1
|
Menon NJ, Sun C, Chhina J, Halvorson BD, Frisbee JC, Frisbee SJ. Cerebrovascular dysfunction and depressive symptoms in preclinical models: insights from a scoping review. J Appl Physiol (1985) 2024; 136:1352-1363. [PMID: 38601994 DOI: 10.1152/japplphysiol.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Although existing literature supports associations between cerebrovascular dysfunction and the emergence of depression and depressive symptoms, relatively little is known about underlying mechanistic pathways that may explain potential relationships. As such, an integrated understanding of these relationships in preclinical models could provide insight into the nature of the relationship, basic mechanistic linkages, and areas in which additional investment should be targeted. This scoping review was conducted in MEDLINE, EMBASE, and Scopus to outline the relationship between depressive symptoms and cerebrovascular dysfunction in preclinical animal models with an additional focus on the areas above. From 3,438 articles initially identified, 15 studies met the inclusion criteria and were included in the review. All studies reported a positive association between the severity of markers for cerebrovascular dysfunction and that for depressive symptoms in rodent models and this spanned all models for either pathology. Specific mechanistic links between the two such as chronic inflammation, elevated vascular oxidant stress, and altered serotonergic signaling were highlighted. Notably, almost all studies addressed outcomes in male animals, with a near complete lack of data from females, and there was little consistency in terms of how cerebrovascular dysfunction was assessed. Across nearly all studies was a lack of clarity for any "cause and effect" relationship between depressive symptoms and cerebrovascular dysfunction. At this time, it is reasonable to conclude that a correlative relationship clearly exists between the two, and future investigation will be required to parse out more specific aspects of this relationship.NEW & NOTEWORTHY This scoping review presents a structured evaluation of all relevant existing literature linking cerebral vasculopathy to depressive symptom emergence in preclinical models. Results support a definite connection between vascular dysfunction and depressive symptoms, highlighting the importance of chronic elevations in inflammation and oxidant stress, and impaired serotonergic signaling. The review also identified significant knowledge gaps addressing male versus female differences and limited clear mechanistic links between cerebral vasculopathy and depressive symptoms.
Collapse
Affiliation(s)
- Nithin J Menon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Clara Sun
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Jashnoor Chhina
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Brayden D Halvorson
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
- Department of Epidemiology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
2
|
Gacar G, Gocmez SS, Halbutoğulları ZS, Kılıç KC, Kaya A, Yazir Y, Utkan T. Resveratrol improves vascular endothelial dysfunction in the unpredictable chronic mild stress model of depression in rats by reducing inflammation. Behav Brain Res 2023; 438:114186. [PMID: 36336162 DOI: 10.1016/j.bbr.2022.114186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Chronic psychological stress may cause depression and it is a risk factor for vascular endothelial dysfunction. Inflammation may contribute to endothelial dysfunction. Resveratrol, which has antiinflammatory and vasculoprotective properties, has been reported its beneficial effects on endothelial dysfunction induced by hypertension, diabetes and, aging. The effects of resveratrol on stress-induced endothelial dysfunction is not investigated yet. This study aimed to investigate the efficacy of resveratrol on vascular function in the unpredictable chronic moderate stress (UCMS) model of rats and to examine the possible mechanisms of resveratrol by assessment of proinflammatory markers. Male rats were assigned to 4 groups (n = 8 for each group): Control, Control+Resveratrol, UCMS, UCMS+Resveratrol. UCMS and UCMS+Resveratrol groups were exposed to the UCMS procedure for 12 weeks. Resveratrol (20 mg/kg/day, i.p., during 12 weeks) was given to the Control+Resveratrol and UCMS+Resveratrol groups.Then depressive-like behaviors were evaluated by forced swimming test. After behavioral tests, systolic blood pressure was recorded. Endothelial function of the thoracic aorta was evaluated by isolated organ bath system. Vascular eNOS expression and inflammatory markers such as TNF-α, IL-1β, IL-6, CRP, ICAM1, MCP in serum and vascular tissue were analyzed to explore the mechanisms of resveratrol. UCMS resulted in depressive-like behavior, endothelial dysfunction and increased inflammatory cytokines in both serum and tissue samples. Resveratrol treatment improved depressive-like behavior, ameliorated vascular dysfunction, and reversed stress-induced inflammation. Our findings suggest that resveratrol exerted antidepressant-like effect and prevented vascular endothelial dysfunction by reducing systemic and peripheral inflammation in UCMS-induced depression in rats. Therefore, resveratrol may be a therapeutic option with a vasculoprotective effect in depression.
Collapse
Affiliation(s)
- Gülçin Gacar
- Kocaeli University Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli, Turkey
| | - Semil Selcen Gocmez
- Kocaeli University Faculty of Medicine, Department of Pharmacology, Kocaeli, Turkey
| | - Zehra Seda Halbutoğulları
- Kocaeli University Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli, Turkey; Kocaeli University Faculty of Medicine, Department of Medical Biology, Kocaeli, Turkey
| | - Kamil Can Kılıç
- Kocaeli University Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli, Turkey
| | - Aysenur Kaya
- Kocaeli University Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli, Turkey
| | - Yusufhan Yazir
- Kocaeli University Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli, Turkey; Kocaeli University Faculty of Medicine, Department of Histology and Embryology, Kocaeli, Turkey
| | - Tijen Utkan
- Kocaeli University Faculty of Medicine, Department of Pharmacology, Kocaeli, Turkey; Kocaeli University Experimental Medical Research and Application Centre, Kocaeli, Turkey.
| |
Collapse
|
3
|
Dudek KA, Dion‐Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53:183-221. [PMID: 31421056 PMCID: PMC7891571 DOI: 10.1111/ejn.14547] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.
Collapse
Affiliation(s)
- Katarzyna A. Dudek
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Ellen Tuck
- Smurfit Institute of GeneticsTrinity CollegeDublinIreland
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| |
Collapse
|
4
|
Batschauer T, Cordeiro JM, Simas BB, Brunetta HS, Souza RM, Nunes EA, Reis WL, Moreira ELG, Crestani CC, Santos ARS, Speretta GF. Behavioral, cardiovascular and endocrine alterations induced by chronic stress in rats fed a high-fat diet. Physiol Behav 2020; 223:113013. [PMID: 32540332 DOI: 10.1016/j.physbeh.2020.113013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Chronic stress is a risk factor for cardiovascular diseases (CVD) and anxiety disorders (AD). Obesity also increases the risk of CVD and AD. The modern lifestyle commonly includes high-fat diet (HFD) intake and daily exposure to stressful events. However, it is not completely understood whether chronic stress exacerbates HFD-induced behavioral and physiological changes. Thus, this study aimed to evaluate the effects of the exposure to chronic variable stress (CVS) on behavioral, cardiovascular, and endocrine parameters in rats fed an HFD. Male Wistar rats were divided into four groups: control-standard chow diet (control-SD), control-HFD, CVS-SD, and CVS-HFD. The control-HFD and CVS-HFD groups were fed with HFD for six weeks. The CVS-HFD and CVS-SD groups were exposed to a CVS protocol in the last ten days of the six weeks. The behavioral analysis revealed that CVS decreased the open-arm exploration time during the elevated plus-maze test (p < 0.05). HFD promoted metabolic disorders and increased angiotensin II and leptin blood levels (p < 0.05). CVS or HFD increased blood pressure and the sympathetic nervous system (SNS) modulation of the heart and vessels and decreased baroreflex activity (p < 0.05). Combining CVS and HFD exacerbated the cardiac SNS response and increased basal heart rate (HR) (p < 0.05). CVS or HFD did not affect vascular function and aorta nitrate (p > 0.05). Taken together, these data indicate a synergism between HFD and CVS on the HR and cardiac SNS responses, suggesting an increased cardiovascular risk. Besides, neuroendocrine and anxiogenic disturbers may contribute to the cardiovascular changes induced by HFD and CVS, respectively.
