1
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Rivalan M, Alonso L, Mosienko V, Bey P, Hyde A, Bader M, Winter Y, Alenina N. Serotonin drives aggression and social behaviors of laboratory male mice in a semi-natural environment. Front Behav Neurosci 2024; 18:1450540. [PMID: 39359324 PMCID: PMC11446219 DOI: 10.3389/fnbeh.2024.1450540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Aggression is an adaptive social behavior crucial for the stability and prosperity of social groups. When uncontrolled, aggression leads to pathological violence that disrupts group structure and individual wellbeing. The comorbidity of uncontrolled aggression across different psychopathologies makes it a potential endophenotype of mental disorders with the same neurobiological substrates. Serotonin plays a critical role in regulating impulsive and aggressive behaviors. Mice lacking in brain serotonin, due to the ablation of tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in serotonin synthesis, could serve as a potential model for studying pathological aggression. Home cage monitoring allows for the continuous observation and quantification of social and non-social behaviors in group-housed, freely-moving mice. Using an ethological approach, we investigated the impact of central serotonin ablation on the everyday expression of social and non-social behaviors and their correlations in undisturbed, group-living Tph2-deficient and wildtype mice. By training a machine learning algorithm on behavioral time series, "allogrooming", "struggling at feeder", and "eating" emerged as key behaviors dissociating one genotype from the other. Although Tph2-deficient mice exhibited characteristics of pathological aggression and reduced communication compared to wildtype animals, they still demonstrated affiliative huddle behaviors to normal levels. Altogether, such a distinct and dynamic phenotype of Tph2-deficient mice influenced the group's structure and the subsequent development of its hierarchical organization. These aspects were analyzed using social network analysis and the Glicko rating methods. This study demonstrates the importance of the ethological approach for understanding the global impact of pathological aggression on various aspects of life, both at the individual and group levels. Home cage monitoring allows the observation of the natural behaviors of mice in a semi-natural habitat, providing an accurate representation of real-world phenomena and pathological mechanisms. The results of this study provide insights into the neurobiological substrate of pathological aggression and its potential role in complex brain disorders.
Collapse
Affiliation(s)
- Marion Rivalan
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neuroscience Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | - Lucille Alonso
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- University of Bordeaux, CNRS, IINS, UMR 5297, Bordeaux, France
| | - Valentina Mosienko
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University Walk, Bristol, United Kingdom
| | - Patrik Bey
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexia Hyde
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
| | - Michael Bader
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - York Winter
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
3
|
Zuo Z, Li J, Zhang B, Hang A, Wang Q, Xiong G, Tang L, Zhou Z, Chang X. Early-Life Exposure to Paraquat Aggravates Sex-Specific and Progressive Abnormal Non-Motor Neurobehavior in Aged Mice. TOXICS 2023; 11:842. [PMID: 37888693 PMCID: PMC10611227 DOI: 10.3390/toxics11100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Early-life exposure to environmental neurotoxicants is known to have lasting effects on organisms. In this study, we aim to investigate the impacts of PQ exposure during early developmental stages and adult re-challenge in aged mice on non-motor neurobehavior. Two mouse models, which were exposed once during early life stage and re-exposure at adulthood, were created to explore the long-term effects of PQ on non-motor neurobehavior. As the results showed, early-life exposure to PQ caused impairment in working memory and cognitive ability in aged male mice, but not in female mice, exhibiting a sex-specific impairment. Moreover, male mice that were re-challenged with PQ at adulthood following early-life exposure also exhibited non-motor neurobehavioral disorders. Notably, re-exposure to PQ exacerbated neurobehavioral disorders and anxiety levels compared to single exposure during different life stages. Collectively, early-life exposure to PQ can result in irreversible impairments in non-motor neurobehavior and increase susceptibility to subsequent insults in male mice, but not in female mice, suggesting greater sensitivity in male rodents to PQ-induced non-motor neurobehavioral deficits.
Collapse
Affiliation(s)
- Zhenzi Zuo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Ai Hang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Qiaoxu Wang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (Q.W.); (L.T.)
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; (Q.W.); (L.T.)
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Medical College of Fudan University, Fudan University, Room 233, Building 8, 130 Dongan Road, Shanghai 200032, China; (Z.Z.); (J.L.); (B.Z.); (A.H.); (G.X.); (Z.Z.)
| |
Collapse
|
4
|
Sandeep Ganesh G, Konduri P, Kolusu AS, Namburi SV, Chunduru BTC, Nemmani KVS, Samudrala PK. Neuroprotective Effect of Saroglitazar on Scopolamine-Induced Alzheimer's in Rats: Insights into the Underlying Mechanisms. ACS Chem Neurosci 2023; 14:3444-3459. [PMID: 37669120 DOI: 10.1021/acschemneuro.3c00320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent and progressive neurodegenerative disorders, hallmarked by increased amyloid-β deposition and enhanced oxidative load in the brain, ensuing cognitive decline. The present study is aimed at elucidating the neuroprotective effect of saroglitazar, a dual peroxisome-proliferator-activated receptor (PPARα/γ) agonist used in the treatment of diabetic dyslipidemia, against memory impairment induced by intraperitoneal scopolamine injection. 30 male Wistar rats were randomly divided into the following five groups: (A) Veh + Veh, (B) SGZ + Veh, (C) Veh + SCOP, (D) DPZ + SCOP, and (E) SGZ + SCOP. Rats of the respective groups were pretreated with saroglitazar (10 mg/kg, p.o.) and donepezil (3 mg/kg, p.o.) once daily for 16 days. During the final 9 days of the study, a daily injection of scopolamine (3 mg/kg, i.p.) was administered to the respective groups. Adjacent to the scopolamine injection, behavioral tests such as the open field, Y maze, novel object recognition test, and Morris water maze were conducted to assess learning and memory. Additionally, biochemical parameters such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), nitric oxide (NO), malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), brain-derived neurotrophic factor (BDNF), β-amyloid levels, and NF-κB were measured in the hippocampus. The rats that received scopolamine injections showed significantly impaired short-term spatial and learning memory. This was associated with an increase in β-amyloid, iNOS, nitric oxide (NO), malondialdehyde, NF-κB, and TNF-α levels in the hippocampus of AD rats. On the other hand, saroglitazar has provided promising data on its protective role in cognition by protecting the BDNF, SOD, and GSH decline. As a result, saroglitazar was found to be a promising therapy in AD by upregulating the antioxidant status and cholinergic activity and preventing memory loss. Collectively, findings in the present study revealed that saroglitazar protected AD by suppressing scopolamine-mediated learning and memory deficits, oxidative stress, and cholinergic damage. Studying these mechanisms may conclude the protective role of saroglitazar against AD. However, further studies in transgenic animals will provide numerous insights into treatment mechanisms and contribute to developing a therapeutic intervention for AD.
Collapse
Affiliation(s)
- Grandhi Sandeep Ganesh
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Prasad Konduri
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Aravinda Sai Kolusu
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Srihari Vandana Namburi
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Bala Tejo Chandra Chunduru
- Clinical Data Manager, STATMINDS LLC, 501 Allendale Rd Suite 202, King of Prussia, Pennsylvania 19406, United States
| | - Kumar V S Nemmani
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| |
Collapse
|
5
|
Lakkab I, Ouakil A, El Hajaji H, Lachkar N, Lefter R, Ciobica A, El Bali B, Dobrin R, Hritcu LD, Lachkar M. Carob Seed Peels Effect on Cognitive Impairment and Oxidative Stress Status in Methionine-Induced Mice Models of Schizophrenia. Brain Sci 2022; 12:brainsci12121660. [PMID: 36552121 PMCID: PMC9775430 DOI: 10.3390/brainsci12121660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Background:Ceratonia siliqua L. (Carob tree) is a Mediterranean evergreen, well known for its medicinal properties. The different parts of Carob were proven to exert antidiabetic, antibacterial, antifungal, and antiproliferative effects. Hence, the present paper aims to validate the positive correlation between the high antioxidant activity of carob seed peels and the improvement of negative symptoms of schizophrenia. Materials & Methods: The antioxidant activity was carried out using the β-carotene test. Methionine and carob seed peels (CSP) extracts (50 and 100 mg/kg) were orally administrated to mice for a week. After administration, behavioral tests were assessed using the Y-maze, elevated plus maze, and forced swimming tests, as well as the novel object recognition task. Furthermore, the oxidative stress status was evaluated by analyzing the levels of the antioxidant enzymes: Superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde levels (MDA). Results: Both extracts exhibited remarkable antioxidant activity and showed antibacterial effect against Gram-positive bacteria tested (Bacillus subtilis and Staphylococcus aureus) and against Pseudomonas aeruginosa (Gram-negative). Therefore, Escherichia coli was very resistant. The behavioral tests proved the efficacy of CSP in enhancing the cognitive impairment of animal models of schizophrenia. Hence, the stated correlation between oxidative stress and schizophrenia was confirmed by the increased SOD and GPx activities and the decreased MDA level. Conclusions: The present study gave further confirmation of the potential correlation between oxidative stress and the development of psychiatric disorders and highlighted the use of natural antioxidants, especially Ceratonia siliqua L. in the improvement of cognitive impairment in the dementia of schizophrenia.
