by considering: (1) peripheral mechanisms, including the geometry, channel repertoire and innervation of the electrogenic units; (2) the organization of the electric organs (EOs); and (3) neural coordination mechanisms. Secondly, the Review discusses the threefold function of the fish-centered electric fields: (1) to generate electric signals that encode the material, geometry and distance of nearby objects, serving as a short-range sensory modality or 'electric touch'; (2) to mark emitter identity and location; and (3) to convey social messages encoded in stereotypical modulations of the electric field that might be considered as species-specific communication symbols. Finally, this Review considers a range of potential research directions that are likely to be productive in the future.
Collapse
Affiliation(s)
- Angel Ariel Caputi
- Sistema Nacional de Investigadores - Uruguay, Av. Wilson Ferreira Aldunate 1219, Pando, PC 15600, Uruguay
| |
Collapse
|
3
|
Camargo AS, Caputi AA, Aguilera PA. The sensory effects of light on the electric organ discharge rate of Gymnotus omarorum. J Exp Biol 2023; 226:jeb245489. [PMID: 37408509 DOI: 10.1242/jeb.245489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Gymnotiformes are nocturnal fishes inhabiting the root mats of floating plants. They use their electric organ discharge (EOD) to explore the environment and to communicate. Here, we show and describe tonic and phasic sensory-electromotor responses to light distinct from indirect effects depending on the light-induced endogenous circadian rhythm. In the dark, principally during the night, inter-EOD interval histograms are bimodal: the main peak corresponds to the basal rate and a secondary peak corresponds to high-frequency bouts. Light causes a twofold tonic but opposing effect on the EOD histogram: (i) decreasing the main mode and (ii) blocking the high-frequency bouts and consequently increasing the main peak at the expense of removal of the secondary one. Additionally, light evokes phasic responses whose amplitude increases with intensity but whose slow time course and poor adaptation differentiate from the so-called novelty responses evoked by abrupt changes in sensory stimuli of other modalities. We confirmed that Gymnotus omarorum tends to escape from light, suggesting that these phasic responses are probably part of a global 'light-avoidance response'. We interpret the data within an ecological context. Fish rest under the shade of aquatic plants during the day and light spots due to the sun's relative movement alert the fish to hide in shady zones to avoid macroptic predators and facilitate tracking the movement of floating plant islands by wind and/or water currents.
Collapse
Affiliation(s)
- Ana S Camargo
- Unidad de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av.Italia 3318, CP 11600, Montevideo, Uruguay
| | - Angel A Caputi
- Unidad de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av.Italia 3318, CP 11600, Montevideo, Uruguay
| | - Pedro A Aguilera
- Unidad de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av.Italia 3318, CP 11600, Montevideo, Uruguay
| |
Collapse
|
4
|
Mennigen JA, Ramachandran D, Shaw K, Chaube R, Joy KP, Trudeau VL. Reproductive roles of the vasopressin/oxytocin neuropeptide family in teleost fishes. Front Endocrinol (Lausanne) 2022; 13:1005863. [PMID: 36313759 PMCID: PMC9606234 DOI: 10.3389/fendo.2022.1005863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The vertebrate nonapeptide families arginine vasopressin (AVP) and oxytocin (OXT) are considered to have evolved from a single vasopressin-like peptide present in invertebrates and termed arginine vasotocin in early vertebrate evolution. Unprecedented genome sequence availability has more recently allowed new insight into the evolution of nonapeptides and especially their receptor families in the context of whole genome duplications. In bony fish, nonapeptide homologues of AVP termed arginine vasotocin (Avp) and an OXT family peptide (Oxt) originally termed isotocin have been characterized. While reproductive roles of both nonapeptide families have historically been studied in several vertebrates, their roles in teleost reproduction remain much less understood. Taking advantage of novel genome resources and associated technological advances such as genetic modifications in fish models, we here critically review the current state of knowledge regarding the roles of nonapeptide systems in teleost reproduction. We further discuss sources of plasticity of the conserved nonapeptide systems in the context of diverse reproductive phenotypes observed in teleost fishes. Given the dual roles of preoptic area (POA) synthesized Avp and Oxt as neuromodulators and endocrine/paracrine factors, we focus on known roles of both peptides on reproductive behaviour and the regulation of the hypothalamic-pituitary-gonadal axis. Emphasis is placed on the identification of a gonadal nonapeptide system that plays critical roles in both steroidogenesis and gamete maturation. We conclude by highlighting key research gaps including a call for translational studies linking new mechanistic understanding of nonapeptide regulated physiology in the context of aquaculture, conservation biology and ecotoxicology.
Collapse
Affiliation(s)
- Jan A. Mennigen
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Divya Ramachandran
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Katherine Shaw
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Keerikkattil P. Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Vance L. Trudeau
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| |
Collapse
|
5
|
Mucha S, Oehlert F, Chapman LJ, Krahe R. A Spark in the Dark: Uncovering Natural Activity Patterns of Mormyrid Weakly Electric Fish. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.870043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To understand animal ecology, observation of wildlife in the natural habitat is essential, but particularly challenging in the underwater realm. Weakly electric fishes provide an excellent opportunity to overcome some of these challenges because they generate electric organ discharges (EODs) to sense their environment and to communicate, which can be detected non-invasively. We tracked the EOD and swimming activity of two species of mormyrid weakly electric fishes (Marcusenius victoriae and Petrocephalus degeni) over diel cycles in the laboratory, and we recorded EODs and environmental dissolved oxygen (DO) concentration and temperature over several months in a naturally hypoxic habitat in Uganda. Under laboratory conditions, both species showed increases of activity and exploration behavior that were closely synchronized to the onset of the dark phase. In the wild, fish preferred structurally complex habitats during the day, but dispersed toward open areas at night, presumably to forage and interact. Nocturnal increase of movement range coincided with diel declines in DO concentration to extremely low levels. The fact that fish showed pronounced nocturnal activity patterns in the laboratory and in the open areas of their habitat, but not under floating vegetation, indicates that light intensity exerts a direct effect on their activity. We hypothesize that being dark-active and tolerant to hypoxia increases the resistance of these fish against predators. This study establishes a new technology to record EODs in the field and provides a window into the largely unknown behavior of mormyrids in their natural habitat.
Collapse
|
6
|
Freiler MK, Proffitt MR, Smith GT. Electrocommunication signals and aggressive behavior vary among male morphs in an apteronotid fish, Compsaraia samueli. J Exp Biol 2022; 225:275495. [DOI: 10.1242/jeb.243452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
Abstract
Within-species variation in male morphology is common among vertebrates and is often characterized by dramatic differences in behavior and hormonal profiles. Males with divergent morphs also often use communication signals in a status-dependent way. Weakly electric knifefish are an excellent system for studying variation in male morphology and communication and its hormonal control. Knifefish transiently modulate the frequency of their electric organ discharge (EOD) during social encounters to produce chirps and rises. In the knifefish Compsaraia samueli, males vary extensively in jaw length. EODs and their modulations (chirps and rises) have never been investigated in this species, so it is unclear whether jaw length is related to the function of these signals. We used three behavioral assays to analyze EOD modulations in male C. samueli: (1) artificial playbacks, (2) relatively brief, live agonistic dyadic encounters, and (3) long-term overnight recordings. We also measured circulating levels of two androgens, 11-ketotestosterone and testosterone. Chirp structure varied within and across individuals in response to artificial playback, but was unrelated to jaw length. Males with longer jaws were more often dominant in dyadic interactions. Chirps and rises were correlated with and preceded attacks regardless of status, suggesting these signals function in aggression. In longer-term interactions, chirp rate declined after one week of pairing, but was unrelated to male morphology. Levels of circulating androgens were low and not predictive of jaw length or EOD signal parameters. These results suggest that communication signals and variation in male morphology are linked to outcomes of non-breeding agonistic contests.
Collapse
Affiliation(s)
- Megan K. Freiler
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
- Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN, 47405, USA
| | - Melissa R. Proffitt
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
- Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN, 47405, USA
| | - G. Troy Smith
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
- Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN, 47405, USA
| |
Collapse
|
7
|
Pouso P, Perrone R, Silva A. Immunohistochemical description of isotocin neurons and the anatomo-functional comparative analysis between isotocin and vasotocin systems in the weakly electric fish, Gymnotus omaroum. Gen Comp Endocrinol 2021; 313:113886. [PMID: 34411583 DOI: 10.1016/j.ygcen.2021.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
The vasopressin-vasotocin (AVP-AVT) and oxytocin-mesotocin-isotocin (OT-MT-IT) families of nonapeptides are of great importance in shaping context-dependent modulations of a conserved and yet highly plastic network of brain areas involved in social behavior: the social behavior network. The nonapeptide systems of teleost fish are highly conserved and share a common general organization. In this study, we first describe the presence of IT cells and projections in the brain of an electric fish, Gymnotus omarorum. Second, we confirm that IT neuron types and distribution in the preoptic area (POA) follow the same general pattern previously described in other teleost species. Third, we show that although IT and AVT neurons occur intermingled within the POA of G. omarorum and can be classified into the same subgroups, they present subtle but remarkable differences in size, number, and location. Finally, we show that unlike AVT, IT has no effect on basal electric signaling, reinforcing the specificity in the actions that each one of these nonapeptides has on social behavior and communication.