Collapse
Affiliation(s)
- Tiago Batschauer
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Júlio M Cordeiro
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Bruna B Simas
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Henver S Brunetta
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Raul M Souza
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Everson A Nunes
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Wagner L Reis
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Eduardo L G Moreira
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Adair R S Santos
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Guilherme F Speretta
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Postgraduate Program in Neuroscience, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Sher LD, Geddie H, Olivier L, Cairns M, Truter N, Beselaar L, Essop MF. Chronic stress and endothelial dysfunction: mechanisms, experimental challenges, and the way ahead. Am J Physiol Heart Circ Physiol 2020; 319:H488-H506. [PMID: 32618516 DOI: 10.1152/ajpheart.00244.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although chronic stress is an important risk factor for cardiovascular diseases (CVD) onset, the underlying mechanisms driving such pathophysiological complications remain relatively unknown. Here, dysregulation of innate stress response systems and the effects of downstream mediators are strongly implicated, with the vascular endothelium emerging as a primary target of excessive glucocorticoid and catecholamine action. Therefore, this review article explores the development of stress-related endothelial dysfunction by focusing on the following: 1) assessing the phenomenon of stress and complexities surrounding this notion, 2) discussing mechanistic links between chronic stress and endothelial dysfunction, and 3) evaluating the utility of various preclinical models currently employed to study mechanisms underlying the onset of stress-mediated complications such as endothelial dysfunction. The data reveal that preclinical models play an important role in our efforts to gain an increased understanding of mechanisms underlying stress-mediated endothelial dysfunction. It is our understanding that this provides a good foundation going forward, and we propose that further efforts should be made to 1) more clearly define the concept of stress and 2) standardize protocols of animal models with specific guidelines to better indicate the mental complications that are simulated.
Collapse
Affiliation(s)
- Lucien Derek Sher
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Hannah Geddie
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lukas Olivier
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Megan Cairns
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nina Truter
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Leandrie Beselaar
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Greaney JL, Saunders EFH, Santhanam L, Alexander LM. Oxidative Stress Contributes to Microvascular Endothelial Dysfunction in Men and Women With Major Depressive Disorder. Circ Res 2019; 124:564-574. [PMID: 30582458 DOI: 10.1161/circresaha.118.313764] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE In rodent models of depression, oxidative stress-induced reductions in NO bioavailability contribute to impaired endothelium-dependent dilation. Endothelial dysfunction is evident in major depressive disorder (MDD); however, the molecular mediators remain undefined. OBJECTIVE We sought to translate preclinical findings to humans by testing the role of oxidative stress in mediating microvascular endothelial dysfunction, including potential modulatory influences of sex, in MDD. METHODS AND RESULTS Twenty-four treatment-naive, otherwise healthy, young adults with MDD (14 women; 18-23 years) and 20 healthy adults (10 women; 19-30 years) participated. Red blood cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine, alone and in combination with an NO synthase inhibitor (L-NAME), a superoxide scavenger (Tempol), and an NADPH oxidase inhibitor (apocynin), as well as during perfusion of the endothelium-independent agonist sodium nitroprusside. Tissue oxidative stress markers (eg, nitrotyrosine abundance, superoxide production) were also quantified. Endothelium-dependent dilation was blunted in MDD and mediated by reductions in NO-dependent dilation. Endothelium-independent dilation was likewise attenuated in MDD. In MDD, there were no sex differences in either NO-mediated endothelium-dependent dilation or endothelium-independent dilation. Acute scavenging of superoxide or inhibition of NADPH oxidase improved NO-dependent dilation in MDD. Expression and activity of oxidative stress markers were increased in MDD. In a subset of adults with MDD treated with a selective serotonin reuptake inhibitor for their depressive symptoms and in remission (n=8; 7 women; 19-37 years), NO-mediated endothelium-dependent dilation was preserved, but endothelium-independent dilation was impaired, compared with healthy adults. CONCLUSIONS Oxidative stress-induced reductions in NO-dependent dilation, as well as alterations in vascular smooth muscle function, directly contribute to microvascular dysfunction in MDD. Strategies targeting vascular oxidative stress may be viable therapeutic options for improving NO-mediated endothelial function and reducing cardiovascular risk in MDD.
Collapse
Affiliation(s)
- Jody L Greaney
- From the Noll Laboratory, Department of Kinesiology, Pennsylvania State University, University Park (J.L.G., L.M.A.)
| | - Erika F H Saunders
- Department of Psychiatry, Penn State College of Medicine, Hershey, PA (E.F.H.S.)
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.S.)
| | - Lacy M Alexander
- From the Noll Laboratory, Department of Kinesiology, Pennsylvania State University, University Park (J.L.G., L.M.A.)
| |
Collapse
|
7
|
Branyan KW, Devallance ER, Lemaster KA, Skinner RC, Bryner RW, Olfert IM, Kelley EE, Frisbee JC, Chantler PD. Role of Chronic Stress and Exercise on Microvascular Function in Metabolic Syndrome. Med Sci Sports Exerc 2019; 50:957-966. [PMID: 29271845 DOI: 10.1249/mss.0000000000001531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The present study examined the effect of unpredictable chronic mild stress (UCMS) on peripheral microvessel function in healthy and metabolic syndrome (MetS) rodents and whether exercise training could prevent the vascular dysfunction associated with UCMS. METHODS Lean and obese (model of MetS) Zucker rats (LZR and OZR) were exposed to 8 wk of UCMS, exercise (Ex), UCMS + Ex, or control conditions. At the end of the intervention, gracilis arterioles (GA) were isolated and hung in a pressurized myobath to assess endothelium-dependent (EDD) and endothelium-independent (EID) dilation. Levels of nitric oxide (NO) and reactive oxygen species (ROS) were measured through 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and dihydroethidium staining, respectively. RESULTS Compared with LZR controls, EDD and EID were lower (P = 0.0001) in LZR-UCMS. The OZR-Ex group had a higher EDD (P = 0.0001) and EID (P = 0.003) compared with OZR controls, whereas only a difference in EDD (P = 0.01) was noted between the LZR-control and LZR-Ex groups. Importantly, EDD and EID were higher in the LZR (P = 0.0001; P = 0.02) and OZR (P = 0.0001; P = 0.02) UCMS + Ex groups compared with UCMS alone. Lower NO bioavailability and higher ROS were noted in the LZR-UCMS group (P = 0.0001), but not OZR-UCMS, compared with controls. The Ex and UCMS-Ex groups had higher NO bioavailability (P = 0.0001) compared with the control and UCMS groups, but ROS levels remained high. CONCLUSIONS The comorbidity between UCMS and MetS does not exacerbate the effects of one another on GA EDD responses, but does lead to the development of other vasculopathy adaptations, which can be partially explained by alterations in NO and ROS production. Importantly, exercise training alleviates most of the negative effects of UCMS on GA function.
