1
|
Zhang W, Dao JJ, Li Q, Liu C, Qiao CM, Cui C, Shen YQ, Zhao WJ. Neuregulin 1 mitigated prolactin deficiency through enhancing TRPM8 signaling under the influence of melatonin in senescent pituitary lactotrophs. Int J Biol Macromol 2024; 275:133659. [PMID: 38969045 DOI: 10.1016/j.ijbiomac.2024.133659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The age-related alterations in pituitary function, including changes in prolactin (PRL) production contributes to the systemic susceptibility to age-related diseases. Our previous research has shown the involvement of Nrg1 in regulating the expression and secretion of PRL. However, the precise role of Nrg1 in mitigating the senescence of pituitary lactotrophs and the underlying mechanisms are yet to be comprehended. Here, data from the GEPIA database was used to evaluate the association between transient receptor potential cation channel subfamily M member 8 (TRPM8) and PRL in normal human pituitary tissues, followed by immunofluorescence verification using a human pituitary tissue microarray. TRPM8 levels showed a significant positive association with PRL expression in normal human pituitary tissues, and both TRPM8 and PRL levels declined during aging, suggesting that TRPM8 may regulate pituitary aging by affecting PRL production. It was also found that treatment with exogenous neuregulin 1 (Nrg1) markedly delayed the senescence of GH3 cells (rat lactotroph cell line) generated by D-galactose (D-gal). In addition, melatonin reduced the levels of senescence-related markers in senescent pituitary cells by promoting Nrg1 / ErbB4 signaling, stimulating PRL expression and secretion. Further investigation showed that Nrg1 attenuated senescence in pituitary cells by increasing TRPM8 expression. Downregulation of TRPM8 activation eliminated Nrg1-mediated amelioration of pituitary cell senescence. These findings demonstrate the critical function of Nrg1 / ErbB signaling in delaying pituitary lactotroph cell senescence and enhancing PRL production via promoting TRPM8 expression under the modulation of melatonin.
Collapse
Affiliation(s)
- Wei Zhang
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China; Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang 550000, Guizhou, China
| | - Ji-Ji Dao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Qian Li
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Chong Liu
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Chen-Meng Qiao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Chun Cui
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Yan-Qin Shen
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Wei-Jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Fatahi Asl J, Goudarzi M, Mansouri E, Shoghi H. Rosmarinic Acid Protects the Testes of Rats against Cell Phone and Ultra-high Frequency Waves Induced Toxicity. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:237-246. [PMID: 38680223 PMCID: PMC11053252 DOI: 10.30476/ijms.2023.97695.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2024]
Abstract
Background Cell phone and Ultra-High Frequency (UHF) waves produce oxidative stress and cause testicular toxicity. This investigation was directed to evaluate the effectiveness of Rosmarinic Acid (RA) against oxidative stress caused by UHF radiation in rats. Methods Forty-two male Wistar rats were divided into six groups. The control received 5 mL normal saline (0.9% NaCl) by gavage, the cell phone group received 915 MHz, the UHF waves group just received 2450 MHz, the RA/cell phone group received RA plus 915 MHz, RA/UHF waves group received RA plus 2450 MHz, and RA just received RA (20 mg/kg). After 30 days of consecutive radiation, the biochemical and histopathological parameters of their testes were measured. Statistical comparison was made using one-way ANOVA followed by Tukey's post hoc test. Results Cell phone and UHF wave radiation significantly diminished the activity of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase, and glutathione content (P<0.001). On the opposite, UHF significantly increased oxidative stress indices including malondialdehyde level, nitric oxide level, and protein carbonyl content (P<0.001). UHF also significantly reduced the number of Sertoli cells, spermatogonia, primary spermatocyte, epithelial height, and seminiferous tubular and luminal diameters (P<0.001). RA, as an effective antioxidant, reverses the above-mentioned harms and moderates the adverse effects of UHF on the testes of rats by significantly diminishing the oxidative stress indices and antioxidant enzyme rise and improving the histological parameters (P<0.001). Conclusion RA can protect the testes of rats from UHF-induced toxicity by reducing oxidative stress. RA as a food supplement might be useful for protecting humans exposed to UHF environmental contamination.
Collapse
Affiliation(s)
- Jafar Fatahi Asl
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Shoghi
- Department of Physiology, Pharmacology and Medical Physics, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
3
|
Akefe IO, Nyan ES, Adegoke VA, Lamidi IY, Ameh MP, Chidiebere U, Ubah SA, Ajayi IE. Myrtenal improves memory deficits in mice exposed to radiofrequency-electromagnetic radiation during gestational and neonatal development via enhancing oxido-inflammatory, and neurotransmitter functions. Heliyon 2023; 9:e15321. [PMID: 37123912 PMCID: PMC10133755 DOI: 10.1016/j.heliyon.2023.e15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Radiofrequency-electromagnetic radiation (RF-EMR) exposure during gestational and neonatal development may interact with the foetus and neonate considered hypersensitive to RF-EMR, consequently resulting in developmental defects associated with neuropsychological and neurobehavioral disorders, including learning and memory impairment. This study assessed the potential of Myrtenal (Myrt) to improve memory deficits in C57BL/6 mice exposed to RF-EMR during gestational and neonatal development. Method Thirty-five male mice were randomly allocated into 5 cohorts, each comprising of 7 mice. Group I was administered vehicle, Group II: RF-EMR (900 MHz); Group III: RF-EMR (900 MHz) + 100 mg/kg Myrt; Group IV: RF-EMR (900 MHz) + 200 mg/kg Myrt; and Group V: RF-EMR (900 MHz) + donepezil 0.5 mg/kg. Results Myrt treatment improved short-term memory performance in RF-EMR (900 MHz)-exposed mice by augmenting activities of endogenous antioxidant enzymes and proinflammatory cytokines, thereby protecting the brain from oxido-inflammatory stress. Additionally, Myrt restored the homeostasis of neurotransmitters in RF-EMR-exposed animals. Conclusion Results from the present study shows that exposure to RF-EMR impaired short-term memory in animals and altered the response of markers of oxido-inflammatory stress, and neurotransmitters. It is therefore conceivable that the recommendation of Myrt-enriched fruits may offer protective benefits for foeti and neonates prone to RF-EMR exposure.