Collapse
Affiliation(s)
- Paula Pouso
- Depto. Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay.
| | - Rossana Perrone
- Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay; Instituto de Fundamentos y Métodos, Facultad de Psicología, Universidad de la República
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Dunlap KD, Koukos HM, Chagnaud BP, Zakon HH, Bass AH. Vocal and Electric Fish: Revisiting a Comparison of Two Teleost Models in the Neuroethology of Social Behavior. Front Neural Circuits 2021; 15:713105. [PMID: 34489647 PMCID: PMC8418312 DOI: 10.3389/fncir.2021.713105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
The communication behaviors of vocal fish and electric fish are among the vertebrate social behaviors best understood at the level of neural circuits. Both forms of signaling rely on midbrain inputs to hindbrain pattern generators that activate peripheral effectors (sonic muscles and electrocytes) to produce pulsatile signals that are modulated by frequency/repetition rate, amplitude and call duration. To generate signals that vary by sex, male phenotype, and social context, these circuits are responsive to a wide range of hormones and neuromodulators acting on different timescales at multiple loci. Bass and Zakon (2005) reviewed the behavioral neuroendocrinology of these two teleost groups, comparing how the regulation of their communication systems have both converged and diverged during their parallel evolution. Here, we revisit this comparison and review the complementary developments over the past 16 years. We (a) summarize recent work that expands our knowledge of the neural circuits underlying these two communication systems, (b) review parallel studies on the action of neuromodulators (e.g., serotonin, AVT, melatonin), brain steroidogenesis (via aromatase), and social stimuli on the output of these circuits, (c) highlight recent transcriptomic studies that illustrate how contemporary molecular methods have elucidated the genetic regulation of social behavior in these fish, and (d) describe recent studies of mochokid catfish, which use both vocal and electric communication, and that use both vocal and electric communication and consider how these two systems are spliced together in the same species. Finally, we offer avenues for future research to further probe how similarities and differences between these two communication systems emerge over ontogeny and evolution.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Haley M Koukos
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Boris P Chagnaud
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| | - Harold H Zakon
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States.,Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Seasonal and social factors associated with spacing in a wild territorial electric fish. PLoS One 2020; 15:e0228976. [PMID: 32542049 PMCID: PMC7295226 DOI: 10.1371/journal.pone.0228976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/22/2020] [Indexed: 01/26/2023] Open
Abstract
In this study, we focused on the seasonal variation of the determinants of territory size in the weakly electric fish Gymnotus omarorum. This species is a seasonal breeder that displays year-round territorial aggression. Female and male dyads exhibit indistinguishable non-breeding territorial agonistic behavior and body size is the only significant predictor of contest outcome. We conducted field surveys across seasons that included the identification of individual location, measurements of water physico-chemical variables, characterization of individual morphometric and physiological traits, and their correlation to spatial distribution. G. omarorum tolerates a wide range of dissolved oxygen concentration, and territory size correlated positively with dissolved oxygen in both seasons. In the non-breeding season, territory size was sexually monomorphic and correlated only with body size. In the breeding season, territory size no longer correlated with body size but differed between sexes: (i) the overall spatial arrangement was sexually biased, (ii) territory size depended on gonadal hormones in both sexes, which was expected for males, but not previously reported in females, (iii) female territory size showed a positive relationship with gonadal size, and (iv) females showed relatively larger territories than males. This study demonstrates seasonal changes in the determinants of territory size and thus contributes to the understanding of the mechanisms underlying the behavioral plasticity natural territorial behavior.
Collapse
|
10
|
Zubizarreta L, Silva AC, Quintana L. The estrogenic pathway modulates non-breeding female aggression in a teleost fish. Physiol Behav 2020; 220:112883. [PMID: 32199998 DOI: 10.1016/j.physbeh.2020.112883] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022]
Abstract
Aggressive behaviors are widespread among animals and are critical in the competition for resources. The physiological mechanisms underlying aggression have mostly been examined in breeding males, in which gonadal androgens, acting in part through their aromatization to estrogens, have a key role. There are two alternative models that contribute to further understanding hormonal mechanisms underlying aggression: aggression displayed in the non-breeding season, when gonadal steroids are low, and female aggression. In this study we approach, for the first time, the modulatory role of estrogens and androgens upon non-breeding aggression in a wild female teleost fish. We characterized female aggression in the weakly electric fish Gymnotus omarorum and carried out acute treatments 1 h prior to agonistic encounters in dyads treated with either an aromatase inhibitor or an antagonist of androgen receptors. Anti-androgen treatment had no effect on behavior whereas acute aromatase inhibition caused a strong distortion of aggressive behavior. Territorial non-breeding aggression was robust and depended on rapid estrogen actions to maintain high levels of aggression, and ultimately reach conflict resolution from which dominant/subordinate status emerged. Our results, taken together with our own reports in males and the contributions from non-breeding aggression in bird and mammal models, suggest a common strategy involving fast-acting estrogens in the control of this behavior across species. In addition, further analysis of female non-breeding aggression may shed light on potential sexual differences in the fine tuning of social behaviors.
Collapse
Affiliation(s)
- Lucía Zubizarreta
- Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avenida Gral. Flores 2125, Montevideo, Uruguay; Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, Uruguay
| | - Ana C Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
11
|
Pouso P, Cabana Á, Goodson JL, Silva A. Preoptic Area Activation and Vasotocin Involvement in the Reproductive Behavior of a Weakly Pulse-Type Electric Fish, Brachyhypopomus gauderio. Front Integr Neurosci 2019; 13:37. [PMID: 31456670 PMCID: PMC6700327 DOI: 10.3389/fnint.2019.00037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/19/2019] [Indexed: 11/13/2022] Open
Abstract
Social behavior exhibits a wide diversity among vertebrates though it is controlled by a conserved neural network, the social behavior network (SBN). The activity of the SBN is shaped by hypothalamic nonapeptides of the vasopressin-oxytocin family. The weakly electric fish Brachyhypopomus gauderio emits social electrical signals during courtship. Three types of vasotocin (AVT) cells occur in the preoptic area (POA), one of the SBN nodes. In this study, we aimed to test if POA neurons of the nucleus preopticus ventricularis anterior (PPa) and posterior (PPp), and in particular AVT+ cells, were activated by social stimuli using a 2-day behavioral protocol. During the first night, male-female dyads were recorded to identify courting males. During the second night, these males were divided in two experimental conditions: isolated and social (male with a female). Both AVT cells and the cellular activation of the POA neurons (measured by FOS) were identified. We found that the PPa of social males showed more FOS+ cells than the PPa of isolated males, and that the PPa had more AVT+ cells in social males than in isolated males. The double-immunolabeling for AVT and FOS indicated the activation of AVT+ neurons. No significant differences in the activation of AVT+ cells were found between conditions, but a clear association was observed between the number of AVT+ cells and certain behavioral traits. In addition, a different activation of AVT+ cell-types was observed for social vs. isolated males. We conclude that the POA of B. gauderio exhibits changes induced by social stimuli in reproductive context, involving an increase in AVT production and a different profile activation among AVT+ cell populations.
Collapse
Affiliation(s)
- Paula Pouso
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo, Uruguay
| | - Álvaro Cabana
- Centro de Investigación Básica en Psicología (CIBPsi) and Instituto de Fundamentos y Métodos, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Ana Silva
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
12
|
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. JOURNAL OF FISH BIOLOGY 2019; 95:92-134. [PMID: 30729523 DOI: 10.1111/jfb.13922] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.
Collapse
|
13
|
Silva AC, Pandolfi M. Vasotocinergic control of agonistic behavior told by Neotropical fishes. Gen Comp Endocrinol 2019; 273:67-72. [PMID: 29702104 DOI: 10.1016/j.ygcen.2018.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The hypothalamic neuropeptides of the vasopressin-oxytocin family (and their homologs for non-mammalian species) are key modulators of the Social Brain Network, acting via specific receptors reported in all the nuclei of this network. Different conclusive examples have proven the context-dependency actions of hypothalamic nonapeptides on social behavior in several vertebrate taxa. Teleost fishes provide endless possibilities of experimental model systems to explore the underlying mechanisms of nonapeptide actions on social behavior given that they are the most diverse group of vertebrates. Although it has been difficult to identify commonalities of nonapeptide actions across species, indisputable evidence in many teleost species have demonstrated a clear role of vasotocin in the modulation of aggressive and sexual behaviors. Though Neotropical South American fish contribute an important percentage of teleost diversity, most native species remain unexplored as model systems for the study of the neuroendocrine bases of social behavior. In this review, we will revise recent data on the two model systems of Neotropical fish, South American cichlids and weakly electric fish that have contributed to this issue.