Collapse
Affiliation(s)
- Kayla W Branyan
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Evan R Devallance
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Kent A Lemaster
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - R Christopher Skinner
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Randy W Bryner
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - I Mark Olfert
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Eric E Kelley
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Jefferson C Frisbee
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Paul D Chantler
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| |
Collapse
|
8
|
Subchronic stress effects on vascular reactivity in C57BL/6 strain mice. Physiol Behav 2019; 204:283-289. [PMID: 30862478 DOI: 10.1016/j.physbeh.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS There is a close relationship between psychosocial stress and the development of cardiovascular diseases. It has been reported that there are different alterations in endothelial function in this relationship. However, results obtained in different experimental stress models are controversial. Herein, we studied the effects of subchronic stress induced by movement restraint on several cardiovascular responses and plasma corticosterone concentration in male adult mice. METHODS Experiments were performed in adult male mice of C57BL/6 strain. Animals were allocated into three groups: Control group A, without manipulation; Control group B, with manipulation (quantitation of blood pressure); and Experimental group, with quantitation of blood pressure and exposure to movement restraint. In vivo, heart rate and blood pressure were registered. In vitro, in aortic rings, vascular reactivity was analyzed. Additionally, plasma corticosterone concentration was quantified. RESULTS In vivo, subchronic stress did not produce changes on heart rate either on blood pressure. In vitro, aortic rings with and without endothelium from control group B and experimental group showed: 1) a significant decrease in the maximal tension developed in response to phenylephrine; 2) this decrease was reverted by L-NAME. However, aortic rings from all groups, developed the same tension in response to high K+ solution. In aortic rings from animals of the experimental group, an increase in the maximal relaxation induced by carbachol was observed. This relaxation was prevented and/or reversed by L-NAME. Plasma corticosterone concentration was higher in the experimental group than that in the control group A. CONCLUSIONS Exposition to subchronic movement restraint did not produce alterations in neurovegetative responses in this strain mice. But according to vasomotor responses observed, the results suggest that this subchronic stress model induces an increase in the synthesis/release of nitric oxide, both from endothelial cells and vascular smooth muscle. In accordance with the aforementioned results, we propose that C57BL/6 mice strain is sensitive to subchronic movement restraint stress model.
Collapse
|
9
|
Brooks S, Branyan KW, DeVallance E, Skinner R, Lemaster K, Sheets JW, Pitzer CR, Asano S, Bryner RW, Olfert IM, Frisbee JC, Chantler PD. Psychological stress-induced cerebrovascular dysfunction: the role of metabolic syndrome and exercise. Exp Physiol 2018; 103:761-776. [PMID: 29436736 PMCID: PMC5927836 DOI: 10.1113/ep086892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/09/2018] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. ABSTRACT Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P < 0.05) ex vivo middle cerebral artery (MCA) endothelium-dependent dilatation (EDD), but changes in MCA remodelling and stiffness were not evident, though cerebral microvessel density (MVD) decreased (30%, P < 0.05). The presence of UCMS and MetS (obese Zucker rats; OZR) decreased MCA EDD (35%, P < 0.05) and dilatation to sodium nitroprusside (20%, P < 0.05), while MCA stiffness increased and cerebral MVD decreased (31%, P < 0.05), which were linked to reduced nitric oxide and increased oxidative levels. Aerobic exercise prevented UCMS impairments in MCA function and MVD in LZR, and partly restored MCA function, stiffness and MVD in OZR. Our data suggest that the benefits of exercise with UCMS were due to a reduction in oxidative stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature.
Collapse
Affiliation(s)
- Steven Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Evan DeVallance
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Roy Skinner
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Kent Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - J Whitney Sheets
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Christopher R Pitzer
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Shinichi Asano
- Department of Health and Human Performance, Fairmont State University, WV, USA
| | - Randall W Bryner
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
- Center for Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
- Center for Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
10
|
Burrage E, Marshall KL, Santanam N, Chantler PD. Cerebrovascular dysfunction with stress and depression. Brain Circ 2018; 4:43-53. [PMID: 30276336 PMCID: PMC6126243 DOI: 10.4103/bc.bc_6_18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of adequate tissue perfusion through a dense network of cerebral microvessels is critical for the perseveration of normal brain function. Regulation of the cerebral blood flow has to ensure adequate delivery of nutrients and oxygen with moment-to-moment adjustments to avoid both hypo- and hyper-perfusion of the brain tissue. Even mild impairments of cerebral blood flow regulation can have significant implications on brain function. Evidence suggests that chronic stress and depression elicits multifaceted functional impairments to the cerebral microcirculation, which plays a critical role in brain health and the pathogenesis of stress-related cognitive impairment and cerebrovascular events. Identifying the functional and structural changes to the brain that are induced by stress is crucial for achieving a realistic understanding of how related illnesses, which are highly disabling and with a large economic cost, can be managed or reversed. This overview discusses the stress-induced alterations in neurovascular coupling with specific attention to cerebrovascular regulation (endothelial dependent and independent vasomotor function, microvessel density). The pathophysiological consequences of cerebral microvascular dysfunction with stress and depression are explored.
Collapse
Affiliation(s)
- Emily Burrage
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV, USA
| | - Kent L. Marshall
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
11
|
Frisbee SJ, Singh SS, Jackson DN, Lemaster KA, Milde SA, Shoemaker JK, Frisbee JC. Beneficial Pleiotropic Antidepressive Effects of Cardiovascular Disease Risk Factor Interventions in the Metabolic Syndrome. J Am Heart Assoc 2018; 7:e008185. [PMID: 29581223 PMCID: PMC5907597 DOI: 10.1161/jaha.117.008185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/01/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although the increased prevalence and severity of clinical depression and elevated cardiovascular disease risk represent 2 vexing public health issues, the growing awareness of their combined presentation compounds the challenge. The obese Zucker rat, a model of the metabolic syndrome, spontaneously develops significant depressive symptoms in parallel with the progression of the metabolic syndrome and, thus, represents a compelling model for study. The primary objective was to assess the impact on both cardiovascular outcomes, specifically vascular structure and function, and depressive symptoms in obese Zucker rats after aggressive treatment for cardiovascular disease risk factors with long-term exercise or targeted pharmacological interventions. METHODS AND RESULTS We chronically treated obese Zucker rats with clinically relevant interventions against cardiovascular disease risk factors to determine impacts on vascular outcomes and depressive symptom severity. While most of the interventions (chronic exercise, anti-hypertensive, the interventions (long-term exercise, antihypertensive, antidyslipidemia, and antidiabetic) were differentially effective at improving vascular outcomes, only those that also resulted in a significant improvement to oxidant stress, inflammation, arachidonic acid metabolism (prostacyclin versus thromboxane A2), and their associated sequelae were effective at also blunting depressive symptom severity. Using multivariable analyses, discrimination between the effectiveness of treatment groups to maintain behavioral outcomes appeared to be dependent on breaking the cycle of inflammation and oxidant stress, with the associated outcomes of improving endothelial metabolism and both cerebral and peripheral vascular structure and function. CONCLUSIONS This initial study provides a compelling framework from which to further interrogate the links between cardiovascular disease risk factors and depressive symptoms and suggests mechanistic links and potentially effective avenues for intervention.
