1
|
Pierce-Messick ZJ, Brink AK, Anna Vo T, Corbit LH. Ghrelin receptor antagonism and satiety attenuate Pavlovian-instrumental transfer. Neurobiol Learn Mem 2024; 207:107864. [PMID: 38000462 DOI: 10.1016/j.nlm.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Animals rely on learned cues to guide their behaviour for rewards such as food. The Pavlovian-instrumental transfer (PIT) task can be used to investigate the influence of Pavlovian stimuli on instrumental responding. Ghrelin, an orexigenic peptide, and its receptor, growth hormone secretagogue receptor 1A (GHS-R1A), has received growing interest for its role in reward-motivated learning and behaviours. A significant population of GHS-R1A have been identified within the ventral tegmental area (VTA), a critical node in the mesolimbic reward circuit that is necessary for the expression of PIT. As ghrelin has been found to increase dopaminergic activity in the VTA, we predicted that GHS-R1A antagonism with JMV-2959 would attenuate PIT. Further, given the relationship between hunger levels and changes in ghrelin signalling, we sought to compare the effects GHS-R1A antagonism with those of satiety, hypothesizing parallel effects, with each attenuating PIT. Rats received daily sessions of Pavlovian and then instrumental training over 3 weeks. Across three experiments, we examined the effects of a shift to satiety, or treatment with the GHS-R1A antagonist JMV-2959, either peripherally or directly into the VTA. We found that presentations of a stimulus paired with food reward enhanced responding for food across all conditions, thus demonstrating the expected PIT effect. Further, GHS-R1A antagonism, both peripherally and within the VTA, as well as satiety significantly reduced the magnitude of the PIT effect compared to control conditions. These results clarify our understanding of ghrelin signalling in PIT and begin to elucidate the role of feeding-related peptides in the modulation of reward-related responding.
Collapse
|
2
|
Ayman J, Palotai M, Dochnal R, Bagosi Z. Ghrelin Amplifies the Nicotine-Induced Release of Dopamine in the Bed Nucleus of Stria Terminalis (BNST). Biomedicines 2023; 11:2456. [PMID: 37760897 PMCID: PMC10525377 DOI: 10.3390/biomedicines11092456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin is an orexigenic neuropeptide that is known for stimulating the release of growth hormone (GH) and appetite. In addition, ghrelin has been implicated in addiction to drugs such as nicotine. Nicotine is the principal psychoactive component in tobacco and is responsible for the reward sensation produced by smoking. In our previous in vitro superfusion studies, it was demonstrated that ghrelin and nicotine stimulate equally the dopamine release in the rat amygdala, and ghrelin amplifies the nicotine-induced dopamine release in the rat striatum. However, less attention was paid to the actions of ghrelin and nicotine in the bed nucleus of the stria terminalis (BNST). Therefore, in the present study, nicotine and ghrelin were superfused to the BNST of male Wistar rats, and the dopamine release from the BNST was measured in vitro. In order to determine which receptors mediate these effects, mecamylamine, a non-selective nicotinic acetylcholine receptor (nAchR) antagonist, and GHRP-6, a selective growth hormone secretagogue receptor (GHS-R1A) antagonist, were also superfused to the rat BNST. Nicotine significantly increased the release of dopamine, and this effect was significantly inhibited by mecamylamine. Ghrelin increased dopamine release even more significantly than nicotine did, and this effect was significantly inhibited by GHRP-6. Moreover, when administered together, ghrelin significantly amplified the nicotine-induced release of dopamine in the BNST, and this additive effect was reversed partly by mecamylamine and partly by GHRP-6. Therefore, the present study provides a new base of evidence for the involvement of ghrelin in dopamine signaling implicated in nicotine addiction.
Collapse
Affiliation(s)
- Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6701 Szeged, Hungary;
| | - Miklós Palotai
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Roberta Dochnal
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6701 Szeged, Hungary;
| | - Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Peris-Sampedro F, Le May MV, Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol 2021; 33:e13025. [PMID: 34427011 DOI: 10.1111/jne.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Based on studies delivering ghrelin or ghrelin receptor agonists, we have learned a great deal about the importance of the brain ghrelin signalling system for a wide range of physiological processes that include feeding behaviours, growth hormone secretion and glucose homeostasis. Because these processes can be considered as essential to life, the question arises as to why mouse models of depleted ghrelin signalling are not all skinny dwarfs with a host of behavioural and metabolic problems. Here, we provide a systematic detailed review of the phenotype of mice with deficient ghrelin signalling to help better understand the relevance and importance of the brain ghrelin signalling system, with a particular emphasis on those questions that remain unanswered.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 2021; 172:105847. [PMID: 34438062 DOI: 10.1016/j.phrs.2021.105847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy.
