1
|
Gastelum C, Perez L, Hernandez J, Le N, Vahrson I, Sayers S, Wagner EJ. Adaptive Changes in the Central Control of Energy Homeostasis Occur in Response to Variations in Energy Status. Int J Mol Sci 2021; 22:2728. [PMID: 33800452 PMCID: PMC7962960 DOI: 10.3390/ijms22052728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Energy homeostasis is regulated in coordinate fashion by the brain-gut axis, the homeostatic energy balance circuitry in the hypothalamus and the hedonic energy balance circuitry comprising the mesolimbcortical A10 dopamine pathway. Collectively, these systems convey and integrate information regarding nutrient status and the rewarding properties of ingested food, and formulate it into a behavioral response that attempts to balance fluctuations in consumption and food-seeking behavior. In this review we start with a functional overview of the homeostatic and hedonic energy balance circuitries; identifying the salient neural, hormonal and humoral components involved. We then delve into how the function of these circuits differs in males and females. Finally, we turn our attention to the ever-emerging roles of nociceptin/orphanin FQ (N/OFQ) and pituitary adenylate cyclase-activating polypeptide (PACAP)-two neuropeptides that have garnered increased recognition for their regulatory impact in energy homeostasis-to further probe how the imposed regulation of energy balance circuitry by these peptides is affected by sex and altered under positive (e.g., obesity) and negative (e.g., fasting) energy balance states. It is hoped that this work will impart a newfound appreciation for the intricate regulatory processes that govern energy homeostasis, as well as how recent insights into the N/OFQ and PACAP systems can be leveraged in the treatment of conditions ranging from obesity to anorexia.
Collapse
Affiliation(s)
- Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Jennifer Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Isabella Vahrson
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
2
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic recombination in disgust-associated bitter taste-responsive neurons of the central nucleus of amygdala in male mice. Neurosci Lett 2020; 742:135456. [PMID: 33290837 DOI: 10.1016/j.neulet.2020.135456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 11/18/2022]
Abstract
A bitter substance induces specific orofacial and somatic behavioral reactions such as gapes in mice as well as monkeys and humans. These reactions have been proposed to represent affective disgust, and therefore, understanding the neuronal basis of the reactions would pave the way to understand affective disgust. It is crucial to identify and access the specific neuronal ensembles that are activated by bitter substances, such as quinine, the intake of which induces disgust reactions. However, the method to access the quinine-activated neurons has not been fully established yet. Here, we show evidence that a targeted recombination in active populations (TRAP) method, induces genetic recombination in the quinine-activated neurons in the central nucleus of the amygdala (CeA). CeA is one of the well-known emotional centers of the brain. We found that the intraoral quinine infusion, that resulted in disgust reactions, increased both cFos-positive cells and Arc-positive cells in the CeA. By using Arc-CreER;Ai3 TRAP mice, we induced genetic recombination in the quinine-activated neurons and labelled them with fluorescent protein. We confirmed that the quinine-TRAPed fluorescently-labelled cells preferentially coexpressed Arc after quinine infusion. Our results suggest that the TRAP method can be used to access specific functional neurons in the CeA.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan.