Collapse
Affiliation(s)
- Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sarah S Singh
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kent A Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Samantha A Milde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Brooks SD, Hileman SM, Chantler PD, Milde SA, Lemaster KA, Frisbee SJ, Shoemaker JK, Jackson DN, Frisbee JC. Protection from chronic stress- and depressive symptom-induced vascular endothelial dysfunction in female rats is abolished by preexisting metabolic disease. Am J Physiol Heart Circ Physiol 2018; 314:H1085-H1097. [PMID: 29451819 DOI: 10.1152/ajpheart.00648.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While it is known that chronic stress and clinical depression are powerful predictors of poor cardiovascular outcomes, recent clinical evidence has identified correlations between the development of metabolic disease and depressive symptoms, creating a combined condition of severely elevated cardiovascular disease risk. In this study, we used the obese Zucker rat (OZRs) and the unpredictable chronic mild stress (UCMS) model to determine the impact of preexisting metabolic disease on the relationship between chronic stress/depressive symptoms and vascular function. Additionally, we determined the impact of metabolic syndrome on sex-based protection from chronic stress/depressive effects on vascular function in female lean Zucker rats (LZRs). In general, vasodilator reactivity was attenuated under control conditions in OZRs compared with LZRs. Although still impaired, conduit arterial and resistance arteriolar dilator reactivity under control conditions in female OZRs was superior to that in male or ovariectomized (OVX) female OZRs, largely because of better maintenance of vascular nitric oxide and prostacyclin levels. However, imposition of metabolic syndrome in combination with UCMS in OZRs further impaired dilator reactivity in both vessel subtypes to a similarly severe extent and abolished any protective effect in female rats compared with male or OVX female rats. The loss of vascular protection in female OZRs with UCMS was reflected in vasodilator metabolite levels, which closely matched those in male and OVX female OZRs subjected to UCMS. These results suggest that presentation of metabolic disease in combination with depressive symptoms can overwhelm the vasoprotection identified in female rats and, thereby, may reflect a severe impairment to normal endothelial function. NEW & NOTEWORTHY This study addresses the protection from chronic stress- and depression-induced vascular dysfunction identified in female compared with male or ovariectomized female rats. We determined the impact of preexisting metabolic disease, a frequent comorbidity of clinical depression in humans, on that vascular protection. With preexisting metabolic syndrome, female rats lost all protection from chronic stress/depressive symptoms and became phenotypically similar to male and ovariectomized female rats, with comparably poor vasoactive dilator metabolite profiles.
Collapse
Affiliation(s)
- Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Samantha A Milde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Kent A Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
13
|
Carnevali L, Montano N, Statello R, Sgoifo A. Rodent models of depression-cardiovascular comorbidity: Bridging the known to the new. Neurosci Biobehav Rev 2017; 76:144-153. [DOI: 10.1016/j.neubiorev.2016.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
|
14
|
Puzserova A, Bernatova I. Blood pressure regulation in stress: focus on nitric oxide-dependent mechanisms. Physiol Res 2017; 65:S309-S342. [PMID: 27775419 DOI: 10.33549/physiolres.933442] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stress is considered a risk factor associated with the development of various civilization diseases including cardiovascular diseases, malignant tumors and mental disorders. Research investigating mechanisms involved in stress-induced hypertension have attracted much attention of physicians and researchers, however, there are still ambiguous results concerning a causal relationship between stress and long-term elevation of blood pressure (BP). Several studies have observed that mechanisms involved in the development of stress-induced hypertension include increased activity of sympathetic nervous system (SNS), glucocorticoid (GC) overload and altered endothelial function including decreased nitric oxide (NO) bioavailability. Nitric oxide is well known neurotransmitter, neuromodulator and vasodilator involved in regulation of neuroendocrine mechanisms and cardiovascular responses to stressors. Thus NO plays a crucial role in the regulation of the stress systems and thereby in the BP regulation in stress. Elevated NO synthesis, especially in the initial phase of stress, may be considered a stress-limiting mechanism, facilitating the recovery from stress to the resting levels via attenuation of both GC release and SNS activity as well as by increased NO-dependent vasorelaxation. On the other hand, reduced levels of NO were observed in the later phases of stress and in subjects with genetic predisposition to hypertension, irrespectively, in which reduced NO bioavailability may account for disruption of NO-mediated BP regulatory mechanisms and accentuated SNS and GC effects. This review summarizes current knowledge on the role of stress in development of hypertension with a special focus on the interactions among NO and other biological systems affecting blood pressure and vascular function.
Collapse
Affiliation(s)
- A Puzserova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | |
Collapse
|
15
|
Piantadosi SC, French BJ, Poe MM, Timić T, Marković BD, Pabba M, Seney ML, Oh H, Orser BA, Savić MM, Cook JM, Sibille E. Sex-Dependent Anti-Stress Effect of an α5 Subunit Containing GABA A Receptor Positive Allosteric Modulator. Front Pharmacol 2016; 7:446. [PMID: 27920723 PMCID: PMC5118774 DOI: 10.3389/fphar.2016.00446] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/08/2016] [Indexed: 12/21/2022] Open
Abstract
Rationale: Current first-line treatments for stress-related disorders such as major depressive disorder (MDD) act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2’F-R-CH3 (denoted “α5-PAM”), a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites, has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS) and treated with α5-PAM acutely (30 min prior to assessing behavior) or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as “behavioral emotionality”) across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in the hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusion: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities.