| | | |
Collapse
|
5
|
"A LEAP 2 conclusions? Targeting the ghrelin system to treat obesity and diabetes". Mol Metab 2020; 46:101128. [PMID: 33246141 PMCID: PMC8085568 DOI: 10.1016/j.molmet.2020.101128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The hormone ghrelin stimulates food intake, promotes adiposity, increases body weight, and elevates blood glucose. Consequently, alterations in plasma ghrelin levels and the functioning of other components of the broader ghrelin system have been proposed as potential contributors to obesity and diabetes. Furthermore, targeting the ghrelin system has been proposed as a novel therapeutic strategy for obesity and diabetes. SCOPE OF REVIEW The current review focuses on the potential for targeting ghrelin and other proteins comprising the ghrelin system as a treatment for obesity and diabetes. The main components of the ghrelin system are introduced. Data supporting a role for the endogenous ghrelin system in the development of obesity and diabetes along with data that seemingly refute such a role are outlined. An argument for further research into the development of ghrelin system-targeted therapeutic agents is delineated. Also, an evidence-based discussion of potential factors and contexts that might influence the efficacy of this class of therapeutics is provided. MAJOR CONCLUSIONS It would not be a "leap to" conclusions to suggest that agents which target the ghrelin system - including those that lower acyl-ghrelin levels, raise LEAP2 levels, block GHSR activity, and/or raise desacyl-ghrelin signaling - could represent efficacious novel treatments for obesity and diabetes.
Collapse
|
6
|
Behavioural characterization of ghrelin ligands, anamorelin and HM01: Appetite and reward-motivated effects in rodents. Neuropharmacology 2020; 168:108011. [PMID: 32067989 DOI: 10.1016/j.neuropharm.2020.108011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
The ghrelinergic system has been steadily investigated as a therapeutic target in the treatment of metabolic disorders and modulation of appetite. While endogenous ghrelin activates the full complement of the growth hormone secretagogue receptor (GHSR-1a) pathways, synthetic GHSR-1a ligands display biased signalling and functional selectivity, which have a significant impact on the intended and indeed, unintended, therapeutic effects. The widespread expression of the GHSR-1a receptor in vivo also necessitates an imperative consideration of the biodistribution of GHSR-1a ligands. Here, we investigate anamorelin and HM01, two recently described synthetic GHSR-1a ligands which have shown promising effects on food intake in preclinical and clinical studies. We compare the downstream signalling pathways in cellular in vitro assays, including calcium mobilization, IP-one, internalization and β-arrestin recruitment assays. We describe a novel divergent activation of central reward circuitry by anamorelin and HM01 using c-Fos immunostaining as well as behavioural effects in food intake and reward paradigms. Interestingly, we found a paradoxical reduction in reward-related behaviour for anamorelin and HM01 treated animals in our chosen paradigms. The work highlights the critical importance to consider signalling bias in relation to future ghrelin-based therapies. In addition, central access of GHSR-1a ligands, particularly to reward areas of the brain, remains a crucial factor in eliciting potent appetite-stimulating effects. The precise characterization of downstream ghrelinergic signalling and biodistribution of novel GHSR-1a ligands will be decisive in their successful development and will allow predictive modelling and design of future synthetic ligands to combat metabolic and appetite disorders involving the ghrelinergic system. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
7
|
Cornejo MP, Castrogiovanni D, Schiöth HB, Reynaldo M, Marie J, Fehrentz JA, Perello M. Growth hormone secretagogue receptor signalling affects high-fat intake independently of plasma levels of ghrelin and LEAP2, in a 4-day binge eating model. J Neuroendocrinol 2019; 31:e12785. [PMID: 31469195 DOI: 10.1111/jne.12785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G protein-coupled receptor that is highly expressed in the central nervous system. GHSR acts as a receptor for ghrelin and for liver-expressed antimicrobial peptide 2 (LEAP2), which blocks ghrelin-evoked activity. GHSR also displays ligand-independent activity, including a high constitutive activity that signals in the absence of ghrelin and is reduced by LEAP2. GHSR activity modulates a variety of food intake-related behaviours, including binge eating. Previously, we reported that GHSR-deficient mice daily and time-limited exposed to a high-fat (HF) diet display an attenuated binge-like HF intake compared to wild-type mice. In the present study, we aimed to determine whether ligand-independent GHSR activity affects binge-like HF intake in a 4-day binge-like eating protocol. We found that plasma levels of ghrelin and LEAP2 were not modified in mice exposed to this binge-like eating protocol. Moreover, systemic administration of ghrelin or LEAP2 did not alter HF intake in our experimental conditions. Interestingly, we found that central administration of LEAP2 or K-(D-1-Nal)-FwLL-NH2 , which are both blockers of constitutive GHSR activity, reduced binge-like HF intake, whereas central administration of ghrelin or the ghrelin-evoked GHSR activity blockers [D-Lys3]-GHRP-6 and JMV2959 did not modify binge-like HF intake. Taken together, current data indicate that GHSR activity in the brain affects binge-like HF intake in mice independently of plasma levels of ghrelin and LEAP2.