| |
Collapse
|
3
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic Access to Gustatory Disgust-Associated Neurons in the Interstitial Nucleus of the Posterior Limb of the Anterior Commissure in Male Mice. Neuroscience 2019; 413:45-63. [PMID: 31229633 DOI: 10.1016/j.neuroscience.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Orofacial and somatic disgust reactions are observed in rats following intraoral infusion of not only bitter quinine (innate disgust) but also sweet saccharin previously paired with illness (learned disgust). It remains unclear, however, whether these innate and learned disgust reactions share a common neural basis and which brain regions, if any, host it. In addition, there is no established method to genetically access neurons whose firing is associated with disgust (disgust-associated neurons). Here, we examined the expression of cFos and Arc, two markers of neuronal activity, in the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) of male mice that showed innate disgust and mice that showed learned disgust. Furthermore, we used a targeted recombination in active populations (TRAP) method to genetically label the disgust-associated neurons in the IPAC with YFP. We found a significant increase of both cFos-positive neurons and Arc-positive neurons in the IPAC of mice that showed innate disgust and mice that showed learned disgust. In addition, TRAP following quinine infusion (Quinine-TRAP) resulted in significantly more YFP-positive neurons in the IPAC, compared to TRAP following water infusion. A significant number of the YFP-positive neurons following Quinine-TRAP were co-labeled with Arc following the second quinine infusion, confirming that Quinine-TRAP preferentially labeled quinine-activated neurons in the IPAC. Our results suggest that the IPAC activity is associated with both innate and learned disgust and that disgust-associated neurons in the IPAC are genetically accessible by TRAP.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
4
|
Bodnar RJ. Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides 2019; 116:42-62. [PMID: 31047940 DOI: 10.1016/j.peptides.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
This review is part of a special issue dedicated to Opioid addiction, and examines the influential role of opioid peptides, opioid receptors and opiate drugs in mediating food intake and body weight control in rodents. This review postulates that opioid mediation of food intake was an example of "positive addictive" properties that provide motivational drives to maintain opioid-seeking behavior and that are not subject to the "negative addictive" properties associated with tolerance, dependence and withdrawal. Data demonstrate that opiate and opioid peptide agonists stimulate food intake through homeostatic activation of sensory, metabolic and energy-related In contrast, general, and particularly mu-selective, opioid receptor antagonists typically block these homeostatically-driven ingestive behaviors. Intake of palatable and hedonic food stimuli is inhibited by general, and particularly mu-selective, opioid receptor antagonists. The selectivity of specific opioid agonists to elicit food intake was confirmed through the use of opioid receptor antagonists and molecular knockdown (antisense) techniques incapacitating specific exons of opioid receptor genes. Further extensive evidence demonstrated that homeostatic and hedonic ingestive situations correspondingly altered the levels and expression of opioid peptides and opioid receptors. Opioid mediation of food intake was controlled by a distributed brain network intimately related to both the appetitive-consummatory sites implicated in food intake as well as sites intimately involved in reward and reinforcement. This emergent system appears to sustain the "positive addictive" properties providing motivational drives to maintain opioid-seeking behavior.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, United States; Psychology Doctoral Program and CUNY Neuroscience Collaborative, The Graduate Center of the City University of New York, United States.
| |
Collapse
|
5
|
Micioni Di Bonaventura MV, Micioni Di Bonaventura E, Cifani C, Polidori C. N/OFQ-NOP System in Food Intake. Handb Exp Pharmacol 2019; 254:279-295. [PMID: 31073870 DOI: 10.1007/164_2019_212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
While lifestyle modifications should be the first-line actions in preventing and treating obesity and eating disorders, pharmacotherapy also provides a necessary tool for the management of these diseases.However, given the limitations of current anti-obesity drugs, innovative treatments that improve efficacy and safety are needed.Since the discovery that the activation of the Nociceptin/Orphanin (N/OFQ) FQ peptide (NOP) receptor by N/OFQ induces an increase of food intake in laboratory animals, and the finding that this effect can be blocked by NOP antagonists, many NOP agonists and antagonists have been synthesized and tested in vitro and in vivo for their potential regulation of feeding behavior. Promising results seem to suggest that the N/OFQergic system may be a potential therapeutic target for the neural control of feeding behavior and related pathologies, especially in binge-like eating behavior.
Collapse
Affiliation(s)
| | | | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC, Italy.
| | - Carlo Polidori
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC, Italy
| |
Collapse
|
6
|
Meyer LC, Paisley CE, Mohamed E, Bigbee JW, Kordula T, Richard H, Lutfy K, Sato-Bigbee C. Novel role of the nociceptin system as a regulator of glutamate transporter expression in developing astrocytes. Glia 2017; 65:2003-2023. [PMID: 28906039 PMCID: PMC5766282 DOI: 10.1002/glia.23210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022]
Abstract
Our previous results showed that oligodendrocyte development is regulated by both nociceptin and its G-protein coupled receptor, the nociceptin/orphanin FQ receptor (NOR). The present in vitro and in vivo findings show that nociceptin plays a crucial conserved role regulating the levels of the glutamate/aspartate transporter GLAST/EAAT1 in both human and rodent brain astrocytes. This nociceptin-mediated response takes place during a critical developmental window that coincides with the early stages of astrocyte maturation. GLAST/EAAT1 upregulation by nociceptin is mediated by NOR and the downstream participation of a complex signaling cascade that involves the interaction of several kinase systems, including PI-3K/AKT, mTOR, and JAK. Because GLAST is the main glutamate transporter during brain maturation, these novel findings suggest that nociceptin plays a crucial role in regulating the function of early astrocytes and their capacity to support glutamate homeostasis in the developing brain.