Collapse
Affiliation(s)
- Imane Lakkab
- Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Abdelmoughite Ouakil
- Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Hanane El Hajaji
- Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Nadya Lachkar
- Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, Iasi, B dul Carol I, No 8, 010071 Bucharest, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania
| | | | - Romeo Dobrin
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania
- Correspondence: (R.D.); (L.D.H.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, Ion Ionescu from Brad University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
- Correspondence: (R.D.); (L.D.H.)
| | - Mohammed Lachkar
- Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
6
|
Liu Y, Li Z, Sun T, He Z, Xiang H, Xiong J. Gut microbiota-generated short-chain fatty acids are involved in para-chlorophenylalanine-induced cognitive disorders. Front Microbiol 2022; 13:1028913. [PMID: 36419424 PMCID: PMC9676499 DOI: 10.3389/fmicb.2022.1028913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 08/30/2023] Open
Abstract
Neurocognitive disorders (NCDs) include complex and multifactorial diseases that affect many patients. The 5-hydroxytryptamine (5-HT) neuron system plays an important role in NCDs. Existing studies have reported that para-chlorophenylalanine (PCPA), a 5-HT scavenger, has a negative effect on cognitive function. However, we believe that PCPA may result in NCDs through other pathways. To explore this possibility, behavioral tests were performed to evaluate the cognitive function of PCPA-treated mice, suggesting the appearance of cognitive dysfunction and depression-like behavior. Furthermore, 16S rRNA and metabolomic analyses revealed that dysbiosis and acetate alternation could be related to PCPA-induced NCDs. Our results suggest that not only 5-HT depletion but also dysbiosis and acetate alternation contributed to PCPA-related NCDs. Specifically, the latter promotes NCDs by reducing short-chain fatty acid levels. Together, these findings provide an alternative perspective on PCPA-induced NCDs.
Collapse
Affiliation(s)
- Yanbo Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Gold PE. Revisiting and revising memory consolidation: Personal reflections on the research legacy of Ivan Izquierdo. Neuroscience 2022; 497:4-13. [PMID: 35667494 DOI: 10.1016/j.neuroscience.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
Two important themes in Ivan Izquierdo's research each offered both answers and questions about the topic of memory formation and maintenance. The first theme provided evidence supporting the view that short- and long-term memory were distinct processes and could be selectively modulated by several treatments, with some affecting only short-term, others only affecting long-term memory, and still others affecting both. Over many years, Izquierdo's laboratory documented molecular responses across time after training obtaining results that showed differences as well as similarities in the biochemical changes during the first 1-2 hours and the next 4-6 hours after training, i.e., during the transition from short- to long-term memory. This work clarified the biological underpinnings of the memory processes. The second theme described waves of susceptibility of memory to enhancing and impairing treatments after time, a biphasic profile that contrasted with earlier monotonic decreases in the efficacy of memory modulating treatments as a function of time between training and treatment. Remarkably, these waves of susceptibility to modification were accompanied by biphasic changes in molecular measures at similar times after training. Remarkably, some of the molecular players exhibited persistent changes after training, with increases in levels lasting days following the training experience. These persistent molecular changes may reveal a biological basis for the dynamic nature of memories seen long after the initial memory is consolidated.
Collapse
Affiliation(s)
- Paul E Gold
- Department of Biology, Syracuse, NY, 13224, United States.
| |
Collapse
|
8
|
Abu-Taweel GM, Al-Mutary MG, Albetran HM. Yttrium Oxide Nanoparticles Moderate the Abnormal Cognitive Behaviors in Male Mice Induced by Silver Nanoparticles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9059371. [PMID: 35528526 PMCID: PMC9072030 DOI: 10.1155/2022/9059371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
Abstract
Silver nanoparticles (Ag-NPs) have been used in medical, agricultural, and industrial purposes. Furthermore, NPs can cross the blood-brain barrier and encourage some effects on spatial learning and memory in organism. Here, we investigate the possible neurotoxicity of Ag-NPs with special emphasis on the neuroprotective impacts of yttrium-oxide nanoparticles (YO-NPs) in male mice. Male mice (n = 24) were weekly intraperitoneally injected for 35 days as the following; groups I, II, III, and IV received tap water (control), Ag-NPs (40 mg/kg), YO-NPs (40 mg/kg), and Ag-NPs/YO-NPs (40 mg/kg each), respectively. After that, animals were tested in shuttle box, Morris water-maze, and T-maze devices to evaluate the spatial learning and memory competence. Neurotransmitters and oxidative indices in the forebrain were estimated. According to behavioral studies, the male animals from the Ag-NP group presented worse memory than those in the control group. The biochemical changes after Ag-NP exposure were observed through increasing TBARS levels and decline in oxidative biomarkers (SOD, CAT, GST, and GSH) and neurotransmitters (DOP, SER, and AChE) in the forebrain of male mice compared to untreated animals. Interestingly, the animals treated with mixed doses of Ag-NPs and YO-NPs displayed improvements in behavioral tests, oxidative parameters, and neurotransmitters compared to males treated with Ag-NPs alone. In conclusion, the abnormal behavior related to learning and memory in male mice induced by Ag-NPs was significantly alleviated by YO-NPs. Specifically, the coinjection of YO-NPs with Ag-NPs moderates the disruption in neurotransmitters, oxidative indices of mice brains, which reflects on their cognitive behaviors.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Mohsen Ghaleb Al-Mutary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 383, Dammam 31113, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hani Manssor Albetran
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
9
|
Hirai A, Sugio S, Nimako C, Nakayama SMM, Kato K, Takahashi K, Arizono K, Hirano T, Hoshi N, Fujioka K, Taira K, Ishizuka M, Wake H, Ikenaka Y. Ca 2+ imaging with two-photon microscopy to detect the disruption of brain function in mice administered neonicotinoid insecticides. Sci Rep 2022; 12:5114. [PMID: 35332220 PMCID: PMC8948258 DOI: 10.1038/s41598-022-09038-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Neonicotinoid pesticides are a class of insecticides that reportedly have harmful effects on bees and dragonflies, causing a reduction in their numbers. Neonicotinoids act as neuroreceptor modulators, and some studies have reported their association with neurodevelopmental disorders. However, the precise effect of neonicotinoids on the central nervous system has not yet been identified. Herein, we conducted in vivo Ca2+ imaging using a two-photon microscope to detect the abnormal activity of neuronal circuits in the brain after neonicotinoid application. The oral administration of acetamiprid (ACE) (20 mg/kg body weight (BW) in mature mice with a quantity less than the no-observed-adverse-effect level (NOAEL) and a tenth or half of the median lethal dose (LD50) of nicotine (0.33 or 1.65 mg/kg BW, respectively), as a typical nicotinic acetylcholine receptor (nAChR) agonist, increased anxiety-like behavior associated with altered activities of the neuronal population in the somatosensory cortex. Furthermore, we detected ACE and its metabolites in the brain, 1 h after ACE administration. The results suggested that in vivo Ca2+ imaging using a two-photon microscope enabled the highly sensitive detection of neurotoxicant-mediated brain disturbance of nerves.
Collapse
Affiliation(s)
- Anri Hirai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shouta Sugio
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumi-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto, 862-8502, Japan
| | - Tetsushi Hirano
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Nobuhiko Hoshi
- Student Affairs Section, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Kazutoshi Fujioka
- Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, USA
| | - Kumiko Taira
- Department of Anesthesiology, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumi-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan. .,Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom, 2531, South Africa. .,One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan. .,Translational Research Unit, Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
10
|
D'avila LF, Dias VT, Trevizol F, Metz VG, Roversi K, Milanesi L, Maurer LH, Baranzelli J, Emanuelli T, Burger ME. INTERESTERIFIED FAT MATERNAL CONSUMPTION BEFORE CONCEPTION PROGRAMMS MEMORY AND LEARNING OF ADULTHOOD OFFSPRING: how big is this deleterious repercussion? Toxicol Lett 2022; 361:10-20. [PMID: 35301046 DOI: 10.1016/j.toxlet.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
In recent years, interesterified fat (IF) has largely replaced trans fat in industrialized food. Studies of our research group showed that IF consumption may not be safe for central nervous system (CNS) functions. Our current aim was to evaluate IF maternal consumption before conception on cognitive performance of adult rat offspring. Female Wistar rats were fed with standard chow plus 20% soybean and fish oil mix (control group) or plus 20% IF from weaning until adulthood (before mating), when the diets were replaced by standard chow only. Following the gestation and pups' development, locomotion and memory performance followed by neurotrophin immunocontent and fatty acids (FA) profile in the hippocampus of the adulthood male offspring were quantified. Maternal IF consumption before conception decreased hippocampal palmitoleic acid incorporation, proBDNF and BDNF levels, decreasing both exploratory activity and memory performance in adult offspring. Considering that, the adult male offspring did not consume IF directly, further studies are needed to understand the molecular mechanisms and if the IF maternal preconception consumption could induce the epigenetic changes observed here. Our outcomes reinforce an immediate necessity to monitor and / or question the replacement of trans fat by IF with further studies involving CNS functions.