Collapse
Affiliation(s)
- Isaac Oluwatobi Akefe
- Department of Physiology, Biochemistry, and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | - Ezekiel Stephen Nyan
- Department of Science and Laboratory Technology, Ekiti State University, Ado Ekiti, Nigeria
| | | | - Ibrahim Yusuf Lamidi
- Department of Veterinary Pharmacology and Toxicology, University of Maiduguri, Maiduguri, Nigeria
| | - Matthew Phillip Ameh
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Uchendu Chidiebere
- Department of Physiology, Biochemistry, and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | | | - Itopa Etudaye Ajayi
- Faculty of Health Sciences, National Open University of Nigeria, Abuja, Nigeria
- Corresponding author.
| |
Collapse
|
4
|
Bektas H, Nalbant A, Akdag MB, Demir C, Kavak S, Dasdag S. Adverse effects of 900, 1800 and 2100 MHz radiofrequency radiation emitted from mobile phones on bone and skeletal muscle. Electromagn Biol Med 2023; 42:12-20. [PMID: 36794487 DOI: 10.1080/15368378.2023.2179065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The goal of this study was to biomechanically and morphologically research both the impact of mobile phone like radiofrequency radiations (RFR) on the tibia and the effects on skeletal muscle through oxidative stress parameters. Fifty-six rats (200-250 g) were put into groups: healthy sham (n = 7), healthy RFR (900, 1800, 2100 MHz) (n = 21), diabetic sham (n = 7) and diabetic RFR (900, 1800, 2100 MHz) (n = 21). Over a month, each group spent two hours/day in a Plexiglas carousel. The rats in the experimental group were exposed to RFR, but the sham groups were not. At the end of the experiment, the right tibia bones and skeletal muscle tissue were removed. The three-point bending test and radiological evaluations were performed on the bones, and CAT, GSH, MDA, and IMA in muscles were measured. There were differences in biomechanics properties and radiological evaluations between the groups (p < .05). In the measurements in the muscle tissues, significant differences were statistically found (p < .05). The average whole-body SAR values for GSM 900, 1800 and 2100 MHz were 0.026, 0.164, and 0.173 W/kg. RFRs emitted from mobile phone may cause adverse effects on tibia and skeletal muscle health, though further studies are needed.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Asrin Nalbant
- Department of Anatomy, Medical School of Bakircay University, Izmir, Turkey
| | - Mahmut Berat Akdag
- Department of Physiotherapy and Rehabilitation, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Canan Demir
- Health Services Vocational High School, Yuzuncu Yil University, Van, Turkey
| | - Servet Kavak
- Department of Biophysics, Medical School of Bakircay University, Izmir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
5
|
Bektas H, Algul S, Altindag F, Yegin K, Akdag MZ, Dasdag S. Effects of 3.5 GHz radiofrequency radiation on ghrelin, nesfatin-1, and irisin level in diabetic and healthy brains. J Chem Neuroanat 2022; 126:102168. [PMID: 36220504 DOI: 10.1016/j.jchemneu.2022.102168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Diabetes, mobile phone use, and obesity have increased simultaneously in recent years. The radiofrequency radiation (RFR) emitted from mobile phones is largely absorbed in the heads of users. With 5 G, which has started to be used in some countries without the necessary precautions being taken, the amount of RFR to which living things are exposed will increase. In this study, the changes in energy homeostasis and redox balance caused by 5 G (3.5 GHz, GSM-modulated) were explored. The effects of RFR on the brains of diabetic and healthy rats were investigated and histopathological analysis was performed. Twenty-eight Wistar albino rats weighing 200-250 g were divided into 4 groups as sham, RFR, diabetes, and RFR+diabetes groups (n = 7). The rats in each group were kept in a plexiglass carousel for 2 h a day for 30 days. While the rats in the experimental groups were exposed to RFR for 2 h a day, the rats in the sham group were kept under the same experimental conditions but with the radiofrequency generator turned off. At the end of the experiment, brain tissues were collected from euthanized rats. Total antioxidant (TAS), total oxidant (TOS), hydrogen peroxide (H2O2), ghrelin, nesfatin-1, and irisin levels were determined. In addition, histopathological analyses of the brain tissues were performed. The specific absorption rate in the gray matter of the brain was calculated as 323 mW/kg and 195 mW/kg for 1 g and 10 g averaging, respectively. After RFR exposure among diabetic and healthy rats, decreased TAS levels and increased TOS and H2O2 levels were observed in brain tissues. RFR caused increases in ghrelin and irisin and a decrease in nesfatin-1 in the brain. It was also observed that RFR increased the number of degenerated neurons in the hippocampus. Our results indicate that 3.5 GHz RFR causes changes in the energy metabolism and appetite of both healthy and diabetic rats. Thus, 5 G may not be innocent in terms of its biological effects, especially in the presence of diabetes.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Sermin Algul
- Department of Physiology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Ege University, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakır, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
6
|
Jammoul M, Lawand N. Melatonin: a Potential Shield against Electromagnetic Waves. Curr Neuropharmacol 2021; 20:648-660. [PMID: 34635042 DOI: 10.2174/1570159x19666210609163946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022] Open
Abstract
Melatonin, a vital hormone synthesized by the pineal gland, has been implicated in various physiological functions and in circadian rhythm regulation. Its role in the protection against the non-ionizing electromagnetic field (EMF), known to disrupt the body's oxidative/anti-oxidative balance, has been called into question due to inconsistent results observed across studies. This review provides the current state of knowledge on the interwoven relationship between melatonin, EMF, and oxidative stress. Based on synthesized evidence, we present a model that best describes the mechanisms underlying the protective effects of melatonin against RF/ELF-EMF induced oxidative stress. We show that the free radical scavenger activity of melatonin is enabled through reduction of the radical pair singlet-triplet conversion rate and the concentration of the triplet products. Moreover, this review aims to highlight the potential therapeutic benefits of melatonin against the detrimental effects of EMF, in general, and electromagnetic hypersensitivity (EHS), in particular.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut. Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut. Lebanon
| |
Collapse
|
7
|
Wood A, Karipidis K. Radiofrequency Fields and Calcium Movements Into and Out of Cells. Radiat Res 2021; 195:101-113. [PMID: 33206197 DOI: 10.1667/rade-20-00101.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/14/2020] [Indexed: 11/03/2022]
Abstract
The recent rollout of 5G telecommunications systems has spawned a renewed call to re-examine the possibility of so-called "non-thermal" harmful effects of radiofrequency (RF) radiation. The possibility of calcium being affected by low-level RF has been the subject of research for nearly 50 years and there have been recent suggestions that voltage-gated calcium channels (VGCCs) are "extraordinarily sensitive" to ambient RF fields. This article examines the feasibility of particularly modulated RF coupling to gating mechanisms in VGCCs and also reviews studies from the literature from the last 50 years for consistency of outcome. We conclude that the currents induced by fields at the ICNIRP guideline limits are many orders of magnitude below those needed to affect gating, and there would need to be a biological mechanism for detection and rectification of the extremely-low-frequency (ELF) modulations, which has not been demonstrated. Overall, experimental studies have not validated that RF affects Ca2+ transport into or out of cells.