Collapse
Affiliation(s)
- Logan C Meyer
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Caitlin E Paisley
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Esraa Mohamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Hope Richard
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
7
|
Mendez IA, Maidment NT, Murphy NP. Parsing the hedonic and motivational influences of nociceptin on feeding using licking microstructure analysis in mice. Behav Pharmacol 2016; 27:516-27. [PMID: 27100061 PMCID: PMC4965319 DOI: 10.1097/fbp.0000000000000240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opioid peptides are implicated in processes related to reward and aversion; however, how specific opioid peptides are involved remains unclear. We investigated the role of nociceptin (NOC) in voluntary licking for palatable and aversive tastants by studying the effect of intracerebroventricularly administered NOC on licking microstructure in wild-type and NOC receptor knockout (NOP KO) mice. Compared with the wild-type mice, NOP KO mice emitted fewer bouts of licking when training to lick for a 20% sucrose solution. Correspondingly, intracerebroventricular administration of NOC increased the number of licking bouts for sucrose and sucralose in wild-type, but not in NOP KO mice. The ability of NOC to initiate new bouts of licking for sweet solutions suggests that NOC may drive motivational aspects of feeding behavior. Conversely, adulterating a sucrose solution with the aversive tastant quinine reduced licking bout lengths in wild-type and NOP KOs, suggesting that NOC signaling is not involved in driving voluntary consumption of semiaversive tastants. Interestingly, when consuming sucrose following 20 h of food deprivation, NOP KO mice emitted longer bouts of licking than wild types, suggesting that under hungry conditions, NOC may also contribute toward hedonic aspects of feeding. Together, these results suggest differential roles for NOC in the motivational and hedonic aspects of feeding.
Collapse
Affiliation(s)
- Ian A Mendez
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
8
|
Kasai S, Nishizawa D, Hasegawa J, Sato N, Tanioka F, Sugimura H, Ikeda K. Nociceptin/orphanin FQ receptor gene variation is associated with smoking status in Japanese. Pharmacogenomics 2016; 17:1441-51. [DOI: 10.2217/pgs.15.184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The endogenous opioid system has been reportedly implicated in tobacco/nicotine dependence. Materials & methods: We examined the genetic effects of eight SNPs in opioid receptor-related genes on smoking status and smoking-related traits in Japanese. Results: The genotypic and allelic variations of the rs2229205 SNP in the OPRL1 gene were significantly associated with smoking status, but no significant differences were found in the genetic variations of any of the SNPs with regard to smoking-related traits. The rs2229205 SNP did not show high linkage disequilibrium with the other SNPs in the linkage disequilibrium block that contained the SNP. Conclusion: The rs2229205 SNP in the OPRL1 gene may be a genetic factor that contributes to individual differences in the vulnerability to smoking in Japanese individuals.
Collapse
Affiliation(s)
- Shinya Kasai
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Naomi Sato
- First Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Fumihiko Tanioka
- Division of Pathology, Iwata City Hospital, 512-3 Ookubo, Iwata, Shizuoka 438-8550, Japan
| | - Haruhiko Sugimura
- First Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
9
|
Hardaway JA, Jensen J, Kim M, Mazzone CM, Sugam JA, Diberto JF, Lowery-Gionta EG, Hwa LS, Pleil KE, Bulik CM, Kash TL. Nociceptin receptor antagonist SB 612111 decreases high fat diet binge eating. Behav Brain Res 2016; 307:25-34. [PMID: 27036650 PMCID: PMC4896639 DOI: 10.1016/j.bbr.2016.03.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Binge eating is a dysregulated form of feeding behavior that occurs in multiple eating disorders including binge-eating disorder, the most common eating disorder. Feeding is a complex behavioral program supported through the function of multiple brain regions and influenced by a diverse array of receptor signaling pathways. Previous studies have shown the overexpression of the opioid neuropeptide nociceptin (orphanin FQ, N/OFQ) can induce hyperphagia, but the role of endogenous nociceptin receptor (NOP) in naturally occurring palatability-induced hyperphagia is unknown. In this study we adapted a simple, replicable form of binge eating of high fat food (HFD). We found that male and female C57BL/6J mice provided with daily one-hour access sessions to HFD eat significantly more during this period than those provided with continuous 24h access. This form of feeding is rapid and entrained. Chronic intermittent HFD binge eating produced hyperactivity and increased light zone exploration in the open field and light-dark assays respectively. Treatment with the potent and selective NOP antagonist SB 612111 resulted in a significant dose-dependent reduction in binge intake in both male and female mice, and, unlike treatment with the serotonin selective reuptake inhibitor fluoxetine, produced no change in total 24-h food intake. SB 612111 treatment also significantly decreased non-binge-like acute HFD consumption in male mice. These data are consistent with the hypothesis that high fat binge eating is modulated by NOP signaling and that the NOP system may represent a promising novel receptor to explore for the treatment of binge eating.