Collapse
Affiliation(s)
- María Paula Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| | - Daniel Castrogiovanni
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| | - Jacky Marie
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| |
Collapse
|
8
|
Suarez AN, Noble EE, Kanoski SE. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front Mol Neurosci 2019; 12:101. [PMID: 31057368 PMCID: PMC6482164 DOI: 10.3389/fnmol.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The hippocampus (HPC) controls fundamental learning and memory processes, including memory for visuospatial navigation (spatial memory) and flexible memory for facts and autobiographical events (declarative memory). Emerging evidence reveals that hippocampal-dependent memory function is regulated by various peripheral biological systems that are traditionally known for their roles in appetite and body weight regulation. Here, we argue that these effects are consistent with a framework that it is evolutionarily advantageous to encode and recall critical features surrounding feeding behavior, including the spatial location of a food source, social factors, post-absorptive processing, and other episodic elements of a meal. We review evidence that gut-to-brain communication from the vagus nerve and from feeding-relevant endocrine systems, including ghrelin, insulin, leptin, and glucagon-like peptide-1 (GLP-1), promote hippocampal-dependent spatial and declarative memory via neurotrophic and neurogenic mechanisms. The collective literature reviewed herein supports a model in which various stages of feeding behavior and hippocampal-dependent memory function are closely linked.
Collapse
Affiliation(s)
| | | | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
9
|
Cornejo MP, Barrile F, De Francesco PN, Portiansky EL, Reynaldo M, Perello M. Ghrelin Recruits Specific Subsets of Dopamine and GABA Neurons of Different Ventral Tegmental Area Sub-nuclei. Neuroscience 2018; 392:107-120. [DOI: 10.1016/j.neuroscience.2018.09.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 11/30/2022]
|
10
|
Suzuki-Kemuriyama N, Nakano-Tateno T, Tani Y, Hirata Y, Shichiri M. Salusin-β as a powerful endogenous antidipsogenic neuropeptide. Sci Rep 2016; 6:20988. [PMID: 26869388 PMCID: PMC4751483 DOI: 10.1038/srep20988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/14/2016] [Indexed: 01/22/2023] Open
Abstract
Salusin-β is an endogenous parasympathomimetic peptide, predominantly localized to the hypothalamus and posterior pituitary. Subcutaneously administered salusin-β (50 nmol/mouse) significantly increased water intake but did not affect locomotor activity or food intake. The salusin-β-induced increase in water intake was completely abrogated by pretreatment with muscarinic antagonist, atropine sulphate. In contrast, intracerebroventricular injection of salusin-β, at lower doses (10–100 fmol/mouse) caused a long-lasting decrease in water intake and locomotor activity throughout the entire dark phase of the diurnal cycle. Pre-injection of intracerebroventricular anti-salusin-β IgG completely abrogated the central salusin-β mediated suppression of water intake and locomotor activity. These results demonstrate contrasting actions of salusin-β in the control of water intake via the central and peripheral systems and highlight it as a potent endogenous antidipsogenic neuropeptide.