Collapse
Affiliation(s)
- Andrew Wood
- School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| |
Collapse
|
8
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
9
|
Ishibashi M, Ishii M, Yamamoto S, Mori Y, Shimizu S. Possible involvement of TRPM2 activation in 5-fluorouracil-induced myelosuppression in mice. Eur J Pharmacol 2021; 891:173671. [PMID: 33131720 DOI: 10.1016/j.ejphar.2020.173671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca2+-permeable channel. The activation of TRPM2 by H2O2 causes cell death in various types of cells. 5-Fluorouracil (5-FU) is an important anticancer drug, but myelosuppression is one of the most frequent adverse effects. The involvement of oxidative stress in 5-FU-induced myelosuppression has been reported, and bone marrow cells are known to express TRPM2. The aim of this study was to investigate whether TRPM2 is involved in 5-FU-induced myelosuppression. Enhancement of H2O2-induced intracellular Ca2+ concentration ([Ca2+]i) increase by 5-FU treatment was observed in human embryonic kidney 293 (HEK) cells stably expressing TRPM2 but not in HEK cells, indicating that 5-FU stimulates TRPM2 activation. In CD117 positive cells from wild type (WT) mouse bone marrow, 5-FU also enhanced the H2O2-induced [Ca2+]i increases, but not in cells from Trpm2 knockout (KO) mice. In the CFU-GM colony assay, the 5-FU-induced reduction of colony number was alleviated by Trpm2 deficiency. Moreover, the reduction of leukocytes in blood by administration with 5-FU in WT mice was also alleviated in Trpm2 KO mice. The activation of TRPM2 in bone marrow cells seems to be involved in 5-FU-induced myelosuppression.
Collapse
Affiliation(s)
- Masaaki Ishibashi
- Division of Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan; Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa, Tokyo, 142-8555, Japan
| | - Masakazu Ishii
- Division of Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan; Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa, Tokyo, 142-8555, Japan
| | - Shinichiro Yamamoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Shunichi Shimizu
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan.
| |
Collapse
|
10
|
Asl JF, Goudarzi M, Shoghi H. The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats. Pharmacol Rep 2020; 72:857-866. [PMID: 32128712 DOI: 10.1007/s43440-020-00063-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/24/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Rosmarinus officinalis L. is an aromatic perennial herb from which rosmarinic acid (RA) can be extracted. This research was conducted to assess the effectiveness of RA against radio frequency (RF) radiation-induced oxidative stress due to 915 MHz (mobile phone) and 2450 MHz (Wi-Fi) frequencies in rats. METHODS The animals were separated into six groups, including group 1 receiving normal saline (NS), group 2 (NS/Wi-Fi) and group 4 (NS/mobile), which received NS plus 60 min/day of exposure to the electromagnetic radiation (EMR) for 1 month, group 3 (RA/Wi-Fi) and group 5 (RA/mobile) received RA (20 mg/kg/day, po) plus 60 min/day of EMR, and group 6 (RA) received only RA. RESULTS There was a significant elevation of protein carbonylation (PC), nitric oxide (NO) and malondialdehyde (MDA) and significant reduction in glutathione (GSH), glutathione peroxidase (GPx), total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT) in the RF radiation-exposed rats' brain compared to the control group. RA reduced the levels of NO, PC and MDA and it also elevated the TAC, GPx, SOD, CAT and GSH levels in the rats' brains in the RA/Wi-Fi and RA/mobile groups compared to the NS/Wi-Fi and NS/mobile groups, respectively. CONCLUSION It can be concluded that RA can be considered a useful candidate for protecting brain tissues against RF radiation-induced oxidative stress at 915 and 2450 MHz frequencies through ameliorative effects on the antioxidant enzyme activities and oxidative stress indices.
Collapse
Affiliation(s)
- Jafar Fatahi Asl
- Department of Radiologic Technology, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Shoghi
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep 2020; 10:6449. [PMID: 32296107 PMCID: PMC7160154 DOI: 10.1038/s41598-020-63577-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
Hypoxia (HYPX) induced-overload Ca2+ entry results in increase of mitochondrial oxidative stress, inflammation and apoptosis in several neurons. Ca2+ permeable TRPM2 channel was gated by ADP-ribose (ADPR) and reactive oxygen species (ROS), although its activity was modulated in HYPX-exposed neurons by resveratrol (RSV). The aim of this study was to evaluate if a therapy of RSV can modulate the effect of HYPX in the TRPM2 expressing SH-SY5Y neuronal and HEK293 (no expression of TRPM2) cell lines. The SH-SY5Y and HEK293 cells were divided into four groups as control, RSV (50 μM and 24 hours), and HYPX and RSV + HYPX. For induction of HYPX in the cells, CoCl2 (200 μM and 24 hours) incubation was used. HYPX-induced intracellular Ca2+ responses to TRPM2 activation were increased in the SH-SY5Y cells but not in the HEK293 cells from coming H2O2 and ADPR. RSV treatment improved intracellular Ca2+ responses, mitochondrial function, suppressed the generation of cytokine (IL-1β and TNF-α), cytosolic and mitochondrial ROS in the SH-SY5Y cells. Intracellular free Zn2+, apoptosis, cell death, PARP-1, TRPM2 expression, caspase −3 and −9 levels are increased through activating TRPM2 in the SH-SY5Y cells exposed to the HYPX. However, the values were decreased in the cells by RSV and TRPM2 blockers (ACA and 2-APB). In SH-SY5Y neuronal cells exposed to HYPX conditions, the neuroprotective effects of RSV were shown to be exerted via modulation of oxidative stress, inflammation, apoptosis and death through modulation of TRPM2 channel. RSV could be used as an effective agent in the treatment of neurodegeneration exposure to HYPX.
Collapse
|
12
|
Pan T, Zhu QJ, Xu LX, Ding X, Li JQ, Sun B, Hua J, Feng X. Knocking down TRPM2 expression reduces cell injury and NLRP3 inflammasome activation in PC12 cells subjected to oxygen-glucose deprivation. Neural Regen Res 2020; 15:2154-2161. [PMID: 32394974 PMCID: PMC7716023 DOI: 10.4103/1673-5374.282271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma (PC12) cells injured by oxygen-glucose deprivation (OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2 (CXCL2), NACHT, LRR, and PYD domain-containing protein 3 (NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tao Pan
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Qiu-Jiao Zhu
- Department of Critical Care Medicine, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Li-Xiao Xu
- Institute of Pediatrics, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Jian-Qin Li
- Blood Section, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Bin Sun
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Jun Hua
- Department of Critical Care Medicine, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| |
Collapse
|
13
|
Sistani S, Fatemi I, Shafeie SA, Kaeidi A, Azin M, Shamsizadeh A. The effect of Wi-Fi electromagnetic waves on neuronal response properties in rat barrel cortex. Somatosens Mot Res 2019; 36:292-297. [PMID: 31718372 DOI: 10.1080/08990220.2019.1689116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There is a growing number of studies on the possible biological effects of Wi-Fi radiations on nervous system. In this study we investigated the effect of Wi-Fi exposure on single neuron responses to natural stimuli by using whisker to barrel pathway. This study was done on 29 male Wistar rats. Neuronal spontaneous activity and ON and OFF responses to displacement of principal whisker (PW), adjacent whisker (AW) and combination of PW-AW stimulation (as natural stimuli) were recorded in barrel cortex of anaesthetised rats. A D-link Wi-Fi device was used for 1 h exposure to 2.4 GHz microwaves in data mode (18.2 dBm and 44% for power and duty cycle). A condition test ratio (CTR) was calculated for assessing neuronal integrative properties. Wi-Fi radiations decreased CTR for ON responses. However, neuronal spontaneous activity and ON and OFF responses were not significantly changed following exposure to Wi-Fi signals. The results of this study demonstrated that exposure to Wi-Fi radiation could modulate integrative responses to natural stimuli in barrel cortex.