Collapse
Affiliation(s)
- Lívia Ferraz D'avila
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Verônica Tironi Dias
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Fabíola Trevizol
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Karine Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Laura Milanesi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Luana Haselein Maurer
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Júlia Baranzelli
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Tatiana Emanuelli
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Marilise Escobar Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| |
Collapse
|
11
|
Bekal M, Sun L, Ueno S, Moritake T. Neurobehavioral effects of acute low-dose whole-body irradiation. JOURNAL OF RADIATION RESEARCH 2021; 62:804-811. [PMID: 33982114 PMCID: PMC8438260 DOI: 10.1093/jrr/rrab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Radiation exposure has multiple effects on the brain, behavior and cognitive functions. It has been reported that high-dose (>20 Gy) radiation-induced behavior and cognitive aberration partly associated with severe tissue destruction. Low-dose (<3 Gy) exposure can occur in radiological disasters and cerebral endovascular treatment. However, only a few reports analyzed behavior and cognitive functions after low-dose irradiation. This study was undertaken to assess the relationship between brain neurochemistry and behavioral disruption in irradiated mice. The irradiated mice (0.5 Gy, 1 Gy and 3 Gy) were tested for alteration in their normal behavior over 10 days. A serotonin (5-HT), Dopamine, gamma-Aminobutyric acid (GABA) and cortisol analysis was carried out in blood, hippocampus, amygdala and whole brain tissue. There was a significant decline in the exploratory activity of mice exposed to 3 Gy and 1 Gy radiation in an open field test. We observed a significant short-term memory loss in 3 Gy and 1 Gy irradiated mice in Y-Maze. Mice exposed to 1 Gy and 3 Gy radiation exhibited increased anxiety in an elevated plus maze (EPM). The increased anxiety and memory loss patterns were also seen in 0.5 Gy irradiated mice, but the results were not statistically significant. In this study we observed that neurotransmitters are significantly altered after irradiation, but the neuronal cells in the hippocampus were not significantly affected. This study suggests that the low-dose radiation-induced cognitive impairment may be associated with the neurochemical in low-dose irradiation and unlike the high-dose scenario might not be directly related to the morphological changes in the brain.
Collapse
Affiliation(s)
- Mahesh Bekal
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Susumu Ueno
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Takashi Moritake
- Corresponding author. Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan, E-mail:
| |
Collapse
|
12
|
Grieb ZA, Ford EG, Yagan M, Lau BYB, Manfredsson FP, Krishnan K, Lonstein JS. Oxytocin receptors in the midbrain dorsal raphe are essential for postpartum maternal social and affective behaviors. Psychoneuroendocrinology 2021; 131:105332. [PMID: 34182251 PMCID: PMC8405581 DOI: 10.1016/j.psyneuen.2021.105332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 01/23/2023]
Abstract
Oxytocin receptors (OTRs) in the midbrain dorsal raphe (DR; the source of most forebrain serotonin) have recently been identified as a potential pharmacological target for treating numerous psychiatric disorders. However, almost all research on this topic has been conducted on males and the role of DR OTRs in female social and affective behaviors is mostly unknown. This may be particularly relevant during early motherhood, which is a time of high endogenous oxytocin signaling, but also a time of elevated risk for psychiatric dysfunction. To investigate whether OTRs in the DR are necessary for postpartum female social and affective behaviors, we constructed and then injected into the DR an adeno-associated virus permanently expressing an shRNA targeting OTR mRNA. We then observed a suite of social and affective behaviors postpartum. OTR knockdown in the maternal DR led to pup loss after parturition, decreased nursing, increased aggression, and increased behavioral despair. These effects of OTR knockdown in the DR may be due to disrupted neuroplasticity in the primary somatosensory cortex (S1), which mediates maternal sensitivity to the tactile cues from young, as we found significantly more plasticity-restricting perineuronal nets (PNNs) in the S1 rostral barrel field and fewer PNNs in the caudal barrel field of OTR-knockdown mothers. These results demonstrate that OTRs in the midbrain DR are essential for postpartum maternal social and affective behaviors, are involved in postpartum cortical plasticity, and suggest that pharmacotherapies targeting OTRs in the DR could be effective treatments for some peripartum affective disorders.
Collapse
Affiliation(s)
- Zachary A Grieb
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - Emma G Ford
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| | - Mahircan Yagan
- Deparment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Billy Y B Lau
- Deparment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Fredric P Manfredsson
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Keerthi Krishnan
- Deparment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Joseph S Lonstein
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Abstract
OBJECTIVE Whereas numerous experimental and clinical studies suggest a complex involvement of serotonin in the regulation of anxiety, it remains to be clarified if the dominating impact of this transmitter is best described as anxiety-reducing or anxiety-promoting. The aim of this study was to assess the impact of serotonin depletion on acquisition, consolidation, and expression of conditioned fear. METHODS Male Sprague-Dawley rats were exposed to foot shocks as unconditioned stimulus and assessed with respect to freezing behaviour when re-subjected to context. Serotonin depletion was achieved by administration of a serotonin synthesis inhibitor, para-chlorophenylalanine (PCPA) (300 mg/kg daily × 3), (i) throughout the period from (and including) acquisition to (and including) expression, (ii) during acquisition but not expression, (iii) after acquisition only, and (iv) during expression only. RESULTS The time spent freezing was significantly reduced in animals that were serotonin-depleted during the entire period from (and including) acquisition to (and including) expression, as well as in those being serotonin-depleted during either acquisition only or expression only. In contrast, PCPA administrated immediately after acquisition, that is during memory consolidation, did not impact the expression of conditioned fear. CONCLUSION Intact serotonergic neurotransmission is important for both acquisition and expression of context-conditioned fear.
Collapse
|
14
|
Platelet MAO activity and COMT Val158Met genotype interaction predicts visual working memory updating efficiency. Behav Brain Res 2021; 407:113255. [PMID: 33745984 DOI: 10.1016/j.bbr.2021.113255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022]
Abstract
The exact mechanism how serotonergic and dopaminergic systems relate to one another in working memory (WM) updating is unknown. Platelet monoamine oxidase (MAO) has been used as a marker for central serotonergic capacity, and catechol-O-methyltransferase (COMT) as a marker for central dopaminergic capacity. This study aimed to describe the interaction of platelet MAO activity and COMT Val158Met genotype in visual working memory updating: the ability to replace old information with new within hundreds of milliseconds. Previous studies suggest that platelet MAO activity and COMT Val158Met genotype could have an interaction effect on working memory. However, there are no studies that have directly examined the interaction of these biomarkers in WM updating. We used a 2-back updating task with facial expressions and defined updating efficiency as response times for correct responses. 455 subjects from a population representative sample were included. Mixed models were used for data analysis with an aim to study the interaction of COMT Val158Met genotype (Val/Val, Val/Met and Met/Met) and the level of MAO activity (high vs low). Education, IQ, sex, simple reaction times, and overall updating accuracy were included as covariates. We found that the effect of COMT Val158Met on updating efficiency depends on the level of platelet MAO activity. Low MAO in contrast to high MAO was associated with an increase in updating efficiency in Val/Met but a decrease in Met/Met. The results are discussed in the context of serotonin and dopamine functions in brain regions related to WM. The findings support the view that serotonin modulates dopaminergic activation in updating and contribute to understanding the role of serotonin in PFC, top-down inhibitory signals, and its interactions with dopamine in WM processes.