Collapse
Affiliation(s)
- Noriko Suzuki-Kemuriyama
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan.,Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan
| | - Tae Nakano-Tateno
- Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan
| | - Yuji Tani
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Yukio Hirata
- Institute of Biomedical Research and Innovation Hospital, Hyogo, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| |
Collapse
|
11
|
Sclafani A, Touzani K, Ackroff K. Ghrelin signaling is not essential for sugar or fat conditioned flavor preferences in mice. Physiol Behav 2015; 149:14-22. [PMID: 26003495 PMCID: PMC4506878 DOI: 10.1016/j.physbeh.2015.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
The oral and post-oral actions of sugar and fat stimulate intake and condition flavor preferences in rodents through a process referred to as appetition. Ghrelin is implicated in food reward processing, and this study investigated its involvement in nutrient conditioning in mice. In Exp. 1 ghrelin receptor-null (GHSR-null) and C57BL/6 wildtype (WT) mice learned to prefer a flavor (CS+) mixed into 8% glucose over another flavor (CS-) mixed into a "sweeter" but non-nutritive 0.1% sucralose+saccharin (S+S) solution. In Exp. 2 treating WT mice with a ghrelin receptor antagonist [(D-Lys3)-GHRP-6] during flavor training did not prevent them from learning to prefer the CS+ glucose over the CS-S+S flavor. GHSR-null and WT mice were trained in Exp. 3 to drink a CS+ paired with intragastric (IG) infusion of 16% glucose and a CS- paired with IG water. Both groups drank more CS+ than CS- in training and preferred the CS+ to CS- in a choice test. The same (Exp. 4) and new (Exp. 5) GHSR-null and WT mice learned to prefer a CS+ flavor paired with IG fat (Intralipid) over a CS- flavor paired with IG water. GHSR-null and WT mice also learned to prefer a CS+ flavor added to 8% fructose over a CS- added to water. Together, these results indicate that ghrelin receptor signaling is not required for flavor preferences conditioned by the oral or post-oral actions of sugar and fat. This contrasts with other findings implicating ghrelin signaling in food reward processing and food-conditioned place preferences.
Collapse
|
12
|
Ghrelin signaling in the ventral tegmental area mediates both reward-based feeding and fasting-induced hyperphagia on high-fat diet. Neuroscience 2015; 300:53-62. [PMID: 25967263 DOI: 10.1016/j.neuroscience.2015.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022]
Abstract
Ghrelin is a potent orexigenic hormone that acts in the central nervous system to stimulate food intake via the growth hormone secretagogue receptor (GHSR) that is abundantly expressed in the ventral tegmental area (VTA). Not only does ghrelin modulate feeding behavior via a homeostatic mechanism, but numerous studies have identified ghrelin as a key regulator of reward-based hedonic feeding behaviors. Nutritional states influence ghrelin and GHSR expression as well as the behavioral sensitivity to reward-inducing stimuli. In the current study, we examined the role of ghrelin at the VTA level in food intake in two different nutritional states, satiety and hunger, by using a restricted feeding model. In this model, rats were conditioned to a daily 3-h (h) feeding session on standard chow for 10days and a high-fat diet (HFD) was supplied either in the third hour after 2h of chow diet intake, or at the beginning of a daily meal on the test day. We found that intra-VTA microinjection of 1, 2, and 4μg of ghrelin, induced a dose-related increase of 1h of reward-based feeding on HFD in sated rats, as well as a 24-h body weight gain. The overconsumption stimulated by ghrelin could be attenuated by 10μg of direct infusion of the ghrelin receptor antagonist D-Lys3-GHRP-6 into the VTA. Moreover, our data showed that the injection of 1, 2, and 4μg of ghrelin in the VTA, enhanced fasting-induced hyperphagia on HFD in a dose-related manner following a 21-h food restriction as well as a 24-h body weight gain. Conversely, hyperphagia on HFD that is potentiated by ghrelin could be blocked by pretreatment with a 10-μg D-Lys3-GHRP-6 intra-VTA microinjection. Collectively, these data demonstrate that ghrelin signaling at the VTA level mediates both reward-based eating and fasting-induced hyperphagia and provides a primary target for the control of the intake of rewarding food.
Collapse
|
13
|
Siegl D, Midura EF, Annecke T, Conzen P, Caldwell CC, Tschoep J. The effect of ghrelin upon the early immune response in lean and obese mice during sepsis. PLoS One 2015; 10:e0122211. [PMID: 25844479 PMCID: PMC4386814 DOI: 10.1371/journal.pone.0122211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/19/2015] [Indexed: 12/02/2022] Open
Abstract
Introduction It is well established that obesity-related hormones can have modulatory effects associated with the immune response. Ghrelin, a hormone mainly derived from endocrine cells of the gastric mucosa, regulates appetite, energy expenditure and body weight counteracting leptin, a hormone mainly derived from adipocytes. Additionally, receptors of both have been detected on immune cells and demonstrated an immune regulatory function during sepsis. Methods In the present study, the effect of peripheral ghrelin administration on early immune response and survival was investigated with lean mice and mice with diet-induced obesity using cecal ligation and puncture to induce sepsis. Results In the obese group, we found that ghrelin treatment improved survival, ameliorated hypothermia, and increased hyperleptinemia as compared to the lean controls. We also observed that ghrelin treatment divergently regulated serum IL-1ß and TNF-α concentrations in both lean and obese septic mice. Ghrelin treatment initially decreased but later resulted in increased bacteriaemia in lean mice while having no impact upon obese mice. Similarly, ghrelin treatment increased early neutrophil oxidative burst while causing a decrease 48 hours after sepsis inducement. Conclusion In conclusion, as the immune response to sepsis temporally changes, ghrelin treatment differentially mediates this response. Specifically, we observed that ghrelin conferred protective effects during the early phase of sepsis, but during the later phase deteriorated immune response and outcome. These adverse effects were more pronounced upon lean mice as compared to obese mice.