Collapse
Affiliation(s)
- Sahar Sistani
- Physiology-pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Ali Shafeie
- Neuroscience Research Center, Qom University of Medical Sciences, Qom Iran
| | - Ayat Kaeidi
- Physiology-pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahdieh Azin
- Physiology-pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
14
|
Gene expression of certain heat shock proteins and antioxidant enzymes in microwave exposed rats. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Wi-Fi decreases melatonin protective effect and increases hippocampal neuronal damage in pentylenetetrazole induced model seizures in rats. PATHOPHYSIOLOGY 2019; 26:375-379. [DOI: 10.1016/j.pathophys.2019.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
|
16
|
Toda T, Yamamoto S, Umehara N, Mori Y, Wakamori M, Shimizu S. Protective Effects of Duloxetine against Cerebral Ischemia-Reperfusion Injury via Transient Receptor Potential Melastatin 2 Inhibition. J Pharmacol Exp Ther 2018; 368:246-254. [DOI: 10.1124/jpet.118.253922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
|
17
|
Golomb BA. Diplomats' Mystery Illness and Pulsed Radiofrequency/Microwave Radiation. Neural Comput 2018; 30:2882-2985. [PMID: 30183509 DOI: 10.1162/neco_a_01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance: A mystery illness striking U.S. and Canadian diplomats to Cuba (and now China) "has confounded the FBI, the State Department and US intelligence agencies" (Lederman, Weissenstein, & Lee, 2017). Sonic explanations for the so-called health attacks have long dominated media reports, propelled by peculiar sounds heard and auditory symptoms experienced. Sonic mediation was justly rejected by experts. We assessed whether pulsed radiofrequency/microwave radiation (RF/MW) exposure can accommodate reported facts in diplomats, including unusual ones. Observations: (1) Noises: Many diplomats heard chirping, ringing or grinding noises at night during episodes reportedly triggering health problems. Some reported that noises were localized with laser-like precision or said the sounds seemed to follow them (within the territory in which they were perceived). Pulsed RF/MW engenders just these apparent "sounds" via the Frey effect. Perceived "sounds" differ by head dimensions and pulse characteristics and can be perceived as located behind in or above the head. Ability to hear the "sounds" depends on high-frequency hearing and low ambient noise. (2) Signs/symptoms: Hearing loss and tinnitus are prominent in affected diplomats and in RF/MW-affected individuals. Each of the protean symptoms that diplomats report also affect persons reporting symptoms from RF/MW: sleep problems, headaches, and cognitive problems dominate in both groups. Sensations of pressure or vibration figure in each. Both encompass vision, balance, and speech problems and nosebleeds. Brain injury and brain swelling are reported in both. (3) Mechanisms: Oxidative stress provides a documented mechanism of RF/MW injury compatible with reported signs and symptoms; sequelae of endothelial dysfunction (yielding blood flow compromise), membrane damage, blood-brain barrier disruption, mitochondrial injury, apoptosis, and autoimmune triggering afford downstream mechanisms, of varying persistence, that merit investigation. (4) Of note, microwaving of the U.S. embassy in Moscow is historically documented. Conclusions and relevance: Reported facts appear consistent with pulsed RF/MW as the source of injury in affected diplomats. Nondiplomats citing symptoms from RF/MW, often with an inciting pulsed-RF/MW exposure, report compatible health conditions. Under the RF/MW hypothesis, lessons learned for diplomats and for RF/MW-affected civilians may each aid the other.
Collapse
|
18
|
Ertilav K, Uslusoy F, Ataizi S, Nazıroğlu M. Long term exposure to cell phone frequencies (900 and 1800 MHz) induces apoptosis, mitochondrial oxidative stress and TRPV1 channel activation in the hippocampus and dorsal root ganglion of rats. Metab Brain Dis 2018; 33:753-763. [PMID: 29332300 DOI: 10.1007/s11011-017-0180-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
Mobile phone providers use electromagnetic radiation (EMR) with frequencies ranging from 900 to 1800 MHz. The increasing use of mobile phones has been accompanied by several potentially pathological consequences, such as neurological diseases related to hippocampal (HIPPON) and dorsal root ganglion neuron (DRGN). The TRPV1 channel is activated different stimuli, including CapN, high temperature and oxidative stress. We investigated the contribution TRPV1 to mitochondrial oxidative stress and apoptosis in HIPPON and DRGN following long term exposure to 900 and 1800 MHz in a rat model. Twenty-four adult rats were equally divided into the following groups: (1) control, (2) 900 MHz, and (3) 1800 MHz exposure. Each experimental group was exposed to EMR for 60 min/ 5 days of the week during the one year. The 900 and 1800 MHz EMR exposure induced increases in TRPV1 currents, intracellular free calcium influx (Ca2+), reactive oxygen species (ROS) production, mitochondrial membrane depolarization (JC-1), apoptosis, and caspase 3 and 9 activities in the HIPPON and DRGN. These deleterious processes were further increased in the 1800 MHz experimental group compared to the 900 MHz exposure group. In conclusion, mitochondrial oxidative stress, programmed cell death and Ca2+ entry pathway through TRPV1 activation in the HIPPON and DRGN of rats were increased in the rat model following exposure to 900 and 1800 MHz cell frequencies. Our results suggest that exposure to 900 and 1800 MHz EMR may induce a dose-associated, TRPV1-mediated stress response.