Collapse
|
15
|
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol 2021; 42:1671-1692. [PMID: 33651238 DOI: 10.1007/s10571-021-01064-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
The serotonergic system extends throughout the central nervous system (CNS) and the gastrointestinal (GI) tract. In the CNS, serotonin (5-HT, 5-hydroxytryptamine) modulates a broad spectrum of functions, including mood, cognition, anxiety, learning, memory, reward processing, and sleep. These processes are mediated through 5-HT binding to 5-HT receptors (5-HTRs), are classified into seven distinct groups. Deficits in the serotonergic system can result in various pathological conditions, particularly depression, schizophrenia, mood disorders, and autism. In this review, we outlined the complexity of serotonergic modulation of physiologic and pathologic processes. Moreover, we provided experimental and clinical evidence of 5-HT's involvement in neuropsychiatric disorders and discussed the molecular mechanisms that underlie these illnesses and contribute to the new therapies.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Shahriari
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Richard Ward
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Saadati H, Sadegzadeh F, Sakhaie N, Panahpour H, Sagha M. Serotonin depletion during the postnatal developmental period causes behavioral and cognitive alterations and decreases BDNF level in the brain of rats. Int J Dev Neurosci 2021; 81:179-190. [PMID: 33404066 DOI: 10.1002/jdn.10087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 01/03/2021] [Indexed: 12/30/2022] Open
Abstract
A survey of the literature indicates that the developmental disruptions in serotonin (5-HT) levels can influence the brain development and the function. To the best of our knowledge, so far, there are a few studies about the effects of developmental period 5-HT depletion on cognition and behavior of adult male and female rats. Therefore, in the present study, we examined the effects of postnatal days (PND 10-20) administration of para-chlorophenylalanine (PCPA, 100 mg/kg, s.c) a 5-HT synthesis inhibitor, on anxiety-related behaviors, pain sensitivity, short-term recognition memory, and hippocampal and prefrontal cortex (PFC) brain-derived neurotrophic factor (BDNF) mRNA expression in adult male and female rats. Novel object recognition memory (NORM) and behavioral parameters (anxiety-like behaviors and pain sensitivity) were evaluated in early adulthood and after that, the hippocampi and PFC of the rat's brain were removed for the determination of BDNF mRNA expression. Our results indicated that the postnatal period administration of PCPA impaired short-term NORM. The postnatal developmental period treatment with PCPA also increased anxiety-like behaviors in the open field and elevated plus maze (EPM) tests. Postnatal PCPA treatment increased pain sensitivity in the hot plate test in both male and female rats, especially in female animals. In addition, postnatal days serotonin depletion decreased BDNF level in the hippocampus and PFC of both male and female rats. These findings demonstrate that serotonin plays the main role in neurodevelopment, cognitive functions, and behavior. Therefore, serotonergic system dysregulation during the developmental periods may have more adverse influences on the brain development of rats.
Collapse
Affiliation(s)
- Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamdollah Panahpour
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Sagha
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
17
|
Draoui A, El Hiba O, Aimrane A, El Khiat A, Gamrani H. Parkinson's disease: From bench to bedside. Rev Neurol (Paris) 2020; 176:543-559. [DOI: 10.1016/j.neurol.2019.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/12/2023]
|
18
|
Abstract
The brain serotonin systems participate in numerous aspects of reward processing, although it remains elusive how exactly serotonin signals regulate neural computation and reward-related behavior. The application of optogenetics and imaging techniques during the last decade has provided many insights. Here, we review recent progress on the organization and physiology of the dorsal raphe serotonin neurons and the relationships between their activity and behavioral functions in the context of reward processing. We also discuss several interesting theories on serotonin's function and how these theories may be reconciled by the possibility that serotonin, acting in synergy with coreleased glutamate, tracks and calculates the so-called beneficialness of the current state to guide an animal's behavior in dynamic environments.
Collapse
Affiliation(s)
- Zhixiang Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Tsinghua University, Beijing 100081, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
19
|
Wang M, Gui X, Wu L, Tian S, Wang H, Xie L, Wu W. Amino acid metabolism, lipid metabolism, and oxidative stress are associated with post-stroke depression: a metabonomics study. BMC Neurol 2020; 20:250. [PMID: 32563250 PMCID: PMC7305607 DOI: 10.1186/s12883-020-01780-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/12/2020] [Indexed: 01/23/2023] Open
Abstract
Background Post-stroke depression (PSD) is a mood disorder characterized by depression and anhedonia caused by stroke. Metabolomics identified metabolites associated with PSD, but previous studies are based on gas chromatography (GC)/mass spectrometry (MS). This study aimed to perform a liquid chromatography (LC)-MS-based metabolomics study of the plasma metabolite profiles between patients with PSD and controls. Methods This was a prospective study of patients with stroke enrolled between July and December 2017 at the Second Affiliated Hospital of Nanchang University. Patients were grouped as Hamilton Depression Rating Scale > 7 (PSD) or < 7 (controls). Metabonomics profiling of plasma sampled was conducted by LC-MS. By combining multivariable and univariable statistical analyses, significant differential metabolites between the two groups were screened. The threshold for significant differences was VIP ≥1 and P < 0.05. Log2FC is the logarithm of the mean ratio between the two groups. Results There were no significant difference with respect to age, NIHSS score, and MMSE between the two groups (all P > 0.05). There were six differential metabolites between the PSD and stroke groups, of which three metabolites were increased and three were decreased. Compared with the control group, p-chlorophenylalanine (Log2FC = 1.37, P = 0.03), phenylacetyl glutamine (Log2FC = 0.21, P = 0.048), and DHA (Log2FC = 0.77, P = 0.01) levels were higher in the PSD group, while betaine (trimethylglycine) (Log2FC = − 0.79, P = 0.04), palmitic acid (Log2FC = − 0.51, P = 0.001), and MHPG-SO4 (Log2FC = − 2.37, P = 0.045) were decreased. Conclusion Plasma metabolomics showed that amino acid metabolism (phenylacetyl glutamine, p-chlorophenylalanine, trimethylglycine), lipid metabolism (DHA, palmitic acid, trimethylglycine), and oxidative stress (DHA, palmitic acid, trimethylglycine) were associated with PSD. These results could help to reveal the pathophysiological mechanism of PSD and eventually identify treatment targets.
Collapse
Affiliation(s)
- Man Wang
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianwei Gui
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lanxiang Wu
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sheng Tian
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hansen Wang
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Xie
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Wei Wu
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
20
|
Peyton L, Oliveros A, Tufvesson-Alm M, Schwieler L, Starski P, Engberg G, Erhardt S, Choi DS. Lipopolysaccharide Increases Cortical Kynurenic Acid and Deficits in Reference Memory in Mice. Int J Tryptophan Res 2019; 12:1178646919891169. [PMID: 31896932 PMCID: PMC6920585 DOI: 10.1177/1178646919891169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Kynurenic acid (KYNA), a glial-derived metabolite of tryptophan metabolism, is an
antagonist of the alpha 7 nicotinic acetylcholine receptor and the
glycine-binding site of N-methyl-d-aspartate (NMDA)
receptors. Kynurenic acid levels are increased in both the brain and
cerebrospinal fluid of several psychiatric disorders including bipolar disorder,
schizophrenia, and Alzheimer disease. In addition, pro-inflammatory cytokines
have been found to be elevated in the blood of schizophrenic patients suggesting
inflammation may play a role in psychiatric illness. As both pro-inflammatory
cytokines and KYNA can be elevated in the brain by peripheral lipopolysaccharide
(LPS) injection, we therefore sought to characterize the role of
neuroinflammation on learning and memory using a well-described dual-LPS
injection model. Mice were injected with an initial injection (0.25 mg/kg LPS,
0.50 mg/kg, or saline) of LPS and then administrated a second injection 16 hours
later. Our results indicate both 0.25 and 0.50 mg/kg dual-LPS treatment
increased l-kynurenine and KYNA levels in the medial pre-frontal cortex
(mPFC). Mice exhibited impaired acquisition of CS+ (conditioned stimulus)
Pavlovian conditioning. Notably, mice showed impairment in reference memory
while working memory was normal in an 8-arm maze. Taken together, our findings
suggest that neuroinflammation induced by peripheral LPS administration
contributes to cognitive dysfunction.