Collapse
Affiliation(s)
- J Andrew Hardaway
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jennifer Jensen
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Michelle Kim
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Christopher M Mazzone
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jonathan A Sugam
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jeffrey F Diberto
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Emily G Lowery-Gionta
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Lara S Hwa
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Cynthia M Bulik
- UNC Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Nutrition, University of North Carolina at Chapel Hill, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Statnick MA, Chen Y, Ansonoff M, Witkin JM, Rorick-Kehn L, Suter TM, Song M, Hu C, Lafuente C, Jiménez A, Benito A, Diaz N, Martínez-Grau MA, Toledo MA, Pintar JE. A Novel Nociceptin Receptor Antagonist LY2940094 Inhibits Excessive Feeding Behavior in Rodents: A Possible Mechanism for the Treatment of Binge Eating Disorder. J Pharmacol Exp Ther 2015; 356:493-502. [PMID: 26659925 DOI: 10.1124/jpet.115.228221] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity.
Collapse
Affiliation(s)
- Michael A Statnick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Yanyun Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Michael Ansonoff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Linda Rorick-Kehn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Todd M Suter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Min Song
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Charlie Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Celia Lafuente
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Alma Jiménez
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Ana Benito
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Nuria Diaz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Maria Angeles Martínez-Grau
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Miguel A Toledo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - John E Pintar
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| |
Collapse
|
11
|
Bodnar RJ. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides 2015; 72:20-33. [PMID: 25843025 DOI: 10.1016/j.peptides.2015.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, "Endogenous opioids and feeding behavior: a thirty-year historical perspective", summarizing research in this field between 1974 and 2003. The present review "closes the circle" by reviewing the last 10 years (2004-2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Behavioral and Cognitive Neuroscience Doctoral Program Cluster, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
12
|
Tariq S, Rashed H, Nurulain SM, Emerald BS, Koturan S, Tekes K, Adeghate E. Distribution of nociceptin in pancreatic islet cells of normal and diabetic rats. Pancreas 2015; 44:602-7. [PMID: 25875798 DOI: 10.1097/mpa.0000000000000306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Nociceptin has been reported to play an important role in the regulation of pancreatic exocrine secretion. Most of the studies performed on nociceptin are mainly physiological rather than morphological in nature. The present study investigated the pattern of distribution of nociceptin in the endocrine pancreas of normal and diabetic rats. METHODS Immunohistochemistry, immunofluorescence, Western blot, and double-labeled immunoelectron microscopy were used in this study. Diabetes was induced using streptozotocin (60 mg/kg body weight). RESULTS Nociceptin-immunoreactive cells were observed in the central and peripheral regions of the islets of both normal and diabetic rat pancreas. The number of nociceptin-positive cells was significantly (P < 0.05) lower in the islet of diabetic rats compared with the control. Immunofluorescence study showed that nociceptin colocalizes with insulin in pancreatic β-cells. The degree of colocalization of nociceptin with insulin was severely deranged after the onset of diabetes. Moreover, immunogold particles conjugated with either nociceptin or insulin were observed on the granules of pancreatic β-cell. The number of nociceptin-labeled colloidal gold particles was significantly lower after the onset of diabetes. CONCLUSIONS Nociceptin is present in pancreatic islets cells and colocalizes with insulin. Nociceptin may have a physiological role in the metabolism of insulin.