Collapse
Affiliation(s)
- Kemal Ertilav
- Departmant of Neurosurgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Fuat Uslusoy
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Serdar Ataizi
- Departmant of Neurosurgery, Yunusemre General State Hospital, Eskişehir, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
| |
Collapse
|
19
|
Gupta SK, Mesharam MK, Krishnamurthy S. Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats. J Biosci 2018. [DOI: 10.1007/s12038-018-9744-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Effect of Zinc and Melatonin on Oxidative Stress and Serum Inhibin-B Levels in a Rat Testicular Torsion–Detorsion Model. Biochem Genet 2017; 55:395-409. [PMID: 29094225 DOI: 10.1007/s10528-017-9826-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/23/2017] [Indexed: 12/23/2022]
|
21
|
Warille AA, Altun G, Elamin AA, Kaplan AA, Mohamed H, Yurt KK, El Elhaj A. Skeptical approaches concerning the effect of exposure to electromagnetic fields on brain hormones and enzyme activities. J Microsc Ultrastruct 2017; 5:177-184. [PMID: 30023252 PMCID: PMC6025782 DOI: 10.1016/j.jmau.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 11/24/2022] Open
Abstract
This review discusses the effects of various frequencies of electromagnetic fields (EMF) on brain hormones and enzyme activity. In this context, the mechanism underlying the effects of EMF exposure on tissues generally and cellular pathway specifically has been discussed. The cell membrane plays important roles in mediating enzymatic activities as to response and reacts with extracellular environment. Alterations in the calcium signaling pathways in the cell membrane are activated in response to the effects of EMF exposure. Experimental and epidemiological studies have demonstrated that no changes occur in serum prolactin levels in humans following short-term exposure to 900 Mega Hertz (MHz) EMF emitted by mobile phones. The effects of EMF on melatonin and its metabolite, 6-sulfatoxymelatonin, in humans have also been investigated in the clinical studies to show a disturbance in metabolic activity of melatonin. In addition, although 900 MHz EMF effects on NF-κB inflammation, its effects on NF-κB are not clear. Abbreviations: ELF-EMF, extremely low frequency electromagnetic fields; EMF, electromagnetic fields; RF, Radiofrequency; ROS, reactive oxygen species; VGCCs, voltage-gated calcium channels; MAPK, mitogen-activated phosphokinase; NF-κB, nuclear factor kappa B; ERK-1/2, extracellular signal-regulated kinase; GSH-Px, glutathione peroxidase; JNK, Jun N-terminal kinases; SOD, superoxide dismutase; MnSOD, manganese-dependent superoxide dismutase; GLUT1, glucose transporter 1; GSSG-Rd, glutathione reductase MDA malondialdehyde; NO, nitric oxide; LH, luteinizing hormone; FSH, follicle-stimulating hormone.
Collapse
Affiliation(s)
- Aymen A Warille
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Anatomy, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Abdalla A Elamin
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Hamza Mohamed
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Abubaker El Elhaj
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
22
|
Doyon P, Johansson O. Electromagnetic fields may act via calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med Hypotheses 2017; 106:71-87. [PMID: 28818275 DOI: 10.1016/j.mehy.2017.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
|
23
|
Liu X, Gong B, de Souza LB, Ong HL, Subedi KP, Cheng KT, Swaim W, Zheng C, Mori Y, Ambudkar IS. Radiation inhibits salivary gland function by promoting STIM1 cleavage by caspase-3 and loss of SOCE through a TRPM2-dependent pathway. Sci Signal 2017; 10:10/482/eaal4064. [PMID: 28588080 DOI: 10.1126/scisignal.aal4064] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is critical for salivary gland fluid secretion. We report that radiation treatment caused persistent salivary gland dysfunction by activating a TRPM2-dependent mitochondrial pathway, leading to caspase-3-mediated cleavage of stromal interaction molecule 1 (STIM1) and loss of SOCE. After irradiation, acinar cells from the submandibular glands of TRPM2+/+ , but not those from TRPM2-/- mice, displayed an increase in the concentrations of mitochondrial Ca2+ and reactive oxygen species, a decrease in mitochondrial membrane potential, and activation of caspase-3, which was associated with a sustained decrease in STIM1 abundance and attenuation of SOCE. In a salivary gland cell line, silencing the mitochondrial Ca2+ uniporter or caspase-3 or treatment with inhibitors of TRPM2 or caspase-3 prevented irradiation-induced loss of STIM1 and SOCE. Expression of exogenous STIM1 in the salivary glands of irradiated mice increased SOCE and fluid secretion. We suggest that targeting the mechanisms underlying the loss of STIM1 would be a potentially useful approach for preserving salivary gland function after radiation therapy.
Collapse
Affiliation(s)
- Xibao Liu
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baijuan Gong
- Department of Orthodontics, Jilin University School of Stomatology, Changchun 130021, People's Republic of China
| | - Lorena Brito de Souza
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hwei Ling Ong
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krishna P Subedi
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwong Tai Cheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Swaim
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Indu S Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Lin JJ, Lin Y, Zhao TZ, Zhang CK, Zhang T, Chen XL, Ding JQ, Chang T, Zhang Z, Sun C, Zhao DD, Zhu JL, Li ZY, Li JL. Melatonin Suppresses Neuropathic Pain via MT2-Dependent and -Independent Pathways in Dorsal Root Ganglia Neurons of Mice. Am J Cancer Res 2017; 7:2015-2032. [PMID: 28656058 PMCID: PMC5485420 DOI: 10.7150/thno.19500] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin (Mel) and its receptors (MT1 and MT2) have a well-documented efficacy in treating different pain conditions. However, the anti-nociceptive effects of Mel and Mel receptors in neuropathic pain (NP) are poorly understood. To elucidate this process, pain behaviors were measured in a dorsal root ganglia (DRG)-friendly sciatic nerve cuffing model. We detected up-regulation of MT2 expression in the DRGs of cuff-implanted mice and its activation by the agonist 8-M-PDOT (8MP). Also, Mel attenuated the mechanical and thermal allodynia induced by cuff implantation. Immunohistochemical analysis demonstrated the expression of MT2 in the DRG neurons, while MT1 was expressed in the satellite cells. In cultured primary neurons, microarray analysis and gene knockdown experiments demonstrated that MT2 activation by 8MP or Mel suppressed calcium signaling pathways via MAPK1, which were blocked by RAR-related orphan receptor alpha (RORα) activation with a high dose of Mel. Furthermore, expression of nitric oxide synthase 1 (NOS1) was down-regulated upon Mel treatment regardless of MT2 or RORα. Application of Mel or 8MP in cuff-implanted models inhibited the activation of peptidergic neurons and neuro-inflammation in the DRGs by down-regulating c-fos, calcitonin gene-related peptide [CGRP], and tumor necrosis factor-1α [TNF-1α] and interleukin-1β [IL-1β]. Addition of the MT2 antagonist luzindole blocked the effects of 8MP but not those of Mel. In conclusion, only MT2 was expressed in the DRG neurons and up-regulated upon cuff implantation. The analgesic effects of Mel in cuff-implanted mice were closely associated with both MT2-dependent (MAPK-calcium channels) and MT2-independent (NOS1) pathways in the DRG.