Collapse
Affiliation(s)
- Ana C Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE e IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
14
|
Non-breeding territoriality and the effect of territory size on aggression in the weakly electric fish, Gymnotus omarorum. Acta Ethol 2019. [DOI: 10.1007/s10211-019-00309-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Escamilla-Pinilla C, Mojica JI, Molina J. Spatial and temporal distribution of Gymnorhamphichthys rondoni (Gymnotiformes: Rhamphichthyidae) in a long-term study of an Amazonian terra firme stream, Leticia - Colombia. NEOTROPICAL ICHTHYOLOGY 2019. [DOI: 10.1590/1982-0224-20190006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Weakly electric fishes continually emit electric organ discharges (EOD) as a means of communication and localization of objects in their surroundings. Depending on water conductivity, the amplitude of the electric field generated is known to increase with decreases in electrical conductivity of the water. In Amazonian terra firme streams, water conductivity is extremely low and fluctuates constantly due to local and regional rains. In this context, the space between freely moving weakly electric fishes may be expected to decrease, on average, with an increase in water conductivity. To test this hypothesis, we recorded the positions at rest of the sand-dwelling fish Gymnorhamphichthys rondoni in a terra firme stream for several days in alternating months, over two years. Based on daily nearest neighbor distances among individual fish in a grid, we found a uniform temporal distribution pattern (which was not affected by water conductivity) indicative of site fidelity. Here we highlight the role of other factors that could influence resting site fidelity.
Collapse
|
16
|
Silva AC. Hormonal Influences on Social Behavior in South American Weakly Electric Fishes. ELECTRORECEPTION: FUNDAMENTAL INSIGHTS FROM COMPARATIVE APPROACHES 2019. [DOI: 10.1007/978-3-030-29105-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Comas V, Langevin K, Silva A, Borde M. Distinctive mechanisms underlie the emission of social electric signals of submission in Gymnotus omarorum. J Exp Biol 2019; 222:jeb.195354. [DOI: 10.1242/jeb.195354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/07/2019] [Indexed: 11/20/2022]
Abstract
South American weakly electric fish (order Gymnotiformes) rely on a highly conserved and relatively fixed electromotor circuit to produce species-specific electric organ discharges (EOD) and a variety of meaningful adaptive EOD modulations. The command for each EOD arises from a medullary pacemaker nucleus composed by electrotonically coupled intrinsic pacemaker and bulbospinal projecting relay cells. During agonistic encounters Gymnotus omarorum signals submission by interrupting its EOD (offs) and by emitting transient high rate barrages of low amplitude discharges (chirps). Previous studies in gymnotiformes have shown that electric signal diversity is based on the segregation of descending synaptic inputs to pacemaker or relay cells and differential activation of the neurotransmitter receptors -for glutamate or γ-aminobutyric acid (GABA)- of these cells. Therefore, we tested whether GABAergic and glutamatergic inputs to pacemaker nucleus neurons are involved in the emission of submissive electric signals in G. omarorum. We found that GABA applied to pacemaker cells evokes EOD interruptions that closely resembled natural offs. Although in other species chirping is likely due to glutamatergic suprathreshold depolarization of relay cells, here, application of glutamate to these cells was unable to replicate the emission of this submissive signal. Nevertheless, chirp-like discharges were emitted after the enhancement of excitability of relay cells by blocking an IA-type potassium current and, in some cases, by application of vasotocin, a status-dependent modulator peptide of G. omarorum agonistic behavior. Modulation of electrophysiological properties of pacemaker nucleus neurons in gymnotiformes emerges as a novel putative mechanism, endowing electromotor networks with higher functional versatility.
Collapse
Affiliation(s)
- Virginia Comas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Kim Langevin
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Silva
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Michel Borde
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Migliaro A, Moreno V, Marchal P, Silva A. Daily changes in the electric behavior of weakly electric fish naturally persist in constant darkness and are socially synchronized. Biol Open 2018; 7:bio.036319. [PMID: 30341102 PMCID: PMC6310873 DOI: 10.1242/bio.036319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Daily rhythms allow anticipation of changes and allocation of energy to better cope with predictable events. Rhythms in behavior result from a complex combination of physiological processes timed by the nervous system and synchronized with external information. We aimed to understand how rhythmic behaviors arise in nature, when weakly electric fish are exposed to cyclic environmental influences and social context. Gymnotus omarorum is a South American nocturnal pulse-type gymnotiform. Its electric behavior encodes information about species, sex and physiological state. The rate of emission of the electric organ discharge (EOD-BR) is modulated by exploratory activity and by physical and social environmental stimuli. We show that the EOD-BR increases during the night in the natural habitat even in individuals maintained in constant dark conditions. Locomotor activity is higher at night, however the nocturnal increase of EOD-BR still occurs in motionless fish, demonstrating an independent origin for the locomotor and electric components of exploratory behavior. When fish are observed in nature, social context exerts a synchronizing role on electric behavior. G. omarorum emerges as an exciting wild model for the study of daily rhythms arising in the complexity of the real world, integrating environmental, physical and social cues in the modulation of rhythmic behavior. Summary: The nocturnal increase of electric behavior in Gymnotus omarorum is analyzed in the wild, in constant darkness and social isolation. This daily trait is independent of locomotor activity and modulated by social context.
Collapse
Affiliation(s)
- Adriana Migliaro
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.,Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay
| | - Victoria Moreno
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.,Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay
| | - Paul Marchal
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay.,Ecole Normale Superieure de Lyon, Université Claude Bernard, Lyon 69007, France
| | - Ana Silva
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay .,Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay
| |
Collapse
|
19
|
Perrone R, Silva AC. Status-Dependent Vasotocin Modulation of Dominance and Subordination in the Weakly Electric Fish Gymnotus omarorum. Front Behav Neurosci 2018; 12:1. [PMID: 29403366 PMCID: PMC5778121 DOI: 10.3389/fnbeh.2018.00001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/04/2018] [Indexed: 11/13/2022] Open
Abstract
Dominant-subordinate status emerges from agonistic encounters. The weakly electric fish, Gymnotus omarorum, displays a clear-cut example of non-breeding territorial aggression. The asymmetry in the behavior of dominants and subordinates is outstanding. Dominants are highly aggressive and subordinates signal submission in a precise sequence of locomotor and electric traits: retreating, decreasing their electric organ discharge rate, and emitting transient electric signals. The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homolog arginine-vasopressin, are key modulators of social behavior, known to adapt their actions to different contexts. By analyzing the effects of pharmacological manipulations of the AVT system in both dominants and subordinates, we show evidence of distinct status-dependent actions of AVT. We demonstrate an endogenous effect of AVT on dominants' aggression levels: blocking the V1a AVT receptor induced a significant decrease in dominants' attack rate. AVT administered to subordinates enhanced the expression of the electric signals of submission, without affecting subordinates' locomotor displays. This study contributes a clear example of status-dependent AVT modulation of agonistic behavior in teleosts, and reveals distinctive activation patterns of the AVT system between dominants and subordinates.
Collapse
Affiliation(s)
- Rossana Perrone
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ana C Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
20
|
|
21
|
Perrone R, Silva A. Vasotocin increases dominance in the weakly electric fish Brachyhypopomus gauderio. ACTA ACUST UNITED AC 2016; 110:119-126. [PMID: 27940222 DOI: 10.1016/j.jphysparis.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022]
Abstract
Animals establish social hierarchies through agonistic behavior. The recognition of the own and others social ranks is crucial for animals that live in groups to avoid costly constant conflicts. Weakly electric fish are valuable model systems for the study of agonistic behavior and its neuromodulation, given that they display conspicuous electrocommunication signals that are generated by a very well-known electromotor circuit. Brachyhypopomus gauderio is a gregarious electric fish, presents a polygynous breeding system, morphological and electrophysiological sexual dimorphism during the breeding season, and displays a typical intrasexual reproduction-related aggression. Dominants signal their social status by increasing their electric organ discharge (EOD) rate after an agonistic encounter (electric dominance). Subordinates only occasionally produce transient electric signals (chirps and offs). The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homologue, arginine- vasopressin (AVP) are key modulators of social behavior across vertebrates. In this study, we focus on the role of AVT on dominance establishment in Brachyhypopomus gauderio by analyzing the effects of pharmacological manipulations of the AVT system in potential dominants. AVT exerts a very specific direct effect restricted only to EOD rate, and is responsible for the electric dominance. Unexpectedly, AVT did not affect the intensity of aggression in either contender. Nor was the time structure affected by AVT administration. We also present two interesting examples of the interplay between contenders by evaluating how AVT modulations, even when directed to one individual, affect the behavior of the dyad as a unit. First, we found that V1a AVT receptor antagonist Manning Compound (MC) induces a reversion in the positive correlation between dominants' and subordinates' attack rates, observed in both control and AVT treated dyads, suggesting that an endogenous AVT tone modulates aggressive interactions. Second, we confirmed that AVT administered to dominants induces an increase in the submissive transient electric signals in subordinates.