Collapse
Affiliation(s)
- Sean C Piantadosi
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
| | - Beverly J French
- Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA
| | - Michael M Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Tamara Timić
- Department of Pharmacology, University of Belgrade Belgrade, Serbia
| | - Bojan D Marković
- Department of Pharmaceutical Chemistry, University of Belgrade Belgrade, Serbia
| | - Mohan Pabba
- Neurobiology of Depression and Aging, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA
| | - Hyunjung Oh
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Department of Psychiatry, University of PittsburghPittsburgh, PA, USA; Neurobiology of Depression and Aging, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthToronto, ON, Canada
| | - Beverley A Orser
- Department of Anesthesia-Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Miroslav M Savić
- Department of Pharmacology, University of Belgrade Belgrade, Serbia
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Etienne Sibille
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Department of Psychiatry, University of PittsburghPittsburgh, PA, USA; Neurobiology of Depression and Aging, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthToronto, ON, Canada; Department of Psychiatry- Department of Pharmacology and Toxicology, University of TorontoToronto, ON, Canada
| |
Collapse
|
16
|
Aizenstein HJ, Baskys A, Boldrini M, Butters MA, Diniz BS, Jaiswal MK, Jellinger KA, Kruglov LS, Meshandin IA, Mijajlovic MD, Niklewski G, Pospos S, Raju K, Richter K, Steffens DC, Taylor WD, Tene O. Vascular depression consensus report - a critical update. BMC Med 2016; 14:161. [PMID: 27806704 PMCID: PMC5093970 DOI: 10.1186/s12916-016-0720-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vascular depression is regarded as a subtype of late-life depression characterized by a distinct clinical presentation and an association with cerebrovascular damage. Although the term is commonly used in research settings, widely accepted diagnostic criteria are lacking and vascular depression is absent from formal psychiatric manuals such as the Diagnostic and Statistical Manual of Mental Disorders, 5th edition - a fact that limits its use in clinical settings. Magnetic resonance imaging (MRI) techniques, showing a variety of cerebrovascular lesions, including extensive white matter hyperintensities, subcortical microvascular lesions, lacunes, and microinfarcts, in patients with late life depression, led to the introduction of the term "MRI-defined vascular depression". DISCUSSION This diagnosis, based on clinical and MRI findings, suggests that vascular lesions lead to depression by disruption of frontal-subcortical-limbic networks involved in mood regulation. However, despite multiple MRI approaches to shed light on the spatiotemporal structural changes associated with late life depression, the causal relationship between brain changes, related lesions, and late life depression remains controversial. While postmortem studies of elderly persons who died from suicide revealed lacunes, small vessel, and Alzheimer-related pathologies, recent autopsy data challenged the role of these lesions in the pathogenesis of vascular depression. Current data propose that the vascular depression connotation should be reserved for depressed older patients with vascular pathology and evident cerebral involvement. Based on current knowledge, the correlations between intra vitam neuroimaging findings and their postmortem validity as well as the role of peripheral markers of vascular disease in late life depression are discussed. CONCLUSION The multifold pathogenesis of vascular depression as a possible subtype of late life depression needs further elucidation. There is a need for correlative clinical, intra vitam structural and functional MRI as well as postmortem MRI and neuropathological studies in order to confirm the relationship between clinical symptomatology and changes in specific brain regions related to depression. To elucidate the causal relationship between regional vascular brain changes and vascular depression, animal models could be helpful. Current treatment options include a combination of vasoactive drugs and antidepressants, but the outcomes are still unsatisfying.
Collapse
Affiliation(s)
- Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Andrius Baskys
- Memory Disorders Clinic, Riverside Psychiatric Medical Group, Riverside, CA, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University, New York, NY, USA.,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Breno S Diniz
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Manoj Kumar Jaiswal
- Department of Psychiatry, Columbia University, New York, NY, USA.,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| | - Lev S Kruglov
- Department of Geriatric Psychiatry of the St. Petersburg Psychoneurological Research Institute named after V. M. Bekhterev, Medical Faculty of St. Petersburg University, St. Petersburg, Russia
| | - Ivan A Meshandin
- Clinical Department, Scientific and Practical Center of Psychoneurology named after V. M. Soloviev, St. Petersburg, Russia
| | - Milija D Mijajlovic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Guenter Niklewski
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Private Medical University, Nuremberg, Germany
| | - Sarah Pospos
- Memory Disorders Clinic, Riverside Psychiatric Medical Group, Riverside, CA, USA
| | - Keerthy Raju
- Consultant in Old Age Psychiatry, Cheshire and Wirral Partnership NHS Foundation Trust, Chester, UK
| | - Kneginja Richter
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Private Medical University, Nuremberg, Germany.,Faculty for Social Sciences, Technical University of Nuremberg Georg Simon Ohm, Nuremberg, Germany
| | - David C Steffens
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
| | - Warren D Taylor
- Department of Psychiatry, The Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs Medical Center, The Geriatric Research, Education, and Clinical Center (GRECC), Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Oren Tene
- Departments of Neurology and Psychiatry, Tel Aviv Medical Center, Tel Aviv, Israel.,Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel
| |
Collapse
|
17
|
Comorbidity Factors and Brain Mechanisms Linking Chronic Stress and Systemic Illness. Neural Plast 2016; 2016:5460732. [PMID: 26977323 PMCID: PMC4761674 DOI: 10.1155/2016/5460732] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/16/2022] Open
Abstract
Neuropsychiatric symptoms and mental illness are commonly present in patients with chronic systemic diseases. Mood disorders, such as depression, are present in up to 50% of these patients, resulting in impaired physical recovery and more intricate treatment regimen. Stress associated with both physical and emotional aspects of systemic illness is thought to elicit detrimental effects to initiate comorbid mental disorders. However, clinical reports also indicate that the relationship between systemic and psychiatric illnesses is bidirectional, further increasing the complexity of the underlying pathophysiological processes. In this review, we discuss the recent evidence linking chronic stress and systemic illness, such as activation of the immune response system and release of common proinflammatory mediators. Altogether, discovery of new targets is needed for development of better treatments for stress-related psychiatric illnesses as well as improvement of mental health aspects of different systemic diseases.
Collapse
|
18
|
Role of peripheral vascular resistance for the association between major depression and cardiovascular disease. J Cardiovasc Pharmacol 2016; 65:299-307. [PMID: 25469807 PMCID: PMC4415957 DOI: 10.1097/fjc.0000000000000187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Major depression and cardiovascular diseases are 2 of the most prevalent health problems in Western society, and an association between them is generally accepted. Although the specific mechanism behind this comorbidity remains to be elucidated, it is clear that it has a complex multifactorial character including a number of neuronal, humoral, immune, and circulatory pathways. Depression-associated cardiovascular abnormalities associate with cardiac dysfunctions and with changes in peripheral resistance. Although cardiac dysfunction in association with depression has been studied in detail, little attention was given to structural and functional changes in resistance arteries responsible for blood pressure control and tissue perfusion. This review discusses recent achievements in studies of depression-associated abnormalities in resistance arteries in humans and animal experimental models. The changes in arterial structure, contractile and relaxing functions associated with depression symptoms are discussed, and the role of these abnormalities for the pathology of major depression and cardiovascular diseases are suggested.