Collapse
|
25
|
Hassanshahi A, Shafeie SA, Fatemi I, Hassanshahi E, Allahtavakoli M, Shabani M, Roohbakhsh A, Shamsizadeh A. The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats. Neurol Sci 2017; 38:1069-1076. [DOI: 10.1007/s10072-017-2920-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/14/2017] [Indexed: 01/20/2023]
|
26
|
Toda T, Yamamoto S, Yonezawa R, Mori Y, Shimizu S. Inhibitory effects of Tyrphostin AG-related compounds on oxidative stress-sensitive transient receptor potential channel activation. Eur J Pharmacol 2016; 786:19-28. [DOI: 10.1016/j.ejphar.2016.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022]
|
27
|
Erdem Koç G, Kaplan S, Altun G, Gümüş H, Gülsüm Deniz Ö, Aydin I, Emin Onger M, Altunkaynak Z. Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int J Radiat Biol 2016; 92:590-5. [PMID: 27442260 DOI: 10.1080/09553002.2016.1206223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Adverse effects on human health caused by electromagnetic fields (EMF) associated with the use of mobile phones, particularly among young people, are increasing all the time. The potential deleterious effects of EMF exposure resulting from mobile phones being used in close proximity to the brain require particular evaluation. However, only a limited number of studies have investigated the effects of prenatal exposure to EMF in the development of the pyramidal cells using melatonin (MEL) and omega-3 (ω-3). MATERIALS AND METHODS We established seven groups of pregnant rats consisting of three animals each; control (CONT), SHAM, EMF, EMF + MEL, MEL, EMF + ω-3 and ω-3 alone. The rats in the EMF, EMF + MEL, EMF + ω-3 groups were exposed to 900 MHz EMF for 60 min/day in an exposure tube during the gestation period. The CONT, MEL and ω-3 group rats were not placed inside the exposure tube or exposed to EMF during the study period. After delivery, only spontaneously delivered male rat pups were selected for the establishment of further groups. Each group of offspring consisted of six animals. The optical fractionator technique was used to determine total pyramidal neuron numbers in the rat hippocampal region. RESULTS The total number of pyramidal cells in the cornu ammonis (CA) in the EMF group was significantly lower than in the CONT, SHAM, EMF + MEL, and EMF + ω-3 groups. No significant difference was observed between the EMF, MEL and ω-3 groups. No difference was also observed between any groups in terms of rats' body or brain weights. CONCLUSION MEL and ω-3 can protect the cell against neuronal damage in the hippocampus induced by 900 MHz EMF. However, further studies are now needed to evaluate the chronic effects of 900 MHz EMF on the brain in the prenatal period.
Collapse
Affiliation(s)
- Gülüna Erdem Koç
- a Department of Histology and Embryology, Faculty of Medicine , Adnan Menderes University , Aydın , Turkey
| | - Suleyman Kaplan
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Gamze Altun
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Hasan Gümüş
- c Department of Physics, Faculty of Arts and Sciences , Ondokuz Mayıs University , Samsun , Turkey
| | - Ömür Gülsüm Deniz
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Isinsu Aydin
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Mehmet Emin Onger
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Zuhal Altunkaynak
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| |
Collapse
|
28
|
Tekieh T, Sasanpour P, Rafii-Tabar H. Effects of electromagnetic field exposure on conduction and concentration of voltage gated calcium channels: A Brownian dynamics study. Brain Res 2016; 1646:560-569. [PMID: 27346366 DOI: 10.1016/j.brainres.2016.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
A three-dimensional Brownian Dynamics (BD) in combination with electrostatic calculations is employed to specifically study the effects of radiation of high frequency electromagnetic fields on the conduction and concentration profile of calcium ions inside the voltage-gated calcium channels. The electrostatic calculations are performed using COMSOL Multiphysics by considering dielectric interfaces effectively. The simulations are performed for different frequencies and intensities. The simulation results show the variations of conductance, average number of ions and the concentration profiles of ions inside the channels in response to high frequency radiation. The ionic current inside the channel increases in response to high frequency electromagnetic field radiation, and the concentration profiles show that the residency of ions in the channel decreases accordingly.
Collapse
Affiliation(s)
- Tahereh Tekieh
- Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Sözbir E, Nazıroğlu M. Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain. Metab Brain Dis 2016; 31:385-93. [PMID: 26612073 DOI: 10.1007/s11011-015-9769-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
N-acetylcysteine (NAC) is a sulfhydryl donor antioxidant that contributes to the regeneration of glutathione (GSH) and also scavengers via a direct reaction with free oxygen radicals. Recently, we observed a modulatory role of NAC on GSH-depleted dorsal root ganglion (DRG) cells in rats. NAC may have a protective role on oxidative stress and calcium influx through regulation of the TRPM2 channel in diabetic neurons. Therefore, we investigated the effects of NAC on DRG TRPM2 channel currents and brain oxidative stress in streptozotocin (STZ)-induced diabetic rats. Thirty-six rats divided into four groups: control, STZ, NAC and STZ + NAC. Diabetes was induced in the STZ and STZ + NAC groups by intraperitoneal STZ (65 mg/kg) administration. After the induction of diabetes, rats in the NAC and STZ + NAC groups received NAC (150 mg/kg) via gastric gavage. After 2 weeks, DRG neurons and the brain cortex were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM2 currents in the DRG following diabetes induction with STZ were gated by H2O2. TRPM2 channel current densities in the DRG and lipid peroxidation levels in the DRG and brain were higher in the STZ groups than in controls; however, brain GSH, GSH peroxidase (GSH-Px), vitamin C and vitamin E concentrations and DRG GSH-Px activity were decreased by diabetes. STZ + H2O2-induced TRPM2 gating was totally inhibited by NAC and partially inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2-APB). GSH-Px activity and lipid peroxidation levels were also attenuated by NAC treatment. In conclusion, we observed a modulatory role of NAC on oxidative stress and Ca(2+) entry through the TRPM2 channel in the diabetic DRG and brain. Since excessive oxidative stress and overload Ca(2+) entry are common features of neuropathic pain, our findings are relevant to the etiology and treatment of pain neuropathology in DRG neurons.
Collapse
Affiliation(s)
- Ercan Sözbir
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
30
|
İkinci A, Mercantepe T, Unal D, Erol HS, Şahin A, Aslan A, Baş O, Erdem H, Sönmez OF, Kaya H, Odacı E. Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900MHz electromagnetic field during early and mid-adolescence. J Chem Neuroanat 2015; 75:99-104. [PMID: 26708410 DOI: 10.1016/j.jchemneu.2015.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
The effects of devices emitting electromagnetic field (EMF) on human health have become the subject of intense research among scientists due to the rapid increase in their use. Children and adolescents are particularly attracted to the use of devices emitting EMF, such as mobile phones. The aim of this study was therefore to investigate changes in the spinal cords of male rat pups exposed to the effect of 900MHz EMF. The study began with 24 Sprague-Dawley male rats aged 3 weeks. Three groups containing equal numbers of rats were established-control group (CG), sham group (SG) and EMF group (EMFG). EMFG rats were placed inside an EMF cage every day between postnatal days (PD) 21 and 46 and exposed to the effect of 900MHz EMF for 1h. SG rats were kept in the EMF cage for 1h without being exposed to the effect of EMF. At the end of the study, the spinal cords in the upper thoracic region of all rats were removed. Tissues were collected for biochemistry, light microscopy (LM) and transmission electron microscopic (TEM) examination. Biochemistry results revealed significantly increased malondialdehyde and glutathione levels in EMFG compared to CG and SG, while SG and EMFG catalase and superoxide dismutase levels were significantly higher than those in CG. In EMFG, LM revealed atrophy in the spinal cord, vacuolization, myelin thickening and irregularities in the perikarya. TEM revealed marked loss of myelin sheath integrity and invagination into the axon and broad vacuoles in axoplasm. The study results show that biochemical alterations and pathological changes may occur in the spinal cords of male rats following exposure to 900MHz EMF for 1h a day on PD 21-46.