Collapse
Affiliation(s)
- Rossana Perrone
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600 Montevideo, Uruguay.
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay.
| |
Collapse
|
22
|
Pedraja F, Perrone R, Silva A, Budelli R. Passive and active electroreception during agonistic encounters in the weakly electric fish Gymnotus omarorum. BIOINSPIRATION & BIOMIMETICS 2016; 11:065002. [PMID: 27767014 DOI: 10.1088/1748-3190/11/6/065002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Agonistic behaviour related to territorial defence is likely to be costly in terms of energy loss and risk of injury. Hence information about the fighting ability of a potential opponent could influence the outcome of the contest. We here study electric images of the territorial and aggressive weakly electric fish Gymnotus omarorum in the context of agonistic behaviour. We show that passive and active electric images may drive the approach towards an opponent. The likelihood of first attacks can be predicted in these fish based on electric image information, suggesting that aggressive interactions may in fact be triggered through the passive electrosensory information.
Collapse
Affiliation(s)
- Federico Pedraja
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo11400, Uruguay. AG Active Sensing, Faculty of Biology, Bielefeld University, Bielefeld D-33615, Germany
| | | | | | | |
Collapse
|
23
|
Markham MR, Ban Y, McCauley AG, Maltby R. Energetics of Sensing and Communication in Electric Fish: A Blessing and a Curse in the Anthropocene? Integr Comp Biol 2016; 56:889-900. [PMID: 27549201 DOI: 10.1093/icb/icw104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Weakly electric freshwater fish use self-generated electric fields to image their worlds and communicate in the darkness of night and turbid waters. This active sensory/communication modality evolved independently in the freshwaters of South America and Africa, where hundreds of electric fish species are broadly and abundantly distributed. The adaptive advantages of the sensory capacity to forage and communicate in visually-unfavorable environments and outside the detection of visually-guided predators likely contributed to the broad success of these clades across a variety of Afrotropical and neotropical habitats. Here we consider the potentially high and limiting metabolic costs of the active sensory and communication signals that define the gymnotiform weakly electric fish of South America. Recent evidence from two well-studied species suggests that the metabolic costs of electrogenesis can be quite high, sometimes exceeding one-fourth of these fishes' daily energy budget. Supporting such an energetically expensive system has shaped a number of cellular, endocrine, and behavioral adaptations to restrain the metabolic costs of electrogenesis in general or in response to metabolic stress. Despite a suite of adaptations supporting electrogenesis, these weakly electric fish are vulnerable to metabolic stresses such as hypoxia and food restriction. In these conditions, fish reduce signal amplitude presumably as a function of absolute energy shortfall or as a proactive means to conserve energy. In either case, reducing signal amplitude compromises both sensory and communication performance. Such outcomes suggest that the higher metabolic cost of active sensing and communication in weakly electric fish compared with the sensory and communication systems in other neotropical fish might mean that weakly electric fish are disproportionately susceptible to harm from anthropogenic disturbances of neotropical aquatic habitats. Fully evaluating this possibility, however, will require broad comparative studies of metabolic energetics across the diverse clades of gymnotiform electric fish and in comparison to other nonelectric neotropical fishes.
Collapse
Affiliation(s)
- Michael R Markham
- *Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA .,†Cellular & Behavioral Neurobiology Graduate Program, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Yue Ban
- *Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.,†Cellular & Behavioral Neurobiology Graduate Program, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Austin G McCauley
- *Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Rosalie Maltby
- *Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
24
|
Migliaro A, Silva A. Melatonin Regulates Daily Variations in Electric Behavior Arousal in Two Species of Weakly Electric Fish with Different Social Structures. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:232-41. [DOI: 10.1159/000445494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
Abstract
Timing is crucial for social interactions. Animal behavior is synchronized with biotic and abiotic environment variables ensuring that the activity phase of conspecifics occurs during the same period of the day. As biological rhythms are embedded in the complex integrative control of the brain, it is fundamental to explore its interaction with environmental and social factors. This approach will unravel the link between external stimuli carrying information on environmental cycles and the neural commands for behavior, including social behavior, associated with precise phases of those cycles. Arousal in the solitary Gymnotus omarorum and in the gregarious Brachyhypopomus gauderio is characterized by a nocturnal increase in the basal discharge rate of electric behavior, which is mild and transient in G. omarorum and large and persistent in B. gauderio. In this study, we show that the major integrator of social behavior, AVT (arginine vasotocin), is not involved in the nocturnal increase of electric behavior basal rate in isolated animals of either species. On the other hand, endogenous melatonin, the major modulator of the circadian system, is responsible for the nocturnal increase in electric behavior in isolated individuals of both species.
Collapse
|
25
|
Crampton WGR, Santana CDD, Waddell JC, Lovejoy NR. A taxonomic revision of the Neotropical electric fish genus Brachyhypopomus (Ostariophysi: Gymnotiformes: Hypopomidae), with descriptions of 15 new species. NEOTROPICAL ICHTHYOLOGY 2016. [DOI: 10.1590/1982-0224-20150146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The bluntnose knifefish genus BrachyhypopomusMago-Leccia, 1994, is diagnosed from other Rhamphichthyoidea (Rhamphichthyidae + Hypopomidae) by the presence of a disk-like ossification in the anterior portion of the palatoquadrate, and by the following external characters: short snout, 18.7-32.6% of head length (vs. 33.3-68.6% in Hypopomus, Gymnorhamphichthys, Iracema, and Rhamphichthys), absence of a paired accessory electric organ in the mental or humeral region (vs. presence in Hypopygus and Steatogenys), presence of 3-4 pectoral proximal radials (vs. 5 in Akawaio), presence of the antorbital + infraorbital, and the preopercular cephalic lateral line canal bones (vs. absence in Racenisia). Brachyhypopomus cannot be diagnosed unambiguously from Microsternarchus or from Procerusternarchus on the basis of external characters alone. Brachyhypopomus comprises 28 species. Here we describe 15 new species, and provide redescriptions of all 13 previously described species, based on meristic, morphometric, and other morphological characters. We include notes on ecology and natural history for each species, and provide regional dichotomous keys and distribution maps, based on the examination of 12,279 specimens from 2,787 museum lots. A lectotype is designated for Brachyhypopomus pinnicaudatus (Hopkins, Comfort, Bastian & Bass, 1990). Brachyhypopomus species are abundant in shallow lentic and slow-flowing freshwater habitats from southern Costa Rica and northern Venezuela to Uruguay and northern Argentina. Species diversity is highest in Greater Amazonia, where 20 species occur: B. alberti, new species, B. arrayae, new species, and B. cunia, new species, in the upper rio Madeira drainage; B. batesi, new species, in the central Amazon and rio Negro; B. beebei, B. brevirostris, B. regani, new species, B. sullivani, new species, and B. walteri, widespread through the Amazon and Orinoco basins and the Guianas; B. belindae, new species, in the central Amazon basin; B. benjamini, new species, and B. verdii, new species, in the upper Amazon basin; B. bennetti, in the upper, central, and lower Amazon, lower Tocantins, and upper Madeira basins; B. bullocki in the Orinoco, Negro and Essequibo drainages; B. diazi in the Orinoco Llanos; B. flavipomus, new species, and B. hamiltoni, new species, in the central and upper Amazon basin; B. hendersoni, new species, in the central Amazon, lower Negro and Essequibo basins; B. pinnicaudatus in the central and lower Amazon, lower, upper Madeira, lower Tocantins and Mearim basins, and coastal French Guiana; and B. provenzanoi, new species, in the upper Orinoco and upper Negro basins. Five species are known from the Paraná-Paraguay-Uruguay basin and adjacent southern Atlantic drainages: B. bombilla in the lower Paraná, upper, central, and lower Paraguay, Uruguay and Patos-Mirim drainages; B. brevirostris in the upper Paraguay basin; B. draco in the lower Paraná, lower Paraguay, Uruguay, Patos-Mirim, and Tramandaí basins; B. gauderio in the lower Paraná, upper, central, and lower Paraguay, Uruguay, Patos-Mirim and Tramandaí basins; and B. walteri in the lower Paraná and upper Paraguay basins. Two species occur in small Atlantic drainages of southern Brazil: B. janeiroensis in the São João, Paraíba and small intervening drainages; and B. jureiae in the Ribeira de Iguape and Una do Prelado. One species occurs in the middle and upper São Francisco basin: B. menezesi, new species. Three species occur in trans-Andean drainages: B. diazi in Caribbean drainages of northern Venezuela; B. occidentalis in Atlantic and Pacific drainages of southern Costa Rica and Panama to Darién, and the Maracaibo, Magdalena, Sinú and Atrato drainages; and B. palenque, new species, in Pacific drainages of Ecuador.