Collapse
|
19
|
Demirtaş T, Utkan T, Karson A, Yazır Y, Bayramgürler D, Gacar N. The link between unpredictable chronic mild stress model for depression and vascular inflammation? Inflammation 2015; 37:1432-8. [PMID: 24614944 DOI: 10.1007/s10753-014-9867-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation has been suggested to be associated with stress-induced depression and cardiovascular dysfunction. Tumor necrosis factor alpha (TNF-α) is a major cytokine in the activation of neuroendocrine, immune, and behavioral responses. In this study, we investigated the effects of infliximab (a TNF-α inhibitor) on endothelium-dependent vascular reactivity, systemic blood pressure, and endothelial nitric oxide synthase (eNOS) immunoreactivity in the unpredictable chronic mild stress (UCMS) model of depression in rats. There was no significant change between all groups in the systemic blood pressure. In UCMS, endothelium-dependent relaxation of the smooth muscle in response to carbachol was significantly decreased with 50 % maximal response (E max) and pD2 values compared with the controls. Infliximab was able to reverse this UCMS effect. Relaxation in response to the nitric oxide (NO) donor sodium nitroprusside and papaverine and KCl-induced contractile responses was similar between groups. In UCMS, decreased expression of eNOS was detected. Moreover, there was no significant change in UCMS + infliximab group with respect to control rats. Our results suggest that tumor necrosis factor-alpha (TNF-α) could be a major mediator of vascular dysfunction associated with UCMS, leading to decreased expression of eNOS.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Chronic Disease
- Depression/metabolism
- Depression/pathology
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Infliximab
- Male
- Organ Culture Techniques
- Rats
- Rats, Wistar
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Tuğçe Demirtaş
- Department of Pharmacology, Medical Faculty, Kocaeli University, Medical Faculty, 41380, Kocaeli, Turkey,
| | | | | | | | | | | |
Collapse
|
20
|
Golbidi S, Frisbee JC, Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol 2015; 308:H1476-98. [DOI: 10.1152/ajpheart.00859.2014] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/03/2015] [Indexed: 01/01/2023]
Abstract
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| | - Jefferson C. Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| |
Collapse
|
21
|
Rebel AA, Urquhart SA, Puig KL, Ghatak A, Brose SA, Golovko MY, Combs CK. Brain changes associated with thromboxane receptor antagonist SQ 29,548 treatment in a mouse model. J Neurosci Res 2015; 93:1279-92. [PMID: 25703023 DOI: 10.1002/jnr.23578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to characterize behavioral and physiological effects of a selective thromboxane (TP) receptor antagonist, SQ 29,548, in the C57Bl/6 mouse model. At 6 months of age, male mice were given either sham or drug i.p. injections for 3 days at a dose of 2 mg/kg each day. On the day after the final injection, mice were subjected to behavioral testing before brain collection. Left hemisphere hippocampi were collected from all mice for protein analysis via Western blot. Right brain hemispheres were fixed and embedded in gelatin and then serially sectioned. The sections were immunostained with anti-c-Fos antibodies. Prostaglandin analysis was performed from remaining homogenized brain samples, minus the hippocampi. Injection of SQ 29,548 decreased selective brain prostaglandin levels compared with sham controls. This correlated with robust increases in limbic-region c-Fos immunoreactivity in the SQ 29,548-injected mice. However, drug-treated mice demonstrated no significant changes in relevant hippocampal protein levels compared with sham treatments, as determined from Western blots. Surprisingly, injection of SQ 29,548 caused mixed changes in parameters of depression and anxiety-like behavior in the mice. In conclusion, the results indicate that administration of peripheral TP receptor antagonists alters brain levels of prostanoids and influences neuronal activity, with only minimal alterations of behavior. Whether the drug affects neurons directly or through a secondary pathway involving endothelium or other tissues remains unclear.
Collapse
Affiliation(s)
- Andrew A Rebel
- Department of Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Siri A Urquhart
- Department of Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Kendra L Puig
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Atreyi Ghatak
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Stephen A Brose
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Mikhail Y Golovko
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Colin K Combs
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
22
|
Abstract
OBJECTIVE This study investigated the physiological and somatic changes evoked by daily exposure to the same type of stressor (homotypic) or different aversive stressor stimuli (heterotypic) in adolescent and adult rats, with a focus on cardiovascular function. The long-term effects of stress exposure during adolescence were also investigated longitudinally. METHODS Male Wistar rats were exposed to repeated restraint stress (RRS, homotypic) or chronic variable stress (CVS, heterotypic). RESULTS Adrenal hypertrophy, thymus involution, and elevated plasma glucocorticoid were observed only in adolescent animals, whereas reduction in body weight was caused by both stress regimens in adults. CVS increased mean arterial pressure (adolescent: p = .001; adult: p = .005) and heart rate (HR; adolescent: p = .020; adult: p = .011) regardless of the age, whereas RRS increased blood pressure selectively in adults (p = .001). Rest tachycardia evoked by CVS was associated with increased cardiac sympathetic activity in adults, whereas a decreased cardiac parasympathetic activity was observed in adolescent animals. Changes in cardiovascular function and cardiac autonomic activity evoked by both CVS and RRS were followed by alterations in baroreflex activity and vascular reactivity to vasoconstrictor and vasodilator agents in adolescent adult animals. Except for the circulating glucocorticoid change, all alterations observed during adolescence were reversed in adulthood. CONCLUSIONS These findings suggest a stress vulnerability of adolescents to somatic and neuroendocrine effects regardless of stress regimen. Our results indicated an age-stress type-specific influence in stress-evoked cardiovascular/autonomic changes. Data suggest minimal consequences in adulthood of stress during adolescence.
Collapse
|
23
|
Stanley SC, Brooks SD, Butcher JT, d'Audiffret AC, Frisbee SJ, Frisbee JC. Protective effect of sex on chronic stress- and depressive behavior-induced vascular dysfunction in BALB/cJ mice. J Appl Physiol (1985) 2014; 117:959-70. [PMID: 25123201 DOI: 10.1152/japplphysiol.00537.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The presence of chronic, unresolvable stresses leads to negative health outcomes, including development of clinical depression/depressive disorders, with outcome severity being correlated with depressive symptom severity. One of the major outcomes associated with chronic stress and depression is the development of cardiovascular disease (CVD) and an elevated CVD risk profile. However, in epidemiological research, sex disparities are evident, with premenopausal women suffering from depressive symptoms more acutely than men, but also demonstrating a relative protection from the onset of CVD. Given this, we investigated the differential effect of sex on conduit artery and resistance arteriolar function in male and female mice following 8 wk of an unpredictable chronic mild stress (UCMS) protocol. In males, plasma cortisol and depressive symptom severity (e.g., coat status, anhedonia, delayed grooming) were elevated by UCMS. Endothelium-dependent dilation to methacholine/acetylcholine was impaired in conduit arteries and skeletal muscle arterioles, suggesting a severe loss of nitric oxide bioavailability and increased production of thromboxane A2 vs. prostaglandin I2 associated with elevated reactive oxygen species (ROS) and an increased level of systemic inflammation. Endothelium-independent dilation was intact. In females, depressive symptoms and plasma cortisol increases were more severe than in males, although alterations to vascular reactivity were blunted, including the effects of elevated ROS and inflammation on dilator responses. These results suggest that compared with males, female rats are more susceptible to chronic stress in terms of the severity of depressive behaviors, but that the subsequent development of vasculopathy is blunted owing to an improved ability to tolerate elevated ROS and systemic inflammatory stress.