Collapse
Affiliation(s)
- Ayşe İkinci
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Deniz Unal
- Department of Histology and Embryology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Hüseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Arzu Şahin
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Ali Aslan
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Orhan Baş
- Department of Anatomy, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Havva Erdem
- Department of Pathology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Osman Fikret Sönmez
- Department of Neurosurgery, Tepecik Education and Research Hospital, İzmir, Turkey
| | - Haydar Kaya
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Ersan Odacı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
31
|
Koşar PA, Nazıroğlu M, Övey İS, Çiğ B. Synergic Effects of Doxorubicin and Melatonin on Apoptosis and Mitochondrial Oxidative Stress in MCF-7 Breast Cancer Cells: Involvement of TRPV1 Channels. J Membr Biol 2015; 249:129-40. [PMID: 26525975 DOI: 10.1007/s00232-015-9855-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/14/2015] [Indexed: 01/21/2023]
Abstract
Transient receptor transient receptor potential vanilloid 1 (TRPV1) is a Ca(2+)-permeable channel gated by oxidative stress and capsaicin (CAP) and modulated by melatonin (MEL) and capsazepine (CPZ). A combination of doxorubicin (DOX) and MEL may offer a potential therapy for breast cancer by exerting antitumor and anti-apoptotic effects and modulating Ca(2+) influx and TRPV1 activity. We aimed to investigate the effects of MEL and DOX on the oxidative toxicity of MCF-7 human breast cancer cells, in addition to the activity of the TRPV1 channel and apoptosis. The MCF-7 cells were divided into the following six treatment groups: control, incubated with MEL (0.3 mM), incubated with 0.5 μM DOX, incubated with 1 μM DOX, incubated with MEL + 0.5 μM DOX, or incubated with MEL + 1 μM DOX. The intracellular free Ca(2+) concentration was higher in the DOX groups than in the control, and the concentration was decreased by MEL. The intracellular free Ca(2+) concentration was further increased by treatment with the TRPV1 channel activator CAP (0.01 mM), and it was decreased by the CPZ (0.1 mM). The intracellular production of reactive oxygen species, mitochondrial membrane depolarization, apoptosis level, procaspase 9 and PARP activities, and caspase 3 and caspase 9 activities were higher in the DOX and MEL groups than in the control. Apoptosis and the activity of caspase 9 were further increased in the DOX plus MEL groups. Taken together, the findings indicate that MEL supported the effects of DOX by activation of TRPV1 and apoptosis, as well as by inducing MCF-7 cell death. As the apoptosis and caspase activity of cancer cells increase because of their elevated metabolism, MEL may be useful in supporting their apoptotic capacity.
Collapse
Affiliation(s)
- Pınar Aslan Koşar
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey.
| | - İshak Suat Övey
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey
| | - Bilal Çiğ
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
32
|
Oxidative stress of brain and liver is increased by Wi-Fi (2.45GHz) exposure of rats during pregnancy and the development of newborns. J Chem Neuroanat 2015; 75:134-9. [PMID: 26520617 DOI: 10.1016/j.jchemneu.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/24/2022]
Abstract
An excessive production of reactive oxygen substances (ROS) and reduced antioxidant defence systems resulting from electromagnetic radiation (EMR) exposure may lead to oxidative brain and liver damage and degradation of membranes during pregnancy and development of rat pups. We aimed to investigate the effects of Wi-Fi-induced EMR on the brain and liver antioxidant redox systems in the rat during pregnancy and development. Sixteen pregnant rats and their 48 newborns were equally divided into control and EMR groups. The EMR groups were exposed to 2.45GHz EMR (1h/day for 5 days/week) from pregnancy to 3 weeks of age. Brain cortex and liver samples were taken from the newborns between the first and third weeks. In the EMR groups, lipid peroxidation levels in the brain and liver were increased following EMR exposure; however, the glutathione peroxidase (GSH-Px) activity, and vitamin A, vitamin E and β-carotene concentrations were decreased in the brain and liver. Glutathione (GSH) and vitamin C concentrations in the brain were also lower in the EMR groups than in the controls; however, their concentrations did not change in the liver. In conclusion, Wi-Fi-induced oxidative stress in the brain and liver of developing rats was the result of reduced GSH-Px, GSH and antioxidant vitamin concentrations. Moreover, the brain seemed to be more sensitive to oxidative injury compared to the liver in the development of newborns.
