1
|
Prvulovic M, Sokanovic S, Simeunovic V, Vukojevic A, Jovic M, Todorovic S, Mladenovic A. The complex relationship between late-onset caloric restriction and synaptic plasticity in aged Wistar rats. IUBMB Life 2024; 76:548-562. [PMID: 38390757 DOI: 10.1002/iub.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Age-related reduction in spine density, synaptic marker expression, and synaptic efficiency are frequently reported. These changes provide the cellular and molecular basis for the cognitive decline characteristic for old age. Nevertheless, there are several approaches that have the potential to ameliorate these processes and improve cognition, caloric restriction being one of the most promising and widely studied. While lifelong caloric restriction is known for its numerous beneficial effects, including improved cognitive abilities and increased expression of proteins essential for synaptic structure and function, the effects of late-onset and/or short-term CR on synaptic plasticity have yet to be investigated. We have previously documented that the effects of CR are strongly dependent on whether CR is initiated in young or old subjects. With this in mind, we conducted a long-term study in aging Wistar rats to examine changes in the expression of several key synaptic markers under the regimen of CR started at different time points in life. We found a significant increase in the expression of both presynaptic and postsynaptic markers. However, taking into account previously reported changes in the behavior detected in these animals, we consider that this increase cannot represent beneficial effect of CR.
Collapse
Affiliation(s)
- Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srdjan Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjela Vukojevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Jovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Martucci M, Ostan R, Biondi F, Bellavista E, Fabbri C, Bertarelli C, Salvioli S, Capri M, Franceschi C, Santoro A. Mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev 2017; 75:442-455. [PMID: 28595318 PMCID: PMC5914347 DOI: 10.1093/nutrit/nux013] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A coherent set of epidemiological data shows that the Mediterranean diet has beneficial effects capable of preventing a variety of age-related diseases in which low-grade, chronic inflammation/inflammaging plays a major role, but the underpinning mechanism(s) is/are still unclear. It is suggested here that the Mediterranean diet can be conceptualized as a form of chronic hormetic stress, similar to what has been proposed regarding calorie restriction, the most thoroughly studied nutritional intervention. Data on the presence in key Mediterranean foods of a variety of compounds capable of exerting hormetic effects are summarized, and the mechanistic role of the nuclear factor erythroid 2 pathway is highlighted. Within this conceptual framework, particular attention has been devoted to the neurohormetic and neuroprotective properties of the Mediterranean diet, as well as to its ability to maintain an optimal balance between pro- and anti-inflammaging. Finally, the European Commission-funded project NU-AGE is discussed because it addresses a number of variables not commonly taken into consideration, such as age, sex, and ethnicity/genetics, that can modulate the hormetic effect of the Mediterranean diet.
Collapse
Affiliation(s)
- Morena Martucci
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Rita Ostan
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Fiammetta Biondi
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Elena Bellavista
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Cristina Fabbri
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Claudia Bertarelli
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Stefano Salvioli
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Miriam Capri
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Claudio Franceschi
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Aurelia Santoro
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| |
Collapse
|
3
|
Cronise RJ, Sinclair DA, Bremer AA. Oxidative Priority, Meal Frequency, and the Energy Economy of Food and Activity: Implications for Longevity, Obesity, and Cardiometabolic Disease. Metab Syndr Relat Disord 2016; 15:6-17. [PMID: 27869525 PMCID: PMC5326984 DOI: 10.1089/met.2016.0108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In most modern societies, the relationship that many individuals have with food has fundamentally changed from previous generations. People have shifted away from viewing food as primarily sustenance, and rather now seek out foods based on pure palatability or specific nutrition. However, it is far from clear what optimal nutrition is for the general population or specific individuals. We previously described the Food Triangle as a way to organize food based on an increasing energy density paradigm, and now expand on this model to predict the impact of oxidative priority and both nutrient and fiber density in relation to caloric load. When combined with meal frequency, integrated energy expenditure, macronutrient oxidative priority, and fuel partitioning expressed by the respiratory quotient, our model also offers a novel explanation for chronic overnutrition and the cause of excess body fat accumulation. Herein, we not only review how metabolism is a dynamic process subject to many regulators that mediate the fate of ingested calories but also discuss how the Food Triangle predicts the oxidative priority of ingested foods and provides a conceptual paradigm for healthy eating supported by health and longevity research.