Collapse
Affiliation(s)
- Saeed Tariq
- From the Departments of *Anatomy, and †Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; and ‡Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The eating disorders anorexia nervosa (AN) and bulimia nervosa (BN) are severe psychiatric disorders with high mortality. Our knowledge about the neurobiology of eating disorders is very limited, and the question remains whether alterations in brain structure or function in eating disorders are state related, remnants of the illness or premorbid traits. The brain reward system is a relatively well-characterized brain circuitry that plays a central role in the drive to eat and individuals with current or past eating disorders showed alterations in those pathways compared to controls. Here we propose that structural and functional alterations in the insula and frontal cortex, including orbitofrontal and cingulate regions, areas that contribute to reward and anxiety processing, could predispose to developing an eating disorder and that adaptive changes in those circuits in response to malnutrition or repeated binge eating and purging could further promote illness behavior, hinder recovery and contribute to relapse.
Collapse
Affiliation(s)
- Guido K W Frank
- Departments of Psychiatry and Neuroscience, University of Colorado Anschutz Medical Campus, School of Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Miranda-Morales RS, Nizhnikov ME, Waters DH, Spear NE. Participation of the nociceptin/orphanin FQ receptor in ethanol-mediated locomotor activation and ethanol intake in preweanling rats. Behav Brain Res 2013; 245:137-44. [PMID: 23439216 PMCID: PMC3666860 DOI: 10.1016/j.bbr.2013.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 12/16/2022]
Abstract
Activation of nociceptin/orphanin FQ (NOP) receptors seems to attenuate ethanol-induced reinforcement in adult rodents. Since early ethanol exposure results in later increased responsiveness to ethanol, it is important to analyze NOP receptor modulation of ethanol-related behaviors during early ontogeny. By measuring NOP involvement in ethanol intake and ethanol-induced locomotor activation, we analyzed the specific participation of NOP receptors on these ethanol-related behaviors in two-week-old rats. In each experiment animals were pre-treated with the endogenous ligand for this receptor (nociceptin/orphanin FQ at 0.0, 0.5, 1.0 or 2.0 μg) or a selective NOP antagonist (J-113397 at 0.0, 0.5, 2.0 or 5.0 mg/kg). Results indicated that activation of the nociceptin receptor system had no effect on ethanol or water intake, while blockade of the NOP receptor has an unspecific effect on consummatory behavior: J-113397 increased ethanol (at a dose of 0.5 mg/kg) and water intake (at 0.5 and 5.0 mg/kg). Ethanol-mediated locomotor stimulation was attenuated by activation of the NOP system (nociceptin at 1.0 and 2.0 μg). Nociceptin had no effect on basal locomotor activity. Blockade of NOP receptors did not modify ethanol-induced locomotor activation. Contrary to what has been reported for adult rodents, nociceptin failed to suppress intake of ethanol in infants. Attenuation of ethanol-induced stimulation by activation of NOP receptor system suggests an early role of this receptor in this ethanol-related behavior.
Collapse
Affiliation(s)
- Roberto Sebastián Miranda-Morales
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA.
| | | | | | | |
Collapse
|
15
|
Buckley L, Sandilands V, Hocking P, Tolkamp B, D’eath R. The use of conditioned place preference to determine broiler preferences for quantitative or qualitative dietary restriction. Br Poult Sci 2012; 53:291-306. [DOI: 10.1080/00071668.2012.698727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Frank GKW. Advances in the diagnosis of anorexia nervosa and bulimia nervosa using brain imaging. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2012; 6:235-244. [PMID: 22936952 PMCID: PMC3427937 DOI: 10.1517/17530059.2012.673583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION: Anorexia and bulimia nervosa are severe psychiatric disorders and the availability of brain imaging techniques hold promise that those techniques will be useful in clinical practice. AREAS COVERED: In this review I describe currently available brain imaging techniques and focus on the brain imaging methods functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Those techniques have helped describe alterations in brain circuitry in AN and BN that related to anxiety and reward processing. Novel computational models help further define brain function in relation to particular neurotransmitters. EXPERT OPINION: Brain imaging techniques are exciting methods to learn about brain function and progress has been made to identify in healthy populations brain circuits that code behaviors. These techniques have been used in AN and BN over the past decade and have improved our understanding of brain function in those disorders. Still, human brain imaging is not at a point yet where it could be used diagnostically. However, with the refinement of imaging hardware as well as improved models that describe brain function we will get closer to our aims to not only better understand the neurobiology of those disorders, but predict illness development, treatment response and long term prognosis.