Collapse
Affiliation(s)
- Shyla C Stanley
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Steven D Brooks
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Joshua T Butcher
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Alexandre C d'Audiffret
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Vascular and Endovascular Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Stephanie J Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Health Policy, Leadership and Management, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Jefferson C Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|
24
|
Soumier A, Sibille E. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology 2014; 39:2252-62. [PMID: 24690741 PMCID: PMC4104344 DOI: 10.1038/npp.2014.76] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
Reduced expression of somatostatin (SST) is reported across chronic brain conditions including major depression and normal aging. SST is a signaling neuropeptide and marker of gamma-amino butyric acid (GABA) neurons, which specifically inhibit pyramidal neuron dendrites. Studies in auditory cortex suggest that chronic reduction in dendritic inhibition induces compensatory homeostatic adaptations that oppose the effects of acute inhibition. Whether such mechanisms occur in frontal cortex (FC) and affect behavioral outcome is not known. Here, we used two complementary viral vector strategies to examine the effects of acute vs chronic inhibition of SST-positive neurons on behavioral emotionality in adult mice. SST-IRES-Cre mice were injected in FC (prelimbic/precingulate) with CRE-dependent adeno-associated viral (AAV) vector encoding the engineered Gi/o-coupled human muscarinic M4 designer receptor exclusively activated by a designer drug (DREADD-hM4Di) or a control reporter (AAV-DIO-mCherry) for acute or chronic cellular inhibition. A separate cohort was injected with CRE-dependent AAV vectors expressing diphtheria toxin (DTA) to selectively ablate FC SST neurons. Mice were assessed for anxiety- and depressive-like behaviors (defined as emotionality). Results indicate that acute inhibition of FC SST neurons increased behavioral emotionality, whereas chronic inhibition decreased behavioral emotionality. Furthermore, ablation of FC SST neurons also decreased behavioral emotionality under baseline condition and after chronic stress. Together, our results reveal opposite effects of acute and chronic inhibition of FC SST neurons on behavioral emotionality and suggest the recruitment of homeostatic plasticity mechanisms that have implications for understanding the neurobiology of chronic brain conditions affecting dendritic-targeting inhibitory neurons.
Collapse
Affiliation(s)
- Amelie Soumier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Etienne Sibille
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Psychiatry/Center for Neuroscience, University of Pittsburgh, Bridgeside Point II, suite 231, 450 Technology Drive, Pittsburgh, PA 15219, USA, E-mail:
| |
Collapse
|
25
|
Association between endothelial dysfunction and depression-like symptoms in chronic mild stress model of depression. Psychosom Med 2014; 76:268-76. [PMID: 24804883 DOI: 10.1097/psy.0000000000000062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cardiovascular diseases have high comorbidity with major depression. Endothelial dysfunction may explain the adverse cardiovascular outcome in depression; therefore, we analyzed it in vitro. In the chronic mild stress model, some rats develop depression-like symptoms (including "anhedonia"), whereas others are stress resilient. METHODS After 8 weeks of chronic mild stress, anhedonic rats reduced their sucrose intake by 55% (7%), whereas resilient rats did not. Acetylcholine-induced endothelium-dependent relaxation of norepinephrine-preconstricted mesenteric arteries was analyzed in nonstressed, anhedonic, and resilient rat groups. RESULTS Small resistance arteries from anhedonic rats were less sensitive to acetylcholine than those of the nonstressed and resilient groups (p = .029). Pathways of endothelium-dependent relaxation were altered in arteries from anhedonic rats. Nitric oxide (NO)-dependent relaxation and endothelial NO synthase expression were increased in arteries from anhedonic rats (0.235 [0.039] arbitrary units and 155.7% [8.15%]) compared with the nonstressed (0.135 [0.012] arbitrary units and 100.0% [8.08%]) and resilient (0.152 [0.018] arbitrary units and 108.1% [11.65%]) groups (p < .001 and p = .002, respectively). Inhibition of cyclooxygenase (COX) activity revealed increased COX-2-dependent relaxation in the anhedonic group. In contrast, endothelial NO synthase- and COX-independent relaxation to acetylcholine (endothelium-dependent hyperpolarization-like response) was reduced in anhedonic rats (p < .001). This was associated with decreased transcription of intermediate-conductance Ca-activated K channels. CONCLUSIONS Our findings demonstrate that depression-like symptoms are associated with reduced endothelium-dependent relaxation due to suppressed endothelium-dependent hyperpolarization-like relaxation despite up-regulation of the NO and COX-2-dependent pathways in rat mesenteric arteries. These changes could affect peripheral resistance and organ perfusion in major depression.
Collapse
|
26
|
Ismail B, Aboul-Fotouh S, Mansour AA, Shehata HH, Salman MI, Ibrahim EA, Hassan OA, Abdel-tawab AM. Behavioural, metabolic, and endothelial effects of the TNF-α suppressor thalidomide on rats subjected to chronic mild stress and fed an atherogenic diet. Can J Physiol Pharmacol 2014; 92:375-85. [DOI: 10.1139/cjpp-2013-0446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is accumulating evidence suggesting that depression is a risk factor for cardiovascular diseases. This study aimed to examine the hypothesis that the proinflammatory cytokine TNF-α would partially explain the link between depression and atherosclerotic endothelial changes. Rats were distributed among 6 groups: (i) control group; (ii) group subjected to chronic mild stress (CMS); (iii) group fed a cholesterol–cholic acid–thiouracil (CCT diet); and (iv) CMS group fed the CCT diet and treated with the vehicle for 8 weeks. The last 2 groups were subjected to CMS–CCT and received thalidomide (THAL) or imipramine (IMIP). Rats were assessed behaviorally (sucrose preference, open field, and forced-swimming tests). TNF-α protein was assessed from the serum, aorta, and liver. Aortic TNF-α gene expression (assessed using RT–PCR), serum lipid profile, and insulin levels were measured. Endothelial function was assessed in isolated aortic rings. The THAL and IMIP groups showed ameliorated CMS–CCT-related behavioral changes. CMS–CCT-induced metabolic and endothelial dysfunctions were improved in the THAL group but were worsened in the IMIP group. RT–PCR showed a significant reduction of aortic TNF-α mRNA expression in the THAL and IMIP treatment groups. These data paralleled the findings for aortic immunohistochemistry. The THAL group, but not the IMIP group, showed improved CMS–CCT-induced changes in the vascular reactivity of the aortic rings. Thus, TNF-α provides a target link between depression, metabolic syndrome, and endothelial dysfunction. This could open a new therapeutic approach to address the comorbidities of depression.