Collapse
Affiliation(s)
| | - David A Sinclair
- 2 Department of Genetics, Harvard Medical School , Boston, Massachusetts.,3 Department of Pharmacology, School of Medical Sciences, The University of New South Wales , Sydney, Australia
| | - Andrew A Bremer
- 4 Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
5
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
6
|
Lankelma J, Kooi B, Krab K, Dorsman JC, Joenje H, Westerhoff HV. A reason for intermittent fasting to suppress the awakening of dormant breast tumors. Biosystems 2014; 127:1-6. [PMID: 25448890 DOI: 10.1016/j.biosystems.2014.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/25/2014] [Accepted: 11/01/2014] [Indexed: 12/21/2022]
Abstract
For their growth, dormant tumors, which lack angiogenesis may critically depend on gradients of nutrients and oxygen from the nearest blood vessel. Because for oxygen depletion the distance from the nearest blood vessel to depletion will generally be shorter than for glucose depletion, such tumors will contain anoxic living tumor cells. These cells are dangerous, because they are capable of inducing angiogenesis, which will "wake up" the tumor. Anoxic cells are dependent on anaerobic glucose breakdown for ATP generation. The local extracellular glucose concentration gradient is determined by the blood glucose concentration and by consumption by cells closer to the nearest blood vessel. The blood glucose concentration can be lowered by 20-40% during fasting. We calculated that glucose supply to the potentially hazardous anoxic cells can thereby be reduced significantly, resulting in cell death specifically of the anoxic tumor cells. We hypothesize that intermittent fasting will help to reduce the incidence of tumor relapse via reducing the number of anoxic tumor cells and tumor awakening.
Collapse
Affiliation(s)
- Jan Lankelma
- Department of Molecular Cell Physiology, VU University, De Boelelaan 1085, Room G-226a, 1081 HV Amsterdam, The Netherlands.
| | - Bob Kooi
- Department of Theoretical Biology, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Klaas Krab
- Department of Molecular Cell Physiology, VU University, De Boelelaan 1085, Room G-226a, 1081 HV Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Hans Joenje
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Hans V Westerhoff
- Department of Molecular Cell Physiology, VU University, De Boelelaan 1085, Room G-226a, 1081 HV Amsterdam, The Netherlands; Synthetic Systems Biology, SILS, University of Amsterdam and Manchester Centre for Integrative Systems Biology, The University of Manchester, UK
| |
Collapse
|
8
|
Mazzoccoli G, Tevy MF, Borghesan M, Delle Vergini MR, Vinciguerra M. Caloric restriction and aging stem cells: the stick and the carrot? Exp Gerontol 2013; 50:137-48. [PMID: 24211426 DOI: 10.1016/j.exger.2013.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022]
Abstract
Adult tissue stem cells have the ability to adjust to environmental changes and affect also the proliferation of neighboring cells, with important consequences on tissue maintenance and regeneration. Stem cell renewal and proliferation is strongly regulated during aging of the organism. Caloric restriction is the most powerful anti-aging strategy conserved throughout evolution in the animal kingdom. Recent studies relate the properties of caloric restriction to its ability in reprogramming stem-like cell states and in prolonging the capacity of stem cells to self-renew, proliferate, differentiate, and replace cells in several adult tissues. However this general paradigm presents with exceptions. The scope of this review is to highlight how caloric restriction impacts on diverse stem cell compartments and, by doing so, might differentially delay aging in the tissues of lower and higher organisms.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy.
| | - Maria Florencia Tevy
- Genomics and Bioinformatics Centre, Major University of Santiago, Santiago, Chile
| | - Michela Borghesan
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom
| | - Maria Rita Delle Vergini
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy
| | - Manlio Vinciguerra
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom.
| |
Collapse
|