Collapse
Affiliation(s)
- Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Phillip Starski
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Sopie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
21
|
Attia H, Fadda L, Al-Rasheed N, Al-Rasheed N, Maysarah N. Carnosine and L-arginine attenuate the downregulation of brain monoamines and gamma aminobutyric acid; reverse apoptosis and upregulate the expression of angiogenic factors in a model of hemic hypoxia in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:381-394. [PMID: 31641819 DOI: 10.1007/s00210-019-01738-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of the present study was to investigate the preventive effect of L-arginine (ARG) and carnosine (CAR) on hypoxia-induced neurotoxicity in rats. The impact on neuro-inflammation, apoptosis, angiogenesis, and the brain levels of monoamines and GABA were investigated. METHODS Rats were divided into the following: normal control, hypoxia model induced by sodium nitrite (75 mg/kg s.c), and hypoxic rats pre-treated with CAR (250 mg/kg), ARG (200 mg/kg), and their combination. RESULTS Data revealed that hypoxia induced significant elevation of hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and its receptor reflecting the stimulation of angiogenesis. Hypoxia also resulted in increased inflammatory mediators-including nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). In addition, hypoxia initiates cerebral apoptosis as revealed by increased caspase-3 and BAX with reduced Bcl-2. These changes were associated with reduced brain levels of GABA and monoamines including noradrenaline (NADR), dopamine (DOP), and serotonin (SER). Pre-treatment with ARG and/or CAR significantly mitigated the neural changes induced by hypoxia and attenuated the elevated levels of NF-κB, TNF-α, IL-6, caspase-3, and BAX, while ameliorated the reduced levels of Bcl-2, NADR, DOP, SER, and GABA, with the best improvement observed with the combination. Further elevation of the angiogenic markers was observed indicating their role in boosting oxygen delivery to brain. CONCLUSION CAR, ARG, and, importantly, their combination could effectively protect against hypoxia-induced neurotoxicity, via their angiogenic, anti-inflammatory, and anti-apoptotic properties in addition to reversing the effect on GABA and monoamines.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia. .,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nouf Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nawal Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nadia Maysarah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
22
|
Differential impairment of short working and spatial memories in a rat model of progressive Parkinson’s disease onset: A focus on the prodromal stage. Brain Res Bull 2019; 150:307-316. [DOI: 10.1016/j.brainresbull.2019.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/22/2022]
|
23
|
Dokovna LB, Li G, Wood RI. Anabolic-androgenic steroids and cognitive effort discounting in male rats. Horm Behav 2019; 113:13-20. [PMID: 31054274 PMCID: PMC6589107 DOI: 10.1016/j.yhbeh.2019.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/10/2019] [Accepted: 04/27/2019] [Indexed: 01/19/2023]
Abstract
Anabolic-androgenic steroids (AAS) are drugs of abuse that impair behavior and cognition. In a rodent model of AAS abuse, testosterone-treated male rats expend more physical effort, by repeatedly pressing a lever for a large reward in an operant discounting task. However, since modern society prioritizes cognitive over physical effort, it is important to determine if AAS limit cognitive effort. Here we tested the effects of AAS on a novel cognitive-effort discounting task. Each operant chamber had 3 nose-pokes, opposite 2 levers and a pellet dispenser. Rats pressed a lever to illuminate 1 nose-poke; they responded in the illuminated nose-poke to receive sugar pellets. For the 'easy' lever, the light remained on for 1 s, and a correct response earned 1 pellet. For the 'hard' lever, the light duration decreased from 1 s to 0.1 s across 5 blocks of trials, and a correct response earned 4 pellets. As the duration of the nose-poke light decreased, all rats decreased their choice of the hard lever in a modest discounting curve. Task accuracy also decreased significantly across the 5 blocks of trials. However, there was no effect of testosterone on choice of the hard lever or task accuracy. Antagonism of dopamine D1 or D2 receptors had no effect on lever choice or task accuracy. However, serotonin depletion significantly decreased preference for the hard lever, and impaired task accuracy. Thus, physical effort discounting depends on dopamine activity, while cognitive effort discounting task is sensitive to serotonin. AAS impair physical effort discounting, but not cognitive effort discounting.
Collapse
Affiliation(s)
- Lisa B Dokovna
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Grace Li
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, United States of America
| | - Ruth I Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
24
|
Polli FDS, Gomes JN, Ferreira HS, Santana RC, Fregoneze JB. Inhibition of salt appetite in sodium-depleted rats by carvacrol: Involvement of noradrenergic and serotonergic pathways. Eur J Pharmacol 2019; 854:119-127. [PMID: 30986399 DOI: 10.1016/j.ejphar.2019.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Carvacrol, a monoterpene phenol present in the essential oil of oregano, possesses several biological properties, such as antioxidant, anti-inflammatory, anxiolytic, anticonvulsive and antinociceptive. In vitro studies have shown that carvacrol inhibits serotonin, noradrenaline and dopamine transporters and the enzymes monoamine oxidase-A and B. Different brain functions are controlled by monoamines, including cardiovascular control, thirst and sodium appetite. In the present study we investigated the effects of intracerebroventricular (i.c.v.) injection of carvacrol on sodium appetite, and the participation of brain serotonergic and noradrenergic pathways on carvacrol effects. Neuronal activation in homeostasis-related brain areas induced by i.c.v. injection of carvacrol was also evaluated. Carvacrol dose-dependently inhibited hypertonic saline intake (1.5%) in sodium-depleted rats, and this antinatriorexigenic effect was reduced by brain serotonergic depletion and by alpha-adrenergic blockade. Furthermore, i.c.v. injections of carvacrol significantly increased the neuronal activation in brain areas involved in the control of salt appetite, such as MnPO, OVLT, PVN, SON, CeA and MeA. Taken together, our data show that carvacrol presents antinatriorexigenic activity through serotonin and noradrenaline pathways within brain circuits involved in the modulation of the body fluid homeostasis.
Collapse
Affiliation(s)
- Filip de Souza Polli
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100, Salvador, Bahia, Brazil.
| | - Jefferson Novaes Gomes
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100, Salvador, Bahia, Brazil
| | - Hilda Silva Ferreira
- Life Sciences Department, Bahia State University, 41195-001, Salvador, Bahia, Brazil
| | - Rejane Conceição Santana
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100, Salvador, Bahia, Brazil
| | - Josmara Bartolomei Fregoneze
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100, Salvador, Bahia, Brazil
| |
Collapse
|
25
|
Cognitive and anxiety-like impairments accompanied by serotonergic ultrastructural and immunohistochemical alterations in early stages of parkinsonism. Brain Res Bull 2019; 146:213-223. [DOI: 10.1016/j.brainresbull.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
|
26
|
Lakkab I, El Hajaji H, Lachkar N, Lefter R, Ciobica A, El Bali B, Lachkar M. Ceratonia siliqua L. seed peels: Phytochemical profile, antioxidant activity, and effect on mood disorders. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
27
|
Serotonergic dysfunction in a model of parkinsonism induced by reserpine. J Chem Neuroanat 2019; 96:73-78. [DOI: 10.1016/j.jchemneu.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
|
28
|
|
29
|
Haygert P, Roversi K, Milanesi LH, Maurer LH, Camponogara C, Duarte T, Barcelos RCS, Emanuelli T, Oliveira SM, Duarte MMMF, Trevizol F, Burger ME. Can the dietary fat type facilitate memory impairments in adulthood? A comparative study between Mediterranean and Western-based diet in rats. J Nutr Biochem 2018; 59:104-113. [DOI: 10.1016/j.jnutbio.2018.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
|
30
|
Teixeira CM, Rosen ZB, Suri D, Sun Q, Hersh M, Sargin D, Dincheva I, Morgan AA, Spivack S, Krok AC, Hirschfeld-Stoler T, Lambe EK, Siegelbaum SA, Ansorge MS. Hippocampal 5-HT Input Regulates Memory Formation and Schaffer Collateral Excitation. Neuron 2018; 98:992-1004.e4. [PMID: 29754752 DOI: 10.1016/j.neuron.2018.04.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 03/23/2018] [Accepted: 04/20/2018] [Indexed: 01/22/2023]
Abstract
The efficacy and duration of memory storage is regulated by neuromodulatory transmitter actions. While the modulatory transmitter serotonin (5-HT) plays an important role in implicit forms of memory in the invertebrate Aplysia, its function in explicit memory mediated by the mammalian hippocampus is less clear. Specifically, the consequences elicited by the spatio-temporal gradient of endogenous 5-HT release are not known. Here we applied optogenetic techniques in mice to gain insight into this fundamental biological process. We find that activation of serotonergic terminals in the hippocampal CA1 region both potentiates excitatory transmission at CA3-to-CA1 synapses and enhances spatial memory. Conversely, optogenetic silencing of CA1 5-HT terminals inhibits spatial memory. We furthermore find that synaptic potentiation is mediated by 5-HT4 receptors and that systemic modulation of 5-HT4 receptor function can bidirectionally impact memory formation. Collectively, these data reveal powerful modulatory influence of serotonergic synaptic input on hippocampal function and memory formation.