Collapse
|
26
|
Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus. Physiol Behav 2015; 151:64-71. [PMID: 26143349 DOI: 10.1016/j.physbeh.2015.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/28/2015] [Accepted: 06/26/2015] [Indexed: 11/23/2022]
Abstract
In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine.
Collapse
|
27
|
Pouso P, Quintana L, López GC, Somoza GM, Silva AC, Trudeau VL. The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio. Gen Comp Endocrinol 2015; 222:158-66. [PMID: 26141148 DOI: 10.1016/j.ygcen.2015.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/08/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Secretoneurin (SN) in the preoptic area and pituitary of mammals and fish has a conserved close association with the vasopressin and oxytocin systems, members of a peptide family that are key in the modulation of sexual and social behaviors. Here we show the presence of SN-immunoreactive cells and projections in the brain of the electric fish, Brachyhypopomus gauderio. Secretoneurin colocalized with vasotocin (AVT) and isotocin in cells and fibers of the preoptic area. In the rostral pars distalis of the pituitary, many cells were both SN and prolactin-positive. In the hindbrain, at the level of the command nucleus of the electric behavior (pacemaker nucleus; PN), some of SN-positive fibers colocalized with AVT. We also explored the potential neuromodulatory role of SN on electric behavior, specifically on the rate of the electric organ discharge (EOD) that signals arousal, dominance and subordinate status. Each EOD is triggered by the command discharge of the PN, ultimately responsible for the basal EOD rate. SN modulated diurnal basal EOD rate in freely swimming fish in a context-dependent manner; determined by the initial value of EOD rate. In brainstem slices, SN partially mimicked the in vivo behavioral effects acting on PN firing rate. Taken together, our results suggest that SN may regulate electric behavior, and that its effect on EOD rate may be explained by direct action of SN at the PN level through either neuroendocrine and/or endocrine mechanisms.
Collapse
Affiliation(s)
- Paula Pouso
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay; Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, 11600 Montevideo, Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, 11600 Montevideo, Uruguay
| | - Gabriela C López
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIBINTECH), Provincia de Buenos Aires, Argentina
| | - Gustavo M Somoza
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIBINTECH), Provincia de Buenos Aires, Argentina
| | - Ana C Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
28
|
Jalabert C, Quintana L, Pessina P, Silva A. Extra-gonadal steroids modulate non-breeding territorial aggression in weakly electric fish. Horm Behav 2015; 72:60-7. [PMID: 25989595 DOI: 10.1016/j.yhbeh.2015.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/03/2023]
Abstract
The neuroendocrine control of intraspecific aggression is a matter of current debate. Although aggression in a reproductive context has been associated with high levels of circulating androgens in a broad range of species, it has also been shown to occur during the non-breeding season when gonads are regressed and plasma steroid hormone levels are low. In mammals and birds the aromatization of androgens into estrogens plays a key role in the regulation of aggression in both the breeding and non-breeding seasons. This is the first study in a teleost fish to explore the role of steroids in the modulation of non-breeding aggression. Gymnotus omarorum is a highly aggressive teleost fish that exhibits aggression all year-round. We analyzed male-male non-breeding agonistic behavior, compared circulating 11-Ketotestosterone (11-KT) levels between dominants and isolated males, assessed the regulatory role of aromatization of androgens into estrogens, and evaluated the gonads as a source of these sex steroids. We found that high levels of aggression occurred in the non-breeding season despite low plasma 11-KT levels, and that there was no difference in 11-KT levels between dominant and isolated males. We demonstrated that acute aromatase inhibition decreased aggression, distorted contest dynamics, and affected expected outcome. We also found that castrated individuals displayed aggressive behavior indistinguishable from non-castrated males. Our results show, for the first time in teleost fish, that territorial aggression of G. omarorum during the non-breeding season depends on a non-gonadal estrogenic pathway.
Collapse
Affiliation(s)
- Cecilia Jalabert
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Paula Pessina
- Laboratorio de Técnicas Nucleares, Facultad de Veterinaria, Universidad de la Republica, Montevideo 11600, Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la Republica, Montevideo 11400, Uruguay.
| |
Collapse
|
29
|
Sinnett PM, Markham MR. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish. Horm Behav 2015; 71:31-40. [PMID: 25870018 DOI: 10.1016/j.yhbeh.2015.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Energetic demands of social communication signals can constrain signal duration, repetition, and magnitude. The metabolic costs of communication signals are further magnified when they are coupled to active sensory systems that require constant signal generation. Under such circumstances, metabolic stress incurs additional risk because energy shortfalls could degrade sensory system performance as well as the social functions of the communication signal. The weakly electric fish Eigenmannia virescens generates electric organ discharges (EODs) that serve as both active sensory and communication signals. These EODs are maintained at steady frequencies of 200-600Hz throughout the lifespan, and thus represent a substantial metabolic investment. We investigated the effects of metabolic stress (food deprivation) on EOD amplitude (EODa) and EOD frequency (EODf) in E. virescens and found that only EODa decreases during food deprivation and recovers after restoration of feeding. Cortisol did not alter EODa under any conditions, and plasma cortisol levels were not changed by food deprivation. Both melanocortin hormones and social challenges caused transient EODa increases in both food-deprived and well-fed fish. Intramuscular injections of leptin increased EODa in food-deprived fish but not well-fed fish, identifying leptin as a novel regulator of EODa and suggesting that leptin mediates EODa responses to metabolic stress. The sensitivity of EODa to dietary energy availability likely arises because of the extreme energetic costs of EOD production in E. virescens and also could reflect reproductive strategies of iteroparous species that reduce social signaling and reproduction during periods of stress to later resume reproductive efforts when conditions improve.
Collapse
Affiliation(s)
- Philip M Sinnett
- Department of Biology, The University of Oklahoma, Norman, OK 73019, USA
| | - Michael R Markham
- Department of Biology, The University of Oklahoma, Norman, OK 73019, USA; Cellular & Behavioral Neurobiology Graduate Program, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
30
|
Zubizarreta L, Stoddard PK, Silva A. Aggression Levels Affect Social Interaction in the Non-Breeding Territorial Aggression of the Weakly Electric Fish,Gymnotus omarorum. Ethology 2014. [DOI: 10.1111/eth.12299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lucía Zubizarreta
- Unidad Bases Neurales de la Conducta; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
| | - Philip K. Stoddard
- Department of Biological Sciences; Florida International University; Miami FL USA
| | - Ana Silva
- Unidad Bases Neurales de la Conducta; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
- Laboratorio de Neurociencias; Facultad de Ciencias; Universidad de la República; Montevideo Uruguay
| |
Collapse
|
31
|
Perrone R, Migliaro A, Comas V, Quintana L, Borde M, Silva A. Local vasotocin modulation of the pacemaker nucleus resembles distinct electric behaviors in two species of weakly electric fish. ACTA ACUST UNITED AC 2014; 108:203-12. [PMID: 25125289 DOI: 10.1016/j.jphysparis.2014.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/25/2014] [Accepted: 07/25/2014] [Indexed: 12/24/2022]
Abstract
The neural bases of social behavior diversity in vertebrates have evolved in close association with hypothalamic neuropeptides. In particular, arginine-vasotocin (AVT) is a key integrator underlying differences in behavior across vertebrate taxa. Behavioral displays in weakly electric fish are channeled through specific patterns in their electric organ discharges (EODs), whose rate is ultimately controlled by a medullary pacemaker nucleus (PN). We first explored interspecific differences in the role of AVT as modulator of electric behavior in terms of EOD rate between the solitary Gymnotus omarorum and the gregarious Brachyhypopomus gauderio. In both species, AVT IP injection (10μg/gbw) caused a progressive increase of EOD rate of about 30%, which was persistent in B. gauderio, and attenuated after 30min in G. omarorum. Secondly, we demonstrated by in vitro electrophysiological experiments that these behavioral differences can be accounted by dissimilar effects of AVT upon the PN in itself. AVT administration (1μM) to the perfusion bath of brainstem slices containing the PN produced a small and transient increase of PN activity rate in G. omarorum vs the larger and persistent increase previously reported in B. gauderio. We also identified AVT neurons, for the first time in electric fish, using immunohistochemistry techniques and confirmed the presence of hindbrain AVT projections close to the PN that might constitute the anatomical substrate for AVT influences on PN activity. Taken together, our data reinforce the view of the PN as an extremely plastic medullary central pattern generator that not only responds to higher influences to adapt its function to diverse contexts, but also is able to intrinsically shape its response to neuropeptide actions, thus adding a hindbrain target level to the complexity of the global integration of central neuromodulation of electric behavior.
Collapse
Affiliation(s)
- Rossana Perrone
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Adriana Migliaro
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Virginia Comas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800 Montevideo, Uruguay.
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Michel Borde
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800 Montevideo, Uruguay.