Collapse
Affiliation(s)
- Basma Ismail
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
- Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Sawsan Aboul-Fotouh
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal A. Mansour
- Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Hanan H. Shehata
- Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Manal I. Salman
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman A. Ibrahim
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Olfat A. Hassan
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Ahmed M. Abdel-tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Bayramgurler D, Karson A, Yazir Y, Celikyurt IK, Kurnaz S, Utkan T. The effect of etanercept on aortic nitric oxide-dependent vasorelaxation in an unpredictable chronic, mild stress model of depression in rats. Eur J Pharmacol 2013; 710:67-72. [PMID: 23603524 DOI: 10.1016/j.ejphar.2013.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 12/31/2022]
Abstract
Stress has been recognized as a risk factor for cardiovascular disease and depression, but the correlation is not well understood. However, inflammation is known to have a crucial role in both cardiovascular disease and depression. Tumor necrosis factor alpha (TNF-α) is a major cytokine for the activation of neuroendocrine, immune and behavioral responses. Therefore, we aimed to explore the effects of etanercept, an anti-TNF-α fusion protein, on endothelium-dependent vascular reactivity, blood pressure and endothelial nitric oxide synthase (eNOS) immunoreactivity in a model of unpredictable chronic mild stress (UCMS). Male rats were exposed to UCMS for 8 weeks, and etanercept (0.8 mg/kg, weekly) was administered during UCMS induction. The systolic blood pressure was recorded by the tail cuff method, and the relaxant responses of the aorta induced by carbachol, sodium nitroprusside (SNP) and papaverine were evaluated in an isolated organ bath system. UCMS rats exhibited an impaired carbachol-induced relaxant response compared to control rats, but there were no significant differences in the SNP- and papaverine-induced relaxant responses between the control and stressed rats. Etanercept treatment improved the carbachol-induced endothelium dependent relaxations observed in rats that experienced UCMS. No significant change in the systemic blood pressure was observed, but decreased expression of eNOS was detected in the UCMS group. Moreover, there were no significant changes in the etanercept treatment group compared to the control rats. Our results suggest that TNF-α could be a mediator of vascular dysfunction associated with UCMS, which leads to decreased expression of eNOS.
Collapse
Affiliation(s)
- Dilek Bayramgurler
- Department of Dermatology, Kocaeli University, Medical Faculty, 41380, Kocaeli, Turkey.
| | | | | | | | | | | |
Collapse
|
28
|
Chronic mild stress-induced depression-like symptoms in rats and abnormalities in catecholamine uptake in small arteries. Psychosom Med 2012; 74:278-87. [PMID: 22408132 DOI: 10.1097/psy.0b013e31824c40a9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Major depression and cardiovascular diseases have a strong comorbidity; however, the reason for this is unknown. In the chronic mild stress (CMS) model of depression, only a fraction of rats develop a major feature of depression-anhedonia-like behavior, whereas other rats are stress resilient. Previous studies suggested that CMS rats also have increased total peripheral vascular resistance. METHODS On the basis of CMS-induced changes of sucrose intake, a reliable measure for anhedonia, rats were divided into "resilient" and "anhedonic" groups. An interaction between hedonic status and vascular function was studied after 4 and 8 weeks of CMS exposure in vitro in wire myograph on saphenous arteries and mesenteric small arteries (MSAs) from these rats. RESULTS When comparing the different experimental rat groups, arterial sensitivities to noradrenaline (NA) were similar under control conditions, but in the presence of the neuronal reuptake inhibitor cocaine, arteries from anhedonic rats were more sensitive to NA. No change in perivascular innervation was found, but elevated expression of neuronal NA transporter was detected. Inhibition of extraneuronal uptake with corticosterone (1 μM) suggests that this transport is diminished in MSAs after CMS. The corticosterone-sensitive transporter organic cation cotransporter 2 was shown to be reduced in MSAs after CMS. No CMS-induced changes in the corticosterone-sensitive transport were found in saphenous arteries. CONCLUSIONS Our results indicate that CMS-induced depression-like symptoms in rats are associated with changes in catecholamine uptake pathways in the vascular wall, which potentially modulates the effect of sympathetic innervation of resistance arteries.
Collapse
|
29
|
Chronic social isolation in the prairie vole induces endothelial dysfunction: implications for depression and cardiovascular disease. Physiol Behav 2012; 106:476-84. [PMID: 22469565 DOI: 10.1016/j.physbeh.2012.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/17/2012] [Indexed: 01/07/2023]
Abstract
Humans with depression show impaired endothelium-dependent vasodilation; one recent demonstration of which was in the form of a reduced acetylcholine (ACh)-induced relaxation of adrenergically-precontracted small arteries biopsied from older depressed patients. Results from such uses of ACh in general have been validated as the most predictive marker of endothelium-related cardiovascular diseases. Accordingly, we examined vascular reactivity to ACh in the socially isolated prairie vole, a new animal model relevant to human depression and cardiovascular disease. Thoracic aortas were carefully dissected from female prairie voles after one month of social isolation (versus pairing with a sibling). Only aortas that contracted to the adrenergic agent phenylephrine (PE) and then relaxed to ACh were evaluated. Among those, ACh-induced relaxations were significantly reduced by social isolation (p<0.05), with maximum relaxation reaching only 30% (of PE-induced precontraction) compared to 47% in aortas from paired (control) animals. Experimental removal of the endothelium from an additional set of aortic tissues abolished all ACh relaxations including that difference. In these same tissues, maximally-effective concentrations of the nitric oxide-donor nitroprusside still completely relaxed all PE-induced precontraction of the endothelial-free smooth muscle, and to the same degree in tissues from isolated versus paired animals. Finally, in the absence of PE-induced precontraction ACh did not relax but rather contracted aortic tissues, and to a significantly greater extent in tissues from socially isolated animals if the endothelium was intact (p<0.05). Thus, social isolation in the prairie vole may (1) impair normal release of protective anti-atherosclerotic factors like nitric oxide from the vascular endothelium (without altering the inherent responsiveness of the vascular smooth muscle to such factors) and (2) cause the endothelium to release contracting factors. To our knowledge this is the first demonstration of this phenomenon in an animal model of depression induced solely by social isolation. These findings have implications for understanding mechanisms involved in depression and cardiovascular disease.
Collapse
|
30
|
Orvoen S, Pla P, Gardier AM, Saudou F, David DJ. Huntington's disease knock-in male mice show specific anxiety-like behaviour and altered neuronal maturation. Neurosci Lett 2011; 507:127-32. [PMID: 22178857 DOI: 10.1016/j.neulet.2011.11.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 02/08/2023]
Abstract
Huntington's disease (HD) is a devastating genetic neurodegenerative disorder. Major depressive disorder and more generally mood disorders are a major component of the symptoms during the pre-motor symptomatic stages of the disease. We report here that knock-in Hdh(Q111) mice, an animal model of HD, that carry an expanded polyglutamine stretch in the mouse HD protein show an anxio-depressive-like phenotype prior to any impairment of the locomotor function. Strikingly, whereas females develop preferentially a depressive-like behaviour, males had an increased anxiety-like phenotype. Since adult hippocampal neurogenesis has been associated to the pathophysiology and treatment of depression, we investigated whether changes in behavioural phenotypes are associated with proliferation or maturation impairments. Whereas cell proliferation was not affected in knock-in Hdh(Q111) mice, a male-specific marked decrease in late maturation of newborn neurons was observed in the adult dentate gyrus. Together, our results highlight sex differences in both behaviour and adult neurogenesis in a knock-in model of HD.
Collapse
Affiliation(s)
- Sophie Orvoen
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, Châtenay-Malabry F-92290, 4 France
| | | | | | | | | |
Collapse
|