Collapse
Affiliation(s)
- Daniel Siegl
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Emily F. Midura
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Thorsten Annecke
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany
| | - Peter Conzen
- Department of Anaesthesiology, University Hospital Munich (LMU), Munich, Germany
| | - Charles C. Caldwell
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Johannes Tschoep
- Department of Anaesthesiology, University Hospital Munich (LMU), Munich, Germany
- * E-mail:
| |
Collapse
|
14
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
15
|
Uchida A, Zechner JF, Mani BK, Park WM, Aguirre V, Zigman JM. Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass. Mol Metab 2014; 3:717-30. [PMID: 25353000 PMCID: PMC4209356 DOI: 10.1016/j.molmet.2014.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 01/06/2023] Open
Abstract
The current study examined potential mechanisms for altered circulating ghrelin levels observed in diet-induced obesity (DIO) and following weight loss resulting from Roux-en-Y gastric bypass (RYGB). We hypothesized that circulating ghrelin levels were altered in obesity and after weight loss through changes in ghrelin cell responsiveness to physiological cues. We confirmed lower ghrelin levels in DIO mice and demonstrated elevated ghrelin levels in mice 6 weeks post-RYGB. In both DIO and RYGB settings, these changes in ghrelin levels were associated with altered ghrelin cell responsiveness to two key physiological modulators of ghrelin secretion - glucose and norepinephrine. In DIO mice, increases in ghrelin cell density within both the stomach and duodenum and in somatostatin-immunoreactive D cell density in the duodenum were observed. Our findings provide new insights into the regulation of ghrelin secretion and its relation to circulating ghrelin within the contexts of obesity and weight loss.
Collapse
Affiliation(s)
- Aki Uchida
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Juliet F Zechner
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Won-Mee Park
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vincent Aguirre
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Ulrich-Lai YM, Ryan KK. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications. Cell Metab 2014; 19:910-25. [PMID: 24630812 PMCID: PMC4047143 DOI: 10.1016/j.cmet.2014.01.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significant comorbidities between obesity-related metabolic disease and stress-related psychological disorders suggest important functional interactions between energy balance and brain stress integration. Largely overlapping neural circuits control these systems, and this anatomical arrangement optimizes opportunities for mutual influence. Here we first review the current literature identifying effects of metabolic neuroendocrine signals on stress regulation, and vice versa. Next, the contributions of reward-driven food intake to these metabolic and stress interactions are discussed. Lastly, we consider the interrelationships between metabolism, stress, and reward in light of their important implications in the development of therapies for metabolism- or stress-related disease.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Karen K Ryan
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA.
| |
Collapse
|
17
|
Abstract
The prevalence of obesity continues to increase and has reached epidemic proportions. Accumulating data over the past few decades have given us key insights and broadened our understanding of the peripheral and central regulation of energy homeostasis. Despite this, the currently available pharmacological treatments, reducing body weight, remain limited due to poor efficacy and side effects. The gastric peptide ghrelin has been identified as the only orexigenic hormone from the periphery to act in the hypothalamus to stimulate food intake. Recently, a role for ghrelin and its receptor at the interface between homeostatic control of appetite and reward circuitries modulating the hedonic aspects of food has also emerged. Nonhomeostatic factors such as the rewarding and motivational value of food, which increase with food palatability and caloric content, can override homeostatic control of food intake. This nonhomeostatic decision to eat leads to overconsumption beyond nutritional needs and is being recognized as a key component in the underlying causes for the increase in obesity incidence worldwide. In addition, the hedonic feeding behavior has been linked to food addiction and an important role for ghrelin in the development of addiction has been suggested. Moreover, plasma ghrelin levels are responsive to conditions of stress, and recent evidence has implicated ghrelin in stress-induced food-reward behavior. The prominent role of the ghrelinergic system in the regulation of feeding gives rise to it as an effective target for the development of successful antiobesity pharmacotherapies that not only affect satiety but also selectively modulate the rewarding properties of food and reduce the desire to eat.