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
32
|
Pedraja F, Aguilera P, Caputi AA, Budelli R. Electric imaging through evolution, a modeling study of commonalities and differences. PLoS Comput Biol 2014; 10:e1003722. [PMID: 25010765 PMCID: PMC4091691 DOI: 10.1371/journal.pcbi.1003722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/30/2014] [Indexed: 11/23/2022] Open
Abstract
Modeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating electric images which takes into account the structure and physiology of the electric organ as well as the geometry and resistivity of fish tissues. The present article reports a general application of our simulator for studying electric images in electric fish with heterogeneous, extended electric organs. We studied three species of Gymnotiformes, including both wave-type (Apteronotus albifrons) and pulse-type (Gymnotus obscurus and Gymnotus coropinae) fish, with electric organs of different complexity. The results are compared with the African (Gnathonemus petersii) and American (Gymnotus omarorum) electric fish studied previously. We address the following issues: 1) how to calculate equivalent source distributions based on experimental measurements, 2) how the complexity of the electric organ discharge determines the features of the electric field and 3) how the basal field determines the characteristics of electric images. Our findings allow us to generalize the hypothesis (previously posed for G. omarorum) in which the perioral region and the rest of the body play different sensory roles. While the "electrosensory fovea" appears suitable for exploring objects in detail, the rest of the body is likened to a "peripheral retina" for detecting the presence and movement of surrounding objects. We discuss the commonalities and differences between species. Compared to African species, American electric fish show a weaker field. This feature, derived from the complexity of distributed electric organs, may endow Gymnotiformes with the ability to emit site-specific signals to be detected in the short range by a conspecific and the possibility to evolve predator avoidance strategies.
Collapse
Affiliation(s)
- Federico Pedraja
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pedro Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Angel A. Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ruben Budelli
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
33
|
Quintana L, Harvey-Girard E, Lescano C, Macadar O, Lorenzo D. Sex-specific role of a glutamate receptor subtype in a pacemaker nucleus controlling electric behavior. ACTA ACUST UNITED AC 2014; 108:155-66. [PMID: 24794754 DOI: 10.1016/j.jphysparis.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 02/03/2023]
Abstract
Electric communication signals, produced by South American electric fish, vary across sexes and species and present an ideal opportunity to examine the bases of signal diversity, and in particular, the mechanisms underlying sexually dimorphic behavior. Gymnotiforms produce electric organ discharges (EOD) controlled by a hindbrain pacemaker nucleus (PN). Background studies have identified the general cellular mechanisms that underlie the production of communication signals, EOD chirps and interruptions, typically displayed in courtship and agonistic contexts. Brachyhypopomus gauderio emit sexually dimorphic signals, and recent studies have shown that the PN acquires the capability of generating chirps seasonally, only in breeding males, by modifying its glutamatergic system. We hypothesized that sexual dimorphism was caused by sexual differences in the roles of glutamate receptors. To test this hypothesis, we analyzed NMDA and AMPA mediated responses in PN slice preparations by field potential recordings, and quantified one AMPA subunit mRNA, in the PNs of males and females during the breeding season. In situ hybridization of GluR2B showed no sexual differences in quantities between the male and female PN. Functional responses of the PN to glutamate and AMPA, on the other hand, showed a clear cut sexual dimorphism. In breeding males, but not females, the PN responded to glutamate and AMPA with bursting activity, with a temporal pattern that resembled the pattern of EOD chirps. In this study, we have been successful in identifying cellular mechanisms of sexual dimorphic communication signals. The involvement of AMPA receptors in PN activity is part of the tightly regulated changes that account for the increase in signal diversity during breeding in this species, necessary for a successful reproduction.
Collapse
Affiliation(s)
- Laura Quintana
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Erik Harvey-Girard
- Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Carolina Lescano
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Omar Macadar
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Daniel Lorenzo
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
34
|
Maniadakis M, Trahanias P. Time models and cognitive processes: a review. Front Neurorobot 2014; 8:7. [PMID: 24578690 PMCID: PMC3936574 DOI: 10.3389/fnbot.2014.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/26/2014] [Indexed: 11/17/2022] Open
Abstract
The sense of time is an essential capacity of humans, with a major role in many of the cognitive processes expressed in our daily lifes. So far, in cognitive science and robotics research, mental capacities have been investigated in a theoretical and modeling framework that largely neglects the flow of time. Only recently there has been a rather limited, but constantly increasing interest in the temporal aspects of cognition, integrating time into a range of different models of perceptuo-motor capacities. The current paper aims to review existing works in the field and suggest directions for fruitful future work. This is particularly important for the newly developed field of artificial temporal cognition that is expected to significantly contribute in the development of sophisticated artificial agents seamlessly integrated into human societies.
Collapse
Affiliation(s)
- Michail Maniadakis
- Institute of Computer Science, Foundation for Research and Technology - Hellas Heraklion, Greece
| | - Panos Trahanias
- Institute of Computer Science, Foundation for Research and Technology - Hellas Heraklion, Greece
| |
Collapse
|
35
|
Silva AC, Perrone R, Zubizarreta L, Batista G, Stoddard PK. Neuromodulation of the agonistic behavior in two species of weakly electric fish that display different types of aggression. ACTA ACUST UNITED AC 2014; 216:2412-20. [PMID: 23761466 DOI: 10.1242/jeb.082180] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agonistic behavior has shaped sociality across evolution. Though extremely diverse in types of displays and timing, agonistic encounters always follow the same conserved phases (evaluation, contest and post-resolution) and depend on homologous neural circuits modulated by the same neuroendocrine mediators across vertebrates. Among neuromodulators, serotonin (5-HT) is the main inhibitor of aggression, and arginine vasotocin (AVT) underlies sexual, individual and social context differences in behavior across vertebrate taxa. We aim to demonstrate that a distinct spatio-temporal pattern of activation of the social behavior network characterizes each type of aggression by exploring its modulation by both the 5-HT and AVT systems. We analyze the neuromodulation of aggression between the intermale reproduction-related aggression displayed by the gregarious Brachyhypopomus gauderio and the non-breeding intrasexual and intersexual territorial aggression displayed by the solitary Gymnotus omarorum. Differences in the telencephalic activity of 5-HT between species were paralleled by a differential serotonergic modulation through 1A receptors that inhibited aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio. AVT injection increased the motivation towards aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio, whereas the electric submission and dominance observed in G. omarorum and B. gauderio, respectively, were both AVT-dependent in a distinctive way. The advantages of our model species allowed us to identify precise target areas and mechanisms of the neuromodulation of two types of aggression that may represent more general and conserved strategies of the control of social behavior among vertebrates.
Collapse
Affiliation(s)
- Ana C Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | | | | | | | | |
Collapse
|
36
|
Nogueira J, Caputi AA. From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off. ACTA ACUST UNITED AC 2014; 216:2380-92. [PMID: 23761463 DOI: 10.1242/jeb.082651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review deals with the question: what is the relationship between the properties of a neuron and the role that the neuron plays within a given neural circuit? Answering this kind of question requires collecting evidence from multiple neuron phenotypes and comparing the role of each type in circuits that perform well-defined computational tasks. The focus here is on the spherical neurons in the electrosensory lobe of the electric fish Gymnotus omarorum. They belong to the one-spike-onset phenotype expressed at the early stages of signal processing in various sensory modalities and diverse taxa. First, we refer to the one-spike neuron intrinsic properties, their foundation on a low-threshold K(+) conductance, and the potential roles of this phenotype in different circuits within a comparative framework. Second, we present a brief description of the active electric sense of weakly electric fish and the particularities of spherical one-spike-onset neurons in the electrosensory lobe of G. omarorum. Third, we introduce one of the specific tasks in which these neurons are involved: the trade-off between self- and allo-generated signals. Fourth, we discuss recent evidence indicating a still-undescribed role for the one-spike phenotype. This role deals with the blockage of the pathway after being activated by the self-generated electric organ discharge and how this blockage favors self-generated electrosensory information in the context of allo-generated interference. Based on comparative analysis we conclude that one-spike-onset neurons may play several functional roles in animal sensory behavior. There are specific adaptations of the neuron's 'response function' to the circuit and task. Conversely, the way in which a task is accomplished depends on the intrinsic properties of the neurons involved. In short, the role of a neuron within a circuit depends on the neuron and its functional context.