Collapse
Affiliation(s)
- Guido K W Frank
- Departments of Psychiatry and Neuroscience, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Gary Pavilion A036/B-130, 13123 East 16th Avenue, Aurora, CO 80045, Tel.: 720-777-1909
| |
Collapse
|
17
|
Privitera GJ, Zavala AR, Sanabria F, Sotak KL. High fat diet intake during pre and periadolescence impairs learning of a conditioned place preference in adulthood. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2011; 7:21. [PMID: 21703027 PMCID: PMC3146828 DOI: 10.1186/1744-9081-7-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/26/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND Brain regions that mediate learning of a conditioned place preference (CPP) undergo significant development in pre and periadolescence. Consuming a high fat (HF) diet during this developmental period and into adulthood can lead to learning impairments in rodents. The present study tested whether HF diet intake, consumed only in pre and periadolescence, would be sufficient to cause impairments using a CPP procedure. METHODS Rats were randomly assigned to consume a HF or a low fat (LF) diet during postnatal days (PD) 21-40 and were then placed back on a standard lab chow diet. A 20-day CPP procedure, using HF Cheetos® as the unconditioned stimulus (US), began either the next day (PD 41) or 40 days later (PD 81). A separate group of adult rats were given the HF diet for 20 days beginning on PD 61, and then immediately underwent the 20-day CPP procedure beginning on PD 81. RESULTS Pre and periadolescent exposure to a LF diet or adult exposure to a HF diet did not interfere with the development of a HF food-induced CPP, as these groups exhibited robust preferences for the HF Cheetos® food-paired compartment. However, pre and periadolescent exposure to the HF diet impaired the development of a HF food-induced CPP regardless of whether it was assessed immediately or 40 days after the exposure to the HF diet, and despite showing increased consumption of the HF Cheetos® in conditioning. CONCLUSIONS Intake of a HF diet, consumed only in pre and periadolescence, has long-lasting effects on learning that persist into adulthood.
Collapse
Affiliation(s)
- Gregory J Privitera
- Saint Bonaventure University, Department of Psychology, 3261 West State Street, Saint Bonaventure, NY 14778, USA
| | - Arturo R Zavala
- California State University, Long Beach, Department of Psychology, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| | - Federico Sanabria
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, USA
| | - Kristin L Sotak
- Saint Bonaventure University, Department of Psychology, 3261 West State Street, Saint Bonaventure, NY 14778, USA
| |
Collapse
|
18
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
19
|
Farhang B, Pietruszewski L, Lutfy K, Wagner EJ. The role of the NOP receptor in regulating food intake, meal pattern, and the excitability of proopiomelanocortin neurons. Neuropharmacology 2010; 59:190-200. [PMID: 20510254 PMCID: PMC2946834 DOI: 10.1016/j.neuropharm.2010.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 11/16/2022]
Abstract
We evaluated the role of the nociceptin/orphanin FQ (NOP) receptor in regulating food intake, meal pattern and the activity of hypothalamic arcuate (ARC) neurons. The microstructural analysis of food intake and meal pattern was performed under both food-deprived and ad libitum conditions. Whole-cell patch clamp recordings were obtained using the in vitro hypothalamic slice preparation and biocytin-filled electrodes. NOP receptor knockout mice exhibited significantly reduced body weight. Fasting-induced hyperphagia was diminished for the first 2h of a 6-h re-feeding period, and was associated with decreased meal duration and size, as well as a biphasic effect on meal frequency. The genotype effect observed under ad libitum conditions was comparatively unremarkable. Orphanin FQ/nociceptin (OFQ/N) was able to decrease evoked excitatory postsynaptic current amplitude, increase the S(2):S(1) ratio via the paired-pulse paradigm, and decrease miniature excitatory postsynaptic current frequency in ARC neurons from wild type animals but not NOP receptor knockouts. In addition OFQ/N activated a reversible outward current that was antagonized by the G-protein activated, inwardly-rectifying K(+) (GIRK) channel blocker tertiapin in wild type but not NOP knockout animals. Both the presynaptic and postsynaptic actions of OFQ/N were observed in ARC neurons subsequently determined to be immunopositive for characteristic phenotypic markers of anorexigenic proopiomelanocortin (POMC) neurons. Taken together, these results demonstrate the contribution of the NOP receptor in controlling food intake and meal pattern, as well as glutamate release and GIRK1 channel activity at POMC synapses.