Collapse
|
18
|
Palotai M, Bagosi Z, Jászberényi M, Csabafi K, Dochnal R, Manczinger M, Telegdy G, Szabó G. Ghrelin amplifies the nicotine-induced dopamine release in the rat striatum. Neurochem Int 2013; 63:239-43. [DOI: 10.1016/j.neuint.2013.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/16/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
19
|
Schellekens H, Dinan TG, Cryan JF. Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward. Front Neurosci 2013; 7:148. [PMID: 24009547 PMCID: PMC3757321 DOI: 10.3389/fnins.2013.00148] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 12/25/2022] Open
Abstract
The gut hormone, ghrelin, is the only known peripherally derived orexigenic signal. It activates its centrally expressed receptor, the growth hormone secretagogue receptor (GHS-R1a), to stimulate food intake. The ghrelin signaling system has recently been suggested to play a key role at the interface of homeostatic control of appetite and the hedonic aspects of food intake, as a critical role for ghrelin in dopaminergic mesolimbic circuits involved in reward signaling has emerged. Moreover, enhanced plasma ghrelin levels are associated with conditions of physiological stress, which may underline the drive to eat calorie-dense "comfort-foods" and signifies a role for ghrelin in stress-induced food reward behaviors. These complex and diverse functionalities of the ghrelinergic system are not yet fully elucidated and likely involve crosstalk with additional signaling systems. Interestingly, accumulating data over the last few years has shown the GHS-R1a receptor to dimerize with several additional G-protein coupled receptors (GPCRs) involved in appetite signaling and reward, including the GHS-R1b receptor, the melanocortin 3 receptor (MC3), dopamine receptors (D1 and D2), and more recently, the serotonin 2C receptor (5-HT2C). GHS-R1a dimerization was shown to affect downstream signaling and receptor trafficking suggesting a potential novel mechanism for fine-tuning GHS-R1a receptor mediated activity. This review summarizes ghrelin's role in food reward and stress and outlines the GHS-R1a dimer pairs identified to date. In addition, the downstream signaling and potential functional consequences of dimerization of the GHS-R1a receptor in appetite and stress-induced food reward behavior are discussed. The existence of multiple GHS-R1a heterodimers has important consequences for future pharmacotherapies as it significantly increases the pharmacological diversity of the GHS-R1a receptor and has the potential to enhance specificity of novel ghrelin-targeted drugs.
Collapse
|
20
|
Uchida A, Zigman JM, Perelló M. Ghrelin and eating behavior: evidence and insights from genetically-modified mouse models. Front Neurosci 2013; 7:121. [PMID: 23882175 PMCID: PMC3712270 DOI: 10.3389/fnins.2013.00121] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
Ghrelin is an octanoylated peptide hormone, produced by endocrine cells of the stomach, which acts in the brain to increase food intake and body weight. Our understanding of the mechanisms underlying ghrelin's effects on eating behaviors has been greatly improved by the generation and study of several genetically manipulated mouse models. These models include mice overexpressing ghrelin and also mice with genetic deletion of ghrelin, the ghrelin receptor [the growth hormone secretagogue receptor (GHSR)] or the enzyme that post-translationally modifies ghrelin [ghrelin O-acyltransferase (GOAT)]. In addition, a GHSR-null mouse model in which GHSR transcription is globally blocked but can be cell-specifically reactivated in a Cre recombinase-mediated fashion has been generated. Here, we summarize findings obtained with these genetically manipulated mice, with the aim to highlight the significance of the ghrelin system in the regulation of both homeostatic and hedonic eating, including that occurring in the setting of chronic psychosocial stress.