Collapse
Affiliation(s)
- Javier Nogueira
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avenida General Flores, 2125 Montevideo, Uruguay
| | | |
Collapse
|
37
|
Harvey-Girard E, Giassi ACC, Ellis W, Maler L. Expression of the cannabinoid CB1 receptor in the gymnotiform fish brain and its implications for the organization of the teleost pallium. J Comp Neurol 2013; 521:949-75. [PMID: 22886386 DOI: 10.1002/cne.23212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/05/2012] [Accepted: 08/03/2012] [Indexed: 12/14/2022]
Abstract
Cannabinoid CB1 receptors (CB1R) are widely distributed in the brains of many vertebrates, but whether their functions are conserved is unknown. The weakly electric fish, Apteronotus leptorhynchus (Apt), has been well studied for its brain structure, behavior, sensory processing, and learning and memory. It therefore offers an attractive model for comparative studies of CB1R functions. We sequenced partial AptCB1R mRNAs and performed in situ hybridization to localize its expression. Partial AptCB1R protein sequence was highly conserved to zebrafish (90.7%) and mouse (81.9%) orthologs. AptCB1R mRNA was highly expressed in the telencephalon. Subpallial neurons (dorsal, central, intermediate regions and part of the ventral region, Vd/Vc/Vi, and Vv) expressed high levels of AptCB1R transcript. The central region of dorsocentral telencephalon (DC(core) ) strongly expressed CB1R mRNA; cells in DC(core) project to midbrain regions involved in electrosensory/visual function. The lateral and rostral regions of DC surrounding DC(core) (DC(shell) ) lack AptCB1R mRNA. The rostral division of the dorsomedial telencephalon (DM1) highly expresses AptCB1R mRNA. In dorsolateral division (DL) AptCB1R mRNA was expressed in a gradient that declined in a rostrocaudal manner. In diencephalon, AptCB1R RNA probe weakly stained the central-posterior (CP) and prepacemaker (PPn) nuclei. In mesencephalon, AptCB1R mRNA is expressed in deep layers of the dorsal (electrosensory) torus semicircularis (TSd). In hindbrain, AptCB1R RNA probe weakly labeled inhibitory interneurons in the electrosensory lateral line lobe (ELL). Unlike mammals, only few cerebellar granule cells expressed AptCB1R transcripts and these were located in the center of eminentia granularis pars posterior (EGp), a cerebellar region involved in feedback to ELL.
Collapse
Affiliation(s)
- Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5.
| | | | | | | |
Collapse
|
38
|
|
39
|
Gavassa S, Goldina A, Silva AC, Stoddard PK. Behavioral ecology, endocrinology and signal reliability of electric communication. J Exp Biol 2013; 216:2403-11. [PMID: 23761465 PMCID: PMC3680505 DOI: 10.1242/jeb.082255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/07/2013] [Indexed: 11/20/2022]
Abstract
The balance between the costs and benefits of conspicuous animal communication signals ensures that signal expression relates to the quality of the bearer. Signal plasticity enables males to enhance conspicuous signals to impress mates and competitors and to reduce signal expression to lower energetic and predation-related signaling costs when competition is low. While signal plasticity may benefit the signaler, it can compromise the reliability of the information conveyed by the signals. In this paper we review the effect of signal plasticity on the reliability of the electrocommunication signal of the gymnotiform fish Brachyhypopomus gauderio. We (1) summarize the endocrine regulation of signal plasticity, (2) explore the regulation of signal plasticity in females, (3) examine the information conveyed by the signal, (4) show how that information changes when the signal changes, and (5) consider the energetic strategies used to sustain expensive signaling. The electric organ discharge (EOD) of B. gauderio changes in response to social environment on two time scales. Two hormone classes, melanocortins and androgens, underlie the short-term and long-term modulation of signal amplitude and duration observed during social interaction. Population density drives signal amplitude enhancement, unexpectedly improving the reliability with which the signal predicts the signaler's size. The signal's second phase elongation predicts androgen levels and male reproductive condition. Males sustain signal enhancement with dietary intake, but when food is limited, they 'go for broke' and put extra energy into electric signals. Cortisol diminishes EOD parameters, but energy-limited males offset cortisol effects by boosting androgen levels. While physiological constraints are sufficient to maintain signal amplitude reliability, phenotypic integration and signaling costs maintain reliability of signal duration, consistent with theory of honest signaling.
Collapse
Affiliation(s)
- Sat Gavassa
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | | | | | | |
Collapse
|
40
|
Ten unanswered questions in multimodal communication. Behav Ecol Sociobiol 2013; 67:1523-1539. [PMID: 23956487 PMCID: PMC3742419 DOI: 10.1007/s00265-013-1565-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/04/2013] [Accepted: 04/16/2013] [Indexed: 11/19/2022]
Abstract
The study of multimodal communication has become an active and vibrant field. This special issue of Behavioral Ecology and Sociobiology brings together new developments in this rapidly expanding area. In this final contribution to the special issue, I look to the future and discuss ten questions in need of further work, touching on issues ranging from theoretical modeling and the evolution of behavior to molecular mechanisms and the development of behavior. In particular, I emphasize that the use of multimodal communication allows animals to switch between sensory channels when one channel becomes too noisy, and suggest that a better understanding of this process may help us both to understand the evolution of multisensory signaling and to predict the success of species facing environmental changes that affect signaling channels, such as urbanization and climate change. An expanded section is included on the effects of climate change on animal communication across sensory channels, urging researchers to pursue this topic due to the rapidity with which the environment is currently transforming.
Collapse
|
41
|
Zubizarreta L, Perrone R, Stoddard PK, Costa G, Silva AC. Differential serotonergic modulation of two types of aggression in weakly electric fish. Front Behav Neurosci 2012. [PMID: 23181014 PMCID: PMC3500767 DOI: 10.3389/fnbeh.2012.00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agonistic aggression has provided an excellent framework to study how conserved circuits and neurochemical mediators control species-specific and context-dependent behavior. The principal inhibitory control upon aggression is serotonin (5-HT) dependent, and the activation of 5-HT(1A) receptors is involved in its action. To address whether the serotonergic system differentially regulates different types of aggression, we used two species of weakly electric fish: the solitary Gymnotus omarorum and the gregarious Brachyhypopomus gauderio, which display distinctive types of aggression as part of each species' natural behavioral repertoire. We found that in the reproduction-related aggression displayed by B. gauderio after conflict resolution, the serotonergic activity follows the classic pattern in which subordinates exhibit higher 5-HT levels than controls. After the territorial aggression displayed by G. omarorum, however, both dominants and subordinates show lower 5-HT levels than controls, indicating a different response of the serotonergic system. Further, we found interspecific differences in basal serotonin turnover and in the dynamic profile of the changes in 5-HT levels from pre-contest to post-contest. Finally, we found the expected reduction of aggression and outcome shift in the territorial aggression of G. omarorum after 8-OH-DPAT (5-HT(1A) receptor agonist) administration, but no effect in the reproduction-related aggression of B. gauderio. Our results demonstrate the differential participation of the serotonergic system in the modulation of two types of aggression that we speculate may be a general strategy of the neuroendocrine control of aggression across vertebrates.
Collapse
Affiliation(s)
- Lucía Zubizarreta
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
42
|
Gavassa S, Stoddard PK. Food restriction promotes signaling effort in response to social challenge in a short-lived electric fish. Horm Behav 2012; 62:381-8. [PMID: 22801246 DOI: 10.1016/j.yhbeh.2012.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
Vertebrates exposed to stressful conditions release glucocorticoids to sustain energy expenditure. In most species elevated glucocorticoids inhibit reproduction. However individuals with limited remaining reproductive opportunities cannot afford to forgo reproduction and should resist glucocorticoid-mediated inhibition of reproductive behavior. The electric fish Brachyhypopomus gauderio has a single breeding season in its lifetime, thus we expect males to resist glucocorticoid-mediated inhibition of their sexual advertisement signals. We studied stress resistance in male B. gauderio (i) by examining the effect of exogenous cortisol administration on the signal waveform and (ii) by investigating the effect of food limitation on androgen and cortisol levels, the amplitude of the electric signal waveform, the responsiveness of the electric signal waveform to social challenge, and the amount of feeding activity. Exogenous cortisol administration did reduce signal amplitude and pulse duration, but endogenous cortisol levels did not rise with food limitation or social challenge. Despite food limitation, males responded to social challenges by further increasing androgen levels and enhancing the amplitude and duration of their electric signal waveforms. Food-restricted males increased androgen levels and signal pulse duration more than males fed ad libitum. Socially challenged fish increased food consumption, probably to compensate for their elevated energy expenditure. Previous studies showed that socially challenged males of this species simultaneously elevate testosterone and cortisol in proportion to signal amplitude. Thus, B. gauderio appears to protect its cortisol-sensitive electric advertisement signal by increasing food intake, limiting cortisol release, and offsetting signal reduction from cortisol with signal-enhancing androgens.