Collapse
Affiliation(s)
- Catia M Teixeira
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Zev B Rosen
- Department of Neuroscience, Kavli Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| | - Deepika Suri
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Qian Sun
- Department of Neuroscience, Kavli Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| | - Marc Hersh
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Derya Sargin
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Iva Dincheva
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Ashlea A Morgan
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Stephen Spivack
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Anne C Krok
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | | | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Steven A Siegelbaum
- Department of Neuroscience, Kavli Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA; Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mark S Ansorge
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
31
|
Cao Y, Hölscher C, Hu MM, Wang T, Zhao F, Bai Y, Zhang J, Wu MN, Qi JS. DA5-CH, a novel GLP-1/GIP dual agonist, effectively ameliorates the cognitive impairments and pathology in the APP/PS1 mouse model of Alzheimer's disease. Eur J Pharmacol 2018; 827:215-226. [DOI: 10.1016/j.ejphar.2018.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 01/23/2023]
|
32
|
Stracke J, Otten W, Tuchscherer A, Puppe B, Düpjan S. Serotonin depletion induces pessimistic-like behavior in a cognitive bias paradigm in pigs. Physiol Behav 2017; 174:18-26. [DOI: 10.1016/j.physbeh.2017.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/26/2017] [Accepted: 02/26/2017] [Indexed: 11/16/2022]
|
33
|
Ishola IO, Adamson FM, Adeyemi OO. Ameliorative effect of kolaviron, a biflavonoid complex from Garcinia kola seeds against scopolamine-induced memory impairment in rats: role of antioxidant defense system. Metab Brain Dis 2017; 32:235-245. [PMID: 27631100 DOI: 10.1007/s11011-016-9902-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023]
Abstract
In Alzheimer's disease (AD) basal forebrain cholinergic neurons appear to be targeted primarily in early stages of the disease. Scopolamine (muscarinic receptor antagonist) has been used for decades to induce working and reference memory impairment in rodents. In this study, we evaluated the protective effect of kolaviron, a biflavonoid complex isolated from Garcinia kola seeds extract against scopolamine-induced memory impairment/oxidative stress. Rats were pretreated with kolaviron (25, 50 or 100 mg/kg p.o.) for 3 consecutive days, scopolamine (3 mg/kg, i.p.) was administered 1 h post-treatment on day 3. Five minutes post-scopolamine injection, memory function was assessed using the Y-maze or Morris water maze tests (MWM) in rats. The rats were sacrificed and brains isolated on the 8th day after the MWM test for estimation of acetylcholinesterase activity and nitrosative/oxidative stress status. Scopolamine injection induced deficit (P < 0.05) in percentage alternation behaviour in the Y-maze test indicating memory impairment which was ameliorated by kolaviron in a dose-dependent manner. Also, pre-training treatment with kolaviron significantly improved spatial learning evidenced in the session-dependent and more efficient localization of the hidden platform in the MWM test. Moreover, scopolamine injection induced significant increase in lipid peroxidation (prefrontal cortex), nitrite generation (striatum and hippocampus) and a decrease in glutathione (prefrontal cortex, striatum and hippocampus) and superoxide dismutase (striatum and hippocampus) level which was attenuated by kolaviron pre-treatment. These findings showed that kolaviron possesses cognition enhancing effect through enhancement of antioxidant defense and cholinergic systems.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Idi-araba, Lagos, Nigeria.
| | - Folasade M Adamson
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Idi-araba, Lagos, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Idi-araba, Lagos, Nigeria
| |
Collapse
|
34
|
Riva G. Neurobiology of Anorexia Nervosa: Serotonin Dysfunctions Link Self-Starvation with Body Image Disturbances through an Impaired Body Memory. Front Hum Neurosci 2016; 10:600. [PMID: 27932968 PMCID: PMC5121233 DOI: 10.3389/fnhum.2016.00600] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022] Open
Abstract
The etiology of anorexia nervosa (AN) is still unclear, despite that it is a critical and potentially mortal illness. A recent neurobiological model considers AN as the outcome of dysfunctions in the neuronal processes related to appetite and emotionality (Kaye et al., 2009, 2013). However, this model still is not able to answer a critical question: What is behind body image disturbances (BIDs) in AN? The article starts its analysis from reviewing some of the studies exploring the effects of the serotonin systems in memory (episodic, working, and spatial) and its dysfunctions. The review suggests that serotonin disturbances may: (a) facilitate the encoding of third person (allocentric) episodic memories; (b) facilitate the consolidation of emotional episodic memories (e.g., teasing), if preceded by repeated stress; (c) reduce voluntary inhibition of mnestic contents; (d) impair allocentric spatial memory. If we discuss these results within the interpretative frame suggested by the “Allocentric Lock Hypothesis” (Riva, 2012, 2014), we can hypothesize that altered serotoninergic activity in AN patients: (i) improves their ability to store and consolidate negative autobiographical memories, including those of their body, in allocentric perspective; (ii) impairs their ability to trigger voluntary inhibition of the previously stored negative memory of the body; (iii) impairs their capacity to retrieve/update allocentric information. Taken together, these points suggest a possible link between serotonin dysfunctions, memory impairments and BIDs: the impossibility of updating a disturbed body memory using real time experiential data—I'm locked to a wrong body stored in long term memory—pushes AN patients to control body weight and shape even when underweight.
Collapse
Affiliation(s)
- Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico ItalianoMilan, Italy; Centro Studi e Ricerche di Psicologia della Comunicazione, Università Cattolica del Sacro CuoreMilano, Italy
| |
Collapse
|
35
|
Behavioral and molecular effects of prenatal continuous light exposure in the adult rat. Brain Res 2016; 1650:51-59. [PMID: 27566064 DOI: 10.1016/j.brainres.2016.08.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
Abstract
Disruption of the maternal environment during pregnancy leads to behavioral changes and diseases in the adult offspring. To explore the influence of prenatal continuous light exposure (PCLE) on the adult offspring, we exposed pregnant Wistar rats to constant light during late gestation. Adult PCLE offspring showed an anxiety-like behavior and impairment of short-term memory in different tests. Measurements in the whole brain homogenates from newborn and adult offspring indicated decreased melatonin and serotonin levels and increased reactive oxygen species level in PCLE offspring. Further, we determined melatonin-, serotonin-, oxidative stress-, apoptosis-, and circadian system-related genes expression in different brain areas of adult offspring. The serotonin reuptaker Slc6a4 displayed a decreased expression in the prefrontal cortex of PCLE group. The circadian rhythm-related gene Rora was upregulated in the amygdala of PCLE offspring. Our results point to adverse behavioral effects of PCLE on adult offspring, involving serotonin and melatonin signaling dysregulation, increased chronic oxidative stress, and altered gene expression.
Collapse
|
36
|
Thomas SA. Neuromodulatory signaling in hippocampus-dependent memory retrieval. Hippocampus 2015; 25:415-31. [PMID: 25475876 DOI: 10.1002/hipo.22394] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Considerable advances have been made toward understanding the molecular signaling events that underlie memory acquisition and consolidation. In contrast, less is known about memory retrieval, despite its necessity for utilizing learned information. This review focuses on neuromodulatory and intracellular signaling events that underlie memory retrieval mediated by the hippocampus, for which the most information is currently available. Among neuromodulators, adrenergic signaling is required for the retrieval of various types of hippocampus-dependent memory. Although they contribute to acquisition and/or consolidation, cholinergic and dopaminergic signaling are generally not required for retrieval. Interestingly, while not required for retrieval, serotonergic and opioid signaling may actually constrain memory retrieval. Roles for histamine and non-opioid neuropeptides are currently unclear but possible. A critical effector of adrenergic signaling in retrieval is reduction of the slow afterhyperpolarization mediated by β1 receptors, cyclic AMP, protein kinase A, Epac, and possibly ERK. In contrast, stress and glucocorticoids impair retrieval by decreasing cyclic AMP, mediated in part by the activation of β2 -adrenergic receptors. Clinically, alterations in neuromodulatory signaling and in memory retrieval occur in Alzheimer's disease, Down syndrome, depression, and post-traumatic stress disorder, and recent evidence has begun to link changes in neuromodulatory signaling with effects on memory retrieval.
Collapse
Affiliation(s)
- Steven A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Pickering C, Alsiö J, Morud J, Ericson M, Robbins TW, Söderpalm B. Ethanol impairment of spontaneous alternation behaviour and associated changes in medial prefrontal glutamatergic gene expression precede putative markers of dependence. Pharmacol Biochem Behav 2015; 132:63-70. [DOI: 10.1016/j.pbb.2015.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 12/21/2022]
|
38
|
Mendy A, Vieira ER, Albatineh AN, Gasana J. Immediate rather than delayed memory impairment in older adults with latent toxoplasmosis. Brain Behav Immun 2015; 45:36-40. [PMID: 25499468 DOI: 10.1016/j.bbi.2014.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/25/2014] [Accepted: 12/04/2014] [Indexed: 12/01/2022] Open
Abstract
The neurotropic parasite Toxoplasma gondii infects one third of the world population, but its effect on memory remains ambiguous. To examine a potential relationship of the infection with immediate and delayed memory, a population-based study was conducted in 4485 participants of the Third National Health and Nutrition Examination Survey aged 60years and older. Serum anti-Toxoplasma IgG antibodies were measured by enzyme immune assay and verbal memory was assessed using the Mini-Mental State Examination and the East Boston Memory Test. The prevalence of latent toxoplasmosis was 41%; in one way analysis of variance, anti-Toxoplasma IgG antibody levels significantly differed across tertiles for immediate (P=0.006) but not delayed memory scores (P=0.22). In multinomial logistic regression adjusting for covariates, Toxoplasma seropositivity was associated with lower immediate memory performance (OR: 0.65, 95% CI: 0.44, 0.97 for medium tertile and OR: 0.61, 95% CI: 0.37, 0.98 for highest tertile in reference to the lowest tertile), especially in non-Hispanic Whites (OR: 0.56, 95% CI: 0.36, 0.88 for medium tertile and OR: 0.51, 95% CI: 0.30, 0.87 for highest tertile in reference to the lowest tertile). However, no relationship with delayed memory was observed. In conclusion, latent toxoplasmosis is widespread in older adults and may primarily affect immediate rather than delayed memory, particularly in White Americans.