Collapse
Affiliation(s)
- Aki Uchida
- Divisions of Hypothalamic Research and Endocrinology and Metabolism, Department of Medicine, The University of Texas Southwestern Medical Center Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | |
Collapse
|
21
|
Palotai M, Bagosi Z, Jászberényi M, Csabafi K, Dochnal R, Manczinger M, Telegdy G, Szabó G. Ghrelin and Nicotine Stimulate Equally the Dopamine Release in the Rat Amygdala. Neurochem Res 2013; 38:1989-95. [DOI: 10.1007/s11064-013-1105-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/29/2022]
|
22
|
Walker AK, Ibia IE, Zigman JM. Disruption of cue-potentiated feeding in mice with blocked ghrelin signaling. Physiol Behav 2012; 108:34-43. [PMID: 23063723 DOI: 10.1016/j.physbeh.2012.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022]
Abstract
The peptide hormone ghrelin regulates a variety of eating behaviors. Not only does it potently increase intake of freely-available food, but it also shifts food preference toward diets rich in fat, enhances operant responding for food rewards, and induces conditioned place preference for food rewards. Here, we postulated that ghrelin also enables cue-potentiated feeding, in which eating is enhanced upon presentation of a food-conditioned stimulus. To test this hypothesis, a novel cue-potentiated feeding protocol adapted for use in mice was designed and validated, and then the effects of pharmacologic ghrelin receptor (GHSR) antagonism and GHSR transcriptional blockade (as occurs in GHSR-null mice) were assessed. Sated C57BL/6J mice indeed demonstrated cue-potentiated intake of grain-based pellets specifically upon presentation of a positive conditioned stimulus (CS+) but not a negative conditioned stimulus (CS-). Treatment with a GHSR antagonist blocked potentiated feeding in sated C57BL/6J mice in response to the CS+. In contrast, while GHSR-null mice also lacked a potentiation of feeding specifically in response to the CS+, they displayed an enhanced intake of pellets in response to both the positive and negative conditioned stimuli. The pattern of immediate early gene expression within the basolateral amygdala - a brain region previously linked to cue-potentiated feeding - paralleled the observed behavior of these mice, suggesting uncharacteristic activation of the amygdala in response to negative conditioned stimuli in GHSR-null mice as compared to wild-type littermates. Thus, although the observed disruptions in cue-potentiated feeding are different depending upon whether GHSR activity or GHSR expression is blocked, a key role for GHSRs in establishing a specific positive cue-food association has now been established.
Collapse
Affiliation(s)
- Angela K Walker
- Department of Internal Medicine (Divisions of Hypothalamic Research and of Endocrinology & Metabolism), The University of Texas Southwestern Medical Center, Dallas, TX 75390-9077, United States
| | | | | |
Collapse
|
23
|
Perelló M, Zigman JM. The role of ghrelin in reward-based eating. Biol Psychiatry 2012; 72:347-53. [PMID: 22458951 PMCID: PMC3388148 DOI: 10.1016/j.biopsych.2012.02.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/03/2012] [Accepted: 02/17/2012] [Indexed: 01/18/2023]
Abstract
The peptide hormone ghrelin acts in the central nervous system as a potent orexigenic signal. Not only is ghrelin recognized as playing an important role in feeding circuits traditionally thought of as affecting body weight homeostasis, but also an accumulating number of scientific studies have identified ghrelin as being a key regulator of reward-based, hedonic eating behaviors. In the current article, we review ghrelin's orexigenic actions, the evidence linking ghrelin to food reward behavior, potential mechanisms by which ghrelin mediates reward-based eating behavior, and those studies suggesting an obligatory role for ghrelin in the changed eating behaviors induced by stress.
Collapse
Affiliation(s)
- Mario Perelló
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology (IMBICE-CONICET/CICPBA), Calle 526 s/n entre 10 y 11, La Plata, Buenos Aires, Argentina 1900
| | - Jeffrey M. Zigman
- Department of Internal Medicine (Divisions of Hypothalamic Research and of Endocrinology & Metabolism), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9077,Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9077
| |
Collapse
|
24
|
Overduin J, Figlewicz DP, Bennett-Jay J, Kittleson S, Cummings DE. Ghrelin increases the motivation to eat, but does not alter food palatability. Am J Physiol Regul Integr Comp Physiol 2012; 303:R259-69. [PMID: 22673784 PMCID: PMC3423988 DOI: 10.1152/ajpregu.00488.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 05/30/2012] [Indexed: 11/22/2022]
Abstract
Homeostatic eating cannot explain overconsumption of food and pathological weight gain. A more likely factor promoting excessive eating is food reward and its representation in the central nervous system (CNS). The anorectic hormones leptin and insulin reduce food reward and inhibit related CNS reward pathways. Conversely, the orexigenic gastrointestinal hormone ghrelin activates both homeostatic and reward-related neurocircuits. The current studies were conducted to identify in rats the effects of intracerebroventricular ghrelin infusions on two distinct aspects of food reward: hedonic valuation (i.e., "liking") and the motivation to self-administer (i.e., "wanting") food. To assess hedonic valuation of liquid food, lick motor patterns were recorded using lickometry. Although ghrelin administration increased energy intake, it did not alter the avidity of licking (initial lick rates or lick-cluster size). Several positive-control conditions ruled out lick-rate ceiling effects. Similarly, when the liquid diet was hedonically devalued with quinine supplementation, ghrelin failed to reverse the quinine-associated reduction of energy intake and avidity of licking. The effects of ghrelin on rats' motivation to eat were assessed using lever pressing to self-administer food in a progressive-ratio paradigm. Ghrelin markedly increased motivation to eat, to levels comparable to or greater than those seen following 24 h of food deprivation. Pretreatment with the dopamine D1 receptor antagonist SCH-23390 eliminated ghrelin-induced increases in lever pressing, without compromising generalized licking motor control, indicating a role for D1 signaling in ghrelin's motivational feeding effects. These results indicate that ghrelin increases the motivation to eat via D1 receptor-dependent mechanisms, without affecting perceived food palatability.