Collapse
Affiliation(s)
- Borzoo Farhang
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | | | | |
Collapse
|
20
|
Olszewski PK, Grace MK, Fard SS, Le Grevès M, Klockars A, Massi M, Schiöth HB, Levine AS. Central nociceptin/orphanin FQ system elevates food consumption by both increasing energy intake and reducing aversive responsiveness. Am J Physiol Regul Integr Comp Physiol 2010; 299:R655-63. [PMID: 20427724 PMCID: PMC3774471 DOI: 10.1152/ajpregu.00556.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 04/23/2010] [Indexed: 11/22/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ), the nociceptin opioid peptide (NOP) receptor ligand, increases feeding when injected centrally. Initial data suggest that N/OFQ blocks the development of a conditioned taste aversion (CTA). The current project further characterized the involvement of N/OFQ in the regulation of hunger vs. aversive responses in rats by employing behavioral, immunohistochemical, and real-time PCR methodology. We determined that the same low dose of the NOP antagonist [Nphe(1)]N/OFQ(1-13)NH(2) delivered via the lateral ventricle diminishes both N/OFQ- and deprivation-induced feeding. This anorexigenic effect did not stem from aversive consequences, as the antagonist did not cause the development of a CTA. When [Nphe(1)]N/OFQ(1-13)NH(2) was administered with LiCl, it moderately delayed extinction of the LiCl-induced CTA. Injection of LiCl + antagonist compared with LiCl alone generated an increase in c-Fos immunoreactivity in the central nucleus of the amygdala. The antagonist alone elevated Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, nucleus of the solitary tract, and central nucleus of the amygdala. Hypothalamic NOP mRNA levels were decreased during energy intake restriction induced by aversion, as well as in non-CTA rats food-restricted to match CTA-reduced consumption. Brain stem NOP was upregulated only in aversion. Prepro-N/OFQ mRNA showed a trend toward upregulation in restricted rats (P = 0.068). We conclude that the N/OFQ system promotes feeding by affecting the need to replenish lacking calories and by reducing aversive responsiveness. It may belong to mechanisms that shift a balance between the drive to ingest energy and avoidance of potentially tainted food.
Collapse
|
21
|
Takano Y, Tanaka T, Takano H, Hironaka N. Hippocampal theta rhythm and drug-related reward-seeking behavior: an analysis of cocaine-induced conditioned place preference in rats. Brain Res 2010; 1342:94-103. [PMID: 20423701 DOI: 10.1016/j.brainres.2010.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 02/24/2010] [Accepted: 04/19/2010] [Indexed: 11/19/2022]
Abstract
Drug cravings are elicited by environmental stimuli associated with the rewarding effects of drugs. As an animal model of such associative learning, conditioned place preference (CPP) is widely used. Since the hippocampus is closely related to reward memory and the hippocampal local field potential (LFP), and in particular the theta rhythm is known to be associated with bodily movements, the theta rhythm might be one of the key neural substrates. On the basis of this assumption, we recorded the behaviors and hippocampal LFP of eight rats during cocaine-induced acquisition and expression of CPP. The earliest appearance of phase-locked theta activity was observed before the rats entered the cocaine-paired environment after conditioning; after entrance, the theta disappeared. This phase-locked theta was stronger when the rats stayed for a long time in the cocaine-paired environment. Our observation suggested that the phase-locked hippocampal theta rhythm is related to the approaching behavior of the rat caused by reward memory. Thus, the role of the hippocampus in drug craving should be emphasized further.
Collapse
Affiliation(s)
- Yuji Takano
- SHIMOJO Implicit Brain Function Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, NTT Atsugi Research and Development Center 3-1 Morinosatowakamiya, Atsugi-shi, Kanagawa 243-0198, Japan.
| | | | | | | |
Collapse
|
22
|
|