Collapse
Affiliation(s)
- Angelico Mendy
- Department of Epidemiology, College of Public Health, University of Iowa, S161 CPHB 105 River Street, Iowa City, IA 52242, USA.
| | - Edgar R Vieira
- Department of Physical Therapy, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Ahmed N Albatineh
- Department of Biostatistics, Robert Stempel School of Public Health and Social Work, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Janvier Gasana
- Department of Occupational and Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| |
Collapse
|
39
|
Dual role of serotonin in the acquisition and extinction of reward-driven learning: Involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors. Behav Brain Res 2015; 277:193-203. [DOI: 10.1016/j.bbr.2014.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/27/2022]
|
40
|
Lin TW, Shih YH, Chen SJ, Lien CH, Chang CY, Huang TY, Chen SH, Jen CJ, Kuo YM. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice. Neurobiol Learn Mem 2014; 118:189-97. [PMID: 25543023 DOI: 10.1016/j.nlm.2014.12.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease. Post-mortem examination and brain imaging studies indicate that neurodegeneration is evident in the hippocampus and amygdala of very early stage AD patients. Exercise training is known to enhance hippocampus- and amygdala-associated neuronal function. Here, we investigated the effects of exercise (running) on the neuronal structure and function of the hippocampus and amygdala in APP/PS1 transgenic (Tg) mice. At 4-months-old, an age before amyloid deposition, the amygdala-associated, but not the hippocampus-associated, long-term memory was impaired in the Tg mice. The dendritic complexities of the amygdalar basolateral neurons, but not those in the hippocampal CA1 and CA3 neurons, were reduced. Furthermore, the levels of BDNF/TrkB signaling molecules (i.e. p-TrkB, p-Akt and p-PKC) were reduced in the amygdala, but not in the hippocampus of the 4-month-old Tg mice. The concentrations of Aβ40 and Aβ42 in the amygdala were higher than those in the hippocampus. Ten weeks of treadmill training (from 1.5- to 4-month-old) increased the hippocampus-associated memory and dendritic arbor of the CA1 and CA3 neurons, and also restored the amygdala-associated memory and the dendritic arbor of amygdalar basolateral neurons in the Tg mice. Similarly, exercise training also increased the levels of p-TrkB, p-AKT and p-PKC in the hippocampus and amygdala. Furthermore, exercise training reduced the levels of soluble Aβ in the amygdala and hippocampus. Exercise training did not change the levels of APP or RAGE, but significantly increased the levels of LRP-1 in both brain regions of the Tg mice. In conclusion, our results suggest that tests of amygdala function should be incorporated into subject selection for early prevention trials. Long-term exercise protects neurons in the amygdala and hippocampus against AD-related degeneration, probably via enhancements of BDNF signaling pathways and Aβ clearance. Physical exercise may serve as a means to delay the onset of AD.
Collapse
Affiliation(s)
- Tzu-Wei Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Hsiang Shih
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shean-Jen Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan; Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan; Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Hsiang Lien
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yuan Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Tung-Yi Huang
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Hua Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Chauying J Jen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
41
|
Talpate KA, Bhosale UA, Zambare MR, Somani RS. Neuroprotective and nootropic activity of Clitorea ternatea Linn.(Fabaceae) leaves on diabetes induced cognitive decline in experimental animals. J Pharm Bioallied Sci 2014; 6:48-55. [PMID: 24459404 PMCID: PMC3895294 DOI: 10.4103/0975-7406.124317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/13/2012] [Accepted: 08/30/2013] [Indexed: 12/05/2022] Open
Abstract
Purpose: Ethanol extract of Clitorea ternatea (EECT) was evaluated in diabetes-induced cognitive decline rat model for its nootropic and neuroprotective activity. Materials and Methods: Effect on spatial working memory, spatial reference memory and spatial working-reference memory was evaluated by Y maze, Morris water maze and Radial arm maze respectively. Neuroprotective effects of EECT was studied by assaying acetylcholinesterase, lipid peroxide, superoxide dismutase (SOD), total nitric oxide (NO), catalase (CAT) and glutathione (GSH) levels in the brain of diabetic rats. Results: The EECT (200 and 400 mg/kg) was found to cause significant increase in spatial working memory (P < 0.05), spatial reference memory (P < 0.001) and spatial working-reference (P < 0.001) in retention trials on Y maze, Morris water maze and Radial arm maze respectively. Whereas significant decrease in acetylcholinesterase activity (P < 0.05), lipid peroxide (P < 0.001), total NO (P < 0.001) and significant increase in SOD, CAT and GSH levels was observed in animals treated with EECT (200 and 400 mg/kg) compared to diabetic control group. Conclusions: The present data indicates that Clitorea ternatea tenders protection against diabetes induced cognitive decline and merits the need for further studies to elucidate its mode of action.
Collapse
Affiliation(s)
- Karuna A Talpate
- Department of Pharmacology, Sinhgad College of Pharmacy, Vadgaon, Pune, Maharashtra, India
| | - Uma A Bhosale
- Department of Pharmacology, Smt. Kashibai Navale Medical College and General Hospital, Narhe, Pune, Maharashtra, India
| | - Mandar R Zambare
- Department of Pharmacology, Sinhgad College of Pharmacy, Vadgaon, Pune, Maharashtra, India
| | - Rahul S Somani
- Department of Pharmacology, Sinhgad College of Pharmacy, Vadgaon, Pune, Maharashtra, India
| |
Collapse
|
42
|
Ernst LH, Lutz E, Ehlis AC, Fallgatter AJ, Reif A, Plichta MM. Genetic variation in MAOA modulates prefrontal cortical regulation of approach-avoidance reactions. Neuropsychobiology 2014; 67:168-80. [PMID: 23548774 DOI: 10.1159/000346582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 12/14/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Regulation of automatic approach and avoidance behavior requires affective and cognitive control, which are both influenced by a genetic variation in the gene encoding Monoamine Oxidase A (termed MAOA-uVNTR). METHODS The current study investigated MAOA genotype as a moderator of prefrontal cortical activation measured with functional near-infrared spectroscopy (fNIRS) in 37 healthy young adults during performance of the approach-avoidance task with positive and negative pictures. RESULTS Carriers of the low- compared to the high-expressing genetic variant (MAOA-L vs. MAOA-H) showed increasing regulatory activity in the right dorsolateral prefrontal cortex (DLPFC) during incompatible conditions (approach negative, avoid positive). This might have been a compensatory mechanism for stronger emotional reactions as shown in previous studies and might have prevented any influence of incompatibility on behavior. In contrast, fewer errors but also lower activity in the right DLPFC during processing of negative compared to positive stimuli indicated MAOA-H carriers to have used other regulatory areas. This resulted in slower reaction times in incompatible conditions, but--in line with the known better cognitive regulation efficiency--allowed them to perform incompatible reactions without activating the DLPFC as the highest control instance. Carriers of one low- and one high-expressing allele lay as an intermediate group between the reactions of the low- and high-expressing groups. CONCLUSIONS The relatively small sample size and restriction to fNIRS for assessment of cortical activity limit our findings. Nevertheless, these first results suggest monoam-inergic mechanisms to contribute to interindividual differences in the two basic behavioral principles of approach and avoidance and their neuronal correlates.