Collapse
Affiliation(s)
- Joost Overduin
- Veterans Administration Puget Sound Health Care System, Office of Research and Development Medical Research Service, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
25
|
Hemmann K, Raekallio M, Kanerva K, Hänninen L, Pastell M, Palviainen M, Vainio O. Circadian variation in ghrelin and certain stress hormones in crib-biting horses. Vet J 2012; 193:97-102. [DOI: 10.1016/j.tvjl.2011.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 09/21/2011] [Accepted: 09/28/2011] [Indexed: 01/05/2023]
|
26
|
Schellekens H, Finger BC, Dinan TG, Cryan JF. Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther 2012; 135:316-26. [PMID: 22749794 DOI: 10.1016/j.pharmthera.2012.06.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022]
Abstract
The neuronal circuitry underlying the complex relationship between stress, mood and food intake are slowly being unravelled and several studies suggest a key role herein for the peripherally derived hormone, ghrelin. Evidence is accumulating linking obesity as an environmental risk factor to psychiatric disorders such as stress, anxiety and depression. Ghrelin is the only known orexigenic hormone from the periphery to stimulate food intake. Plasma ghrelin levels are enhanced under conditions of physiological stress and ghrelin has recently been suggested to play an important role in stress-induced food reward behaviour. In addition, chronic stress or atypical depression has often demonstrated to correlate with an increase in ingestion of caloric dense 'comfort foods' and have been implicated as one of the major contributor to the increased prevalence of obesity. Recent evidence suggests ghrelin as a critical factor at the interface of homeostatic control of appetite and reward circuitries, modulating the hedonic aspects of food intake. Therefore, the reward-related feeding of ghrelin may reveal itself as an important factor in the development of addiction to certain foods, similar to its involvement in the dependence to drugs of abuse, including alcohol. This review will highlight the accumulating evidence demonstrating the close interaction between food, mood and stress and the development of obesity. We consider the ghrelinergic system as an effective target for the development of successful anti-obesity pharmacotherapies, which not only affects appetite but also selectively modulates the rewarding properties of food and impact on psychological well-being in conditions of stress, anxiety and depression.
Collapse
|
27
|
King SJ, Isaacs AM, O'Farrell E, Abizaid A. Motivation to obtain preferred foods is enhanced by ghrelin in the ventral tegmental area. Horm Behav 2011; 60:572-80. [PMID: 21872601 DOI: 10.1016/j.yhbeh.2011.08.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 11/25/2022]
Abstract
Ghrelin is an orexigenic peptide that acts within the central nervous system to stimulate appetite and food intake via the growth hormone secretagogue receptor (GHS-R). It has been hypothesized that ghrelin modulates food intake in part by stimulating reward pathways in the brain and potentially stimulating the intake of palatable foods. Here we examined the effects of chronic ghrelin administration in the ventral tegmental area (VTA) via osmotic minipumps on 1) ad libitum food intake and bodyweight; 2) macronutrient preference; and 3) motivation to obtain chocolate pellets. In the first study rats receiving ghrelin into the VTA showed a dose-dependent increase in the intake of regular chow, also resulting in increased body weight gain. A second study revealed that intra-VTA delivery of the ghrelin receptor antagonist [Lys-3]-GHRP-6 selectively reduced caloric intake of high-fat chow and reduced body weight gain relative to control and ghrelin treated rats. The third study demonstrated that food restricted rats worked harder for food pellets when infused with ghrelin than when infused with vehicle or ghrelin receptor antagonist treated rats. Finally, rats trained on an FR1 schedule but returned to ad libitum during ghrelin infusion, responded at 86% of baseline levels when they were not hungry, whereas saline infused rats responded at 36% of baseline. Together, these results suggest that ghrelin acts directly on the VTA to increase preference for and motivation to obtain highly-palatable food.
Collapse
Affiliation(s)
- S J King
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | | | | | | |
Collapse
|
28
|
Chuang JC, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter M, Zigman JM. Ghrelin mediates stress-induced food-reward behavior in mice. J Clin Invest 2011; 121:2684-92. [PMID: 21701068 DOI: 10.1172/jci57660] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/13/2011] [Indexed: 11/17/2022] Open
Abstract
The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.
Collapse
Affiliation(s)
- Jen-Chieh Chuang
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | | | | | | | | | | | | |
Collapse
|