Collapse
Affiliation(s)
- Sat Gavassa
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| | | |
Collapse
|
43
|
Batista G, Zubizarreta L, Perrone R, Silva A. Non-sex-biased Dominance in a Sexually Monomorphic Electric Fish: Fight Structure and Submissive Electric Signalling. Ethology 2012. [DOI: 10.1111/j.1439-0310.2012.02022.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Gavassa S, Silva AC, Gonzalez E, Stoddard PK. Signal modulation as a mechanism for handicap disposal. Anim Behav 2012; 83:935-944. [PMID: 22665940 DOI: 10.1016/j.anbehav.2012.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Signal honesty may be compromised when heightened competition provides incentive for signal exaggeration. Some degree of honesty might be maintained by intrinsic handicap costs on signalling or through imposition of extrinsic costs, such as social punishment of low quality cheaters. Thus, theory predicts a delicate balance between signal enhancement and signal reliability that varies with degree of social competition, handicap cost, and social cost. We investigated whether male sexual signals of the electric fish Brachyhypopomus gauderio would become less reliable predictors of body length when competition provides incentives for males to boost electric signal amplitude. As expected, social competition under natural field conditions and in controlled lab experiments drove males to enhance their signals. However, signal enhancement improved the reliability of the information conveyed by the signal, as revealed in the tightening of the relationship between signal amplitude and body length. Signal augmentation in male B. gauderio was independent of body length, and thus appeared not to be curtailed through punishment of low quality (small) individuals. Rather, all individuals boosted their signals under high competition, but those whose signals were farthest from the predicted value under low competition boosted signal amplitude the most. By elimination, intrinsic handicap cost of signal production, rather than extrinsic social cost, appears to be the basis for the unexpected reinforcement of electric signal honesty under social competition. Signal modulation may provide its greatest advantage to the signaller as a mechanism for handicap disposal under low competition rather than as a mechanism for exaggeration of quality under high competition.
Collapse
Affiliation(s)
- Sat Gavassa
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | | | | |
Collapse
|
45
|
Dunlap KD, Jashari D, Pappas KM. Glucocorticoid receptor blockade inhibits brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. Horm Behav 2011; 60:275-83. [PMID: 21683080 PMCID: PMC3143256 DOI: 10.1016/j.yhbeh.2011.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 11/17/2022]
Abstract
When animals are under stress, glucocorticoids commonly inhibit adult neurogenesis by acting through glucocorticoid receptors (GRs). However, in some cases, conditions that elevate glucocorticoids promote adult neurogenesis, and the role of glucocorticoid receptors in these circumstances is not well understood. We examined the involvement of GRs in social enhancement of brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. In this species, long-term social interaction simultaneously elevates plasma cortisol, enhances brain cell addition and increases production of aggressive electrocommunication signals ("chirps"). We implanted isolated and paired fish with capsules containing nothing (controls) or the GR antagonist, RU486, recorded chirp production and locomotion for 7d, and measured the density of newborn cells in the periventricular zone. Compared to isolated controls, paired controls showed elevated chirping in two phases: much higher chirp rates in the first 5h and moderately higher nocturnal rates thereafter. Treating paired fish with RU486 reduced chirp rates in both phases to those of isolated fish, demonstrating that GR activation is crucial for socially induced chirping. Neither RU486 nor social interaction affected locomotion. RU486 treatment to paired fish had a partial effect on cell addition: paired RU486 fish had less cell addition than paired control fish but more than isolated fish. This suggests that cortisol activation of GRs contributes to social enhancement of cell addition but works in parallel with another GR-independent mechanism. RU486 also reduced cell addition in isolated fish, indicating that GRs participate in the regulation of cell addition even when cortisol levels are low.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106 USA.
| | | | | |
Collapse
|
46
|
Dunlap KD, Silva AC, Chung M. Environmental complexity, seasonality and brain cell proliferation in a weakly electric fish, Brachyhypopomus gauderio. ACTA ACUST UNITED AC 2011; 214:794-805. [PMID: 21307066 DOI: 10.1242/jeb.051037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental complexity and season both influence brain cell proliferation in adult vertebrates, but their relative importance and interaction have not been directly assessed. We examined brain cell proliferation during both the breeding and non-breeding seasons in adult male electric fish, Brachyhypopomus gauderio, exposed to three environments that differed in complexity: (1) a complex natural habitat in northern Uruguay, (2) an enriched captive environment where fish were housed socially and (3) a simple laboratory setting where fish were isolated. We injected fish with BrdU 2.5 h before sacrifice to label newborn cells. We examined the hindbrain and midbrain and quantified the density of BrdU+ cells in whole transverse sections, proliferative zones and two brain nuclei in the electrocommunication circuitry (the pacemaker nucleus and the electrosensory lateral line lobe). Season had the largest effect on cell proliferation, with fish during the breeding season having three to seven times more BrdU+ cells than those during the non-breeding season. Although the effect was smaller, fish from a natural environment had greater rates of cell proliferation than fish in social or isolated captive environments. For most brain regions, fish in social and isolated captive environments had equivalent levels of cell proliferation. However, for brain regions in the electrocommunication circuitry, group-housed fish had more cell proliferation than isolated fish, but only during the breeding season (season × environment interaction). The regionally and seasonally specific effect of social environment on cell proliferation suggests that addition of new cells to these nuclei may contribute to seasonal changes in electrocommunication behavior.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA.
| | | | | |
Collapse
|
47
|
Communication in troubled waters: responses of fish communication systems to changing environments. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9450-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Quintana L, Sierra F, Silva A, Macadar O. A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: functional aspects revealed by glutamate stimulation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:211-25. [DOI: 10.1007/s00359-010-0603-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 09/21/2010] [Accepted: 10/17/2010] [Indexed: 01/31/2023]
|
49
|
Pouso P, Quintana L, Bolatto C, Silva AC. Brain androgen receptor expression correlates with seasonal changes in the behavior of a weakly electric fish, Brachyhypopomus gauderio. Horm Behav 2010; 58:729-36. [PMID: 20688071 DOI: 10.1016/j.yhbeh.2010.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/10/2010] [Accepted: 07/25/2010] [Indexed: 11/30/2022]
Abstract
Seasonal breeders are superb models for understanding natural relationships between reproductive behavior and its neural bases. We investigated the cellular bases of hormone effects in a weakly pulse-type electric fish with well-defined hormone-sensitive communication signals. Brachyhypopomus gauderio males emit social electric signals (SESs) consisting of rate modulations of the electric organ discharge during the breeding season. This discharge is commanded by a medullary pacemaker nucleus (PN), composed of pacemaker and relay neurons. We analyzed the contribution of androgen receptor (AR) expression to the seasonal generation of SESs, by examining the presence of ARs in the PN in different experimental groups: breeding, non-breeding, and testosterone (T)-implanted non-breeding males. AR presence and distribution in the CNS was assessed through western blotting and immunohistochemistry using the PG-21 antibody, which was raised against the human AR. We found AR immunoreactivity, for the first time in a pulse-type Gymnotiform, in several regions throughout the brain. In particular, this is the first report to reveal the presence of AR in both pacemaker and relay neurons within the Gymnotiform PN. The AR immunoreactivity was present in breeding males and could be induced in T-implanted non-breeding males. This seasonal and T-induced AR expression in the PN suggests that androgens may play an important role in the generation of SESs by modulating intrinsic electrophysiological properties of pacemaker and relay neurons.
Collapse
Affiliation(s)
- Paula Pouso
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | | | | | | |
Collapse
|
50
|
Perrone R, Batista G, Lorenzo D, Macadar O, Silva A. Vasotocin actions on electric behavior: interspecific, seasonal, and social context-dependent differences. Front Behav Neurosci 2010; 4. [PMID: 20802858 PMCID: PMC2928667 DOI: 10.3389/fnbeh.2010.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 07/16/2010] [Indexed: 11/24/2022] Open
Abstract
Social behavior diversity is correlated with distinctively distributed patterns of a conserved brain network, which depend on the action of neuroendocrine messengers that integrate extrinsic and intrinsic cues. Arginine vasotocin (AVT) is a key integrator underlying differences in behavior across vertebrate taxa. Weakly electric fish use their electric organ discharges (EODs) as social behavioral displays. We examined the effect of AVT on EOD rate in two species of Gymnotiformes with different social strategies: Gymnotus omarorum, territorial and highly aggressive, and Brachyhypopomus gauderio, gregarious and aggressive only between breeding males. AVT induced a long-lasting and progressive increase of EOD rate in isolated B. gauderio, partially blocked by the V1a AVT receptor antagonist (Manning compound, MC), and had no effects in G. omarorum. AVT also induced a long-lasting increase in the firing rate (prevented by MC) of the isolated medullary pacemaker nucleus (PN) of B. gauderio when tested in an in vitro preparation, indicating that the PN is the direct effector of AVT actions. AVT is involved in the seasonal, social context-dependent nocturnal increase of EOD rate that has been recently described in B. gauderio to play a role in mate selection. AVT produced the additional nocturnal increase of EOD rate in non-breeding males, whereas MC blocked it in breeding males. Also, AVT induced a larger EOD rate increase in reproductive dyads than in agonistic encounters. We demonstrated interspecific, seasonal, and context-dependent actions of AVT on the PN that contribute to the understanding of the mechanisms the brain uses to shape sociality.
Collapse
Affiliation(s)
- Rossana Perrone
- Departamento de Neurofisiología, Instituto Clemente Estable, Ministerio de Educación y Cultura Montevideo, Uruguay
| | | | | | | | | |
Collapse
|