Collapse
Affiliation(s)
- Lena H Ernst
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Jensen JB, du Jardin KG, Song D, Budac D, Smagin G, Sanchez C, Pehrson AL. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation. Eur Neuropsychopharmacol 2014; 24:148-59. [PMID: 24284262 DOI: 10.1016/j.euroneuro.2013.10.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/18/2013] [Accepted: 10/25/2013] [Indexed: 12/28/2022]
Abstract
Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore investigated these effects in 5-HT depleted rats. Four injections of the irreversible tryptophan hydroxylase inhibitor 4-chloro-dl-phenylalanine methyl ester hydrochloride (PCPA, 86mg/kg, s.c.) induced 5-HT depletion, as measured in hippocampal homogenate and microdialysate. The effects of acute challenge with vortioxetine or the 5-HT releaser fenfluramine on extracellular 5-HT were measured in PCPA-treated and control rats. PCPA's effects on NOR and spontaneous alternation (SA) performance were assessed along with the effects of acute treatment with 5-hydroxy-l-tryptophan (5-HTP), vortioxetine, the selective 5-HT reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT depletion impaired memory performance in rats through one or more of its receptor activities.
Collapse
Affiliation(s)
- Jesper Bornø Jensen
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | | | - Dekun Song
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - David Budac
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - Gennady Smagin
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - Connie Sanchez
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - Alan Lars Pehrson
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States.
| |
Collapse
|
44
|
du Jardin KG, Jensen JB, Sanchez C, Pehrson AL. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism. Eur Neuropsychopharmacol 2014; 24:160-71. [PMID: 23916504 DOI: 10.1016/j.euroneuro.2013.07.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 11/27/2022]
Abstract
We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism.
Collapse
Affiliation(s)
| | - Jesper Bornø Jensen
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - Connie Sanchez
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - Alan L Pehrson
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| |
Collapse
|
45
|
Bakre AG, Aderibigbe AO, Ademowo OG. Studies on neuropharmacological profile of ethanol extract of Moringa oleifera leaves in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:783-789. [PMID: 23933316 DOI: 10.1016/j.jep.2013.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 07/16/2013] [Accepted: 08/03/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera (family Moringaceae), commonly called Horseradish or tree of life, is traditionally used for the treatment of epilepsy and neurologic conditions. AIM OF THE STUDY The objective of this study is to investigate the neurobehavioural and anticonvulsant properties of the ethanol extract from the leaves of Moringa oleifera. MATERIALS AND METHODS Neurobehavioural properties were evaluated using the open field, hole board, Y-maze, elevated plus maze (EPM) and pentobarbitone-induced hypnosis. Pentylenetetrazole (leptazol), picrotoxin and strychnine induced convulsion tests were used to investigate the anti-convulsive actions of Moringa oleifera. RESULTS The result showed that the extract (250-2000mg/kg) caused a significant dose-dependent decrease in rearing, grooming, head dips and locomotion (P<0.001). It also enhanced learning and memory and increased anxiogenic effect. In addition, the extract (2000mg/kg) protected mice against pentylenetetrazol induced convulsion, but has no effect on picrotoxin and strychnine induced convulsion. The effects of the extract in the various models were comparable to those of the standard drugs used except in Y-maze, EPM and picrotoxin and strychnine induced convulsion. The LD50 obtained for the acute toxicity studied using oral route of administration was >6.4g/kg. CONCLUSION The findings from this study suggest that the ethanol extract of Moringa oleifera leaves possesses CNS depressant and anticonvulsant activities possibly mediated through the enhancement of central inhibitory mechanism involving release γ-amino butyric acid (GABA). The results partially justified the traditional use of the extract for the treatment of epilepsy.
Collapse
Affiliation(s)
- Adewale G Bakre
- Department of Pharmacology & Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | | |
Collapse
|
46
|
Bild W, Hritcu L, Stefanescu C, Ciobica A. Inhibition of central angiotensin II enhances memory function and reduces oxidative stress status in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:79-88. [PMID: 23266710 DOI: 10.1016/j.pnpbp.2012.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023]
Abstract
While it is now well established that the independent brain renin-angiotensin system (RAS) has some important central functions besides the vascular ones, the relevance of its main bioactive peptide angiotensin II (Ang II) on the memory processes, as well as on oxidative stress status is not completely understood. The purpose of the present work was to evaluate the effects of central Ang II administration, as well as the effects of Ang II inhibition with either AT1 and AT 2 receptor specific blockers (losartan and PD-123177, respectively) or an angiotensin-converting enzyme (ACE) inhibitor (captopril). These effects were studied on the short-term memory (assessed through Y-maze) or long-term memory (as determined in passive avoidance) and on the oxidative stress status of the hippocampus. Our results demonstrate memory deficits induced by the administration of Ang II, as showed by the significant decrease of the spontaneous alternation in Y-maze (p=0.015) and latency-time in passive avoidance task (p=0.001) when compared to saline. On the other side, the administration of all the aforementioned Ang II blockers significantly improved the spontaneous alternation in Y-maze task, while losartan also increased the latency time as compared to saline in step-through passive avoidance (p=0.042). Also, increased oxidative stress status was induced in the hippocampus by the administration of Ang II, as demonstrated by increased levels of lipid peroxidation markers (malondialdehyde-MDA concentration) (p<0.0001) and a decrease in both antioxidant enzymes determined: superoxide dismutase-SOD (p<0.0001) and glutathione peroxidase-GPX (p=0.01), as compared to saline. Additionally, the administration of captopril resulted in an increase of both antioxidant enzymes and decreased levels of lipid peroxidation (p=0.001), while PD-123177 significantly decreased MDA concentration (p>0.0001) vs. saline. Moreover, significant correlations were found between all of the memory related behavioral parameters and the main oxidative stress markers from the hippocampus, which is known for its implication in the processes of memory and also where RAS components are well expressed. This could be relevant for the complex interactions between Ang II, behavioral processes and neuronal oxidative stress, and could generate important therapeutic approaches.
Collapse
Affiliation(s)
- Walther Bild
- Gr. T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania
| | | | | | | |
Collapse
|
47
|
Talpate KA, Bhosale UA, Zambare MR. Clitorea ternatea, a herb from Indian folklore, improves streptozotocin-induced diabetes and diabetes-induced cognitive decline in rats. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2012; 10:939-947. [PMID: 22883412 DOI: 10.3736/jcim20120816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVE To study the antidiabetic, neurochemical-antioxidant and cognition protective effects of Clitorea ternatea leaves on a rat model of diabetic cognitive decline. METHODS Antidiabetic activity was evaluated by serum glucose and body weight estimation in ethanol extract of Clitorea ternatea (EECT)-treated diabetic rats. Effects of EECT on spatial working memory (SWM) and spatial reference memory (SRM) were evaluated by Y-maze and Morris water maze tests respectively. Neurochemical-antioxidant effects of EECT were studied by acetylcholinesterase assay, and measurements of thiobarbituric acid reactive substances (TBARSs), superoxide dismutase (SOD) and catalase (CAT) levels in diabetic rats. RESULTS The 200 and 400 mg/kg of EECT showed a significant antidiabetic activity by decreasing serum glucose level (P<0.05, P<0.01), and there was a significant increase in the body weight in 400 mg/kg of EECT-treated diabetic rats (P<0.01). EECT was found to cause significant increases in SWM and SRM in retention trials on Y-maze and Morris water maze respectively (P<0.05, P<0.01). Significant decreases in acetylcholinesterase activity and TBARS level, and significant increase in CAT level were observed in rats treated with 200 and 400 mg/kg of EECT compared with rats in the diabetic control group (P<0.05 or P<0.01). Significant increase was also found in SOD in rats treated with 400 mg/kg of EECT. CONCLUSION Clitorea ternatea exhibits antidiabetic and antioxidant activities, offers the protection against diabetes-induced cognitive decline, and warrants the need for further studies to elucidate its mode of action.
Collapse
Affiliation(s)
- Karuna A Talpate
- Department of Pharmacology, Sinhgad College of Pharmacy, Vadgaon, Pune 411041, Maharashtra, India
| | | | | |
Collapse
|
48
|
González-Burgos I, Fletes-Vargas G, González-Tapia D, González-Ramírez MM, Rivera-Cervantes MC, Martínez-Degollado M. Prefrontal serotonin depletion impairs egocentric, but not allocentric working memory in rats. Neurosci Res 2012; 73:321-7. [DOI: 10.1016/j.neures.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 12/29/2022]
|
49
|
Hritcu L, Stefan M, Brandsch R, Mihasan M. 6-hydroxy-l-nicotine from Arthrobacter nicotinovorans sustain spatial memory formation by decreasing brain oxidative stress in rats. J Physiol Biochem 2012; 69:25-34. [DOI: 10.1007/s13105-012-0184-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 06/05/2012] [Indexed: 12/31/2022]
|
50
|
Hritcu L, Ciobica A, Stefan M, Mihasan M, Palamiuc L, Nabeshima T. Spatial memory deficits and oxidative stress damage following exposure to lipopolysaccharide in a rodent model of Parkinson's disease. Neurosci Res 2011; 71:35-43. [DOI: 10.1016/j.neures.2011.05.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|