Collapse
|
33
|
Furtado-Filho OV, Borba JB, Maraschin T, Souza LM, Henriques JAP, Moreira JCF, Saffi J. Effects of chronic exposure to 950 MHz ultra-high-frequency electromagnetic radiation on reactive oxygen species metabolism in the right and left cerebral cortex of young rats of different ages. Int J Radiat Biol 2015; 91:891-7. [DOI: 10.3109/09553002.2015.1083629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Orlando V. Furtado-Filho
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Military School of Porto Alegre, Brazilian Army, Porto Alegre, Brazil
| | - Juliana B. Borba
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tatiana Maraschin
- Toxicological Genetics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Larissa M. Souza
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - João A. P. Henriques
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José C. F. Moreira
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jenifer Saffi
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
34
|
Shimizu S, Yonezawa R, Negoro T, Yamamoto S, Numata T, Ishii M, Mori Y, Toda T. Sensitization of H2O2-induced TRPM2 activation and subsequent interleukin-8 (CXCL8) production by intracellular Fe(2+) in human monocytic U937 cells. Int J Biochem Cell Biol 2015; 68:119-27. [PMID: 26386353 DOI: 10.1016/j.biocel.2015.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/07/2015] [Accepted: 09/14/2015] [Indexed: 01/16/2023]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca(2+)-permeable channel. In monocytes/macrophages, H2O2-induced TRPM2 activation causes cell death and/or production of chemokines that aggravate inflammatory diseases. However, relatively high concentrations of H2O2 are required for activation of TRPM2 channels in vitro. Thus, in the present study, factors that sensitize TRPM2 channels to H2O2 were identified and subsequent physiological responses were examined in U937 human monocytes. Temperature increase from 30°C to 37°C enhanced H2O2-induced TRPM2-mediated increase in intracellular free Ca(2+) ([Ca(2+)]i) in TRPM2-expressing HEK 293 cells (TRPM2/HEK cells). The H2O2-induced TRPM2 activation enhanced by the higher temperature was dramatically sensitized by intracellular Fe(2+)-accumulation following pretreatment with FeSO4. Thus intracellular Fe(2+)-accumulation sensitizes H2O2-induced TRPM2 activation at around body temperature. Moreover, intracellular Fe(2+)-accumulation increased poly(ADP-ribose) levels in nuclei by H2O2 treatment, and the sensitization of H2O2-induced TRPM2 activation were almost completely blocked by poly(ADP-ribose) polymerase inhibitors, suggesting that intracellular Fe(2+)-accumulation enhances H2O2-induced TRPM2 activation by increase of ADP-ribose production through poly(ADP-ribose) polymerase pathway. Similarly, pretreatment with FeSO4 stimulated H2O2-induced TRPM2 activation at 37°C in U937 cells and enhanced H2O2-induced ERK phosphorylation and interleukin-8 (CXCL8) production. Although the addition of H2O2 to cells under conditions of intracellular Fe(2+)-accumulation caused cell death, concentration of H2O2 required for CXCL8 production was lower than that resulting in cell death. These results indicate that intracellular Fe(2+)-accumulation sensitizes TRPM2 channels to H2O2 and subsequently produces CXCL8 at around body temperature. It is possible that sensitization of H2O2-induced TRPM2 channels by Fe(2+) may implicated in hemorrhagic brain injury via aggravation of inflammation, since Fe(2+) is released by heme degradation under intracerebral hemorrhage.
Collapse
Affiliation(s)
- Shunichi Shimizu
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Yokohama College of Pharmacy, Yokohama 245-0066, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo 164-8530, Japan.
| | - Ryo Yonezawa
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo 142-8555, Japan
| | - Takaharu Negoro
- Department of Pharmacogenomics, Showa University School of Pharmacy, Tokyo 142-8555, Japan
| | - Shinichiro Yamamoto
- Department of Molecular Cell Biology and Medicine, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8505, Japan
| | - Tomohiro Numata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masakazu Ishii
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo 142-8555, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takahiro Toda
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Yokohama College of Pharmacy, Yokohama 245-0066, Japan
| |
Collapse
|
35
|
Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 2015; 35:186-202. [PMID: 26151230 DOI: 10.3109/15368378.2015.1043557] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA and changes in the activity of antioxidant enzymes. It indicates that among 100 currently available peer-reviewed studies dealing with oxidative effects of low-intensity RFR, in general, 93 confirmed that RFR induces oxidative effects in biological systems. A wide pathogenic potential of the induced ROS and their involvement in cell signaling pathways explains a range of biological/health effects of low-intensity RFR, which include both cancer and non-cancer pathologies. In conclusion, our analysis demonstrates that low-intensity RFR is an expressive oxidative agent for living cells with a high pathogenic potential and that the oxidative stress induced by RFR exposure should be recognized as one of the primary mechanisms of the biological activity of this kind of radiation.
Collapse
Affiliation(s)
- Igor Yakymenko
- a Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Olexandr Tsybulin
- b Department of Biophysics , Bila Tserkva National Agrarian University , Bila Tserkva , Ukraine
| | - Evgeniy Sidorik
- a Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Diane Henshel
- c School of Public and Environmental Affairs , Indiana University Bloomington , Bloomington , IN , USA
| | - Olga Kyrylenko
- d A.I. Virtanen Institute, University of Eastern Finland , Kuopio , Finland
| | - Sergiy Kyrylenko
- e Department of Structural and Functional Biology , University of Campinas , Campinas , Brazil
| |
Collapse
|
36
|
Nazıroğlu M, Övey İ. Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neuroscience 2015; 293:55-66. [DOI: 10.1016/j.neuroscience.2015.02.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
|
37
|
Çiğ B, Nazıroğlu M. Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2756-65. [PMID: 25703814 DOI: 10.1016/j.bbamem.2015.02.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/17/2022]
Abstract
TRPV1 is a Ca2+ permeable channel and gated by noxious heat, oxidative stress and capsaicin (CAP). Some reports have indicated that non-ionized electromagnetic radiation (EMR)-induces heat and oxidative stress effects. We aimed to investigate the effects of distance from sources on calcium signaling, cytosolic ROS production, cell viability, apoptosis, plus caspase-3 and -9 values induced by mobile phones and Wi-Fi in breast cancer cells MCF-7 human breast cancer cell lines were divided into A, B, C and D groups as control, 900, 1800 and 2450 MHz groups, respectively. Cells in Group A were used as control and were kept in cell culture conditions without EMR exposure. Groups B, C and D were exposed to the EMR frequencies at different distances (0 cm, 1 cm, 5 cm, 10 cm, 20 cm and 25 cm) for 1h before CAP stimulation. The cytosolic ROS production, Ca2+ concentrations, apoptosis, caspase-3 and caspase-9 values were higher in groups B, C and D than in A group at 0 cm, 1 cm and 5 cm distances although cell viability (MTT) values were increased by the distances. There was no statistically significant difference in the values between control, 20 and 25 cm. Wi-Fi and mobile phone EMR placed within 10 cm of the cells induced excessive oxidative responses and apoptosis via TRPV1-induced cytosolic Ca2+ accumulation in the cancer cells. Using cell phones and Wi-Fi sources which are farther away than 10 cm may provide useful protection against oxidative stress, apoptosis and overload of intracellular Ca2+. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey; Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
38
|
Yürüker V, Nazıroğlu M, Şenol N. Reduction in traumatic brain injury-induced oxidative stress, apoptosis, and calcium entry in rat hippocampus by melatonin: Possible involvement of TRPM2 channels. Metab Brain Dis 2015; 30:223-31. [PMID: 25339252 DOI: 10.1007/s11011-014-9623-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/12/2014] [Indexed: 11/26/2022]
Abstract
Melatonin, which is a very effective reactive oxygen species (ROS) scavenger, acts through a direct reaction with free radicals. Ca(2+) entry induced by traumatic brain injury (TBI) has deleterious effects on human hippocampal function. TRPM2 is a Ca(2+) permeable non-selective channel in hippocampal neurons, and its activation of during oxidative stress has been linked to cell death. Despite the importance of oxidative stress in TBI, its role in apoptosis and Ca(2+) entry in TBI is poorly understood. Therefore, we tested the effects of melatonin on apoptosis, oxidative stress, and Ca(2+) entry through the TRPM2 channel in the hippocampal neurons of TBI-induced rats. Thirty-two rats were divided into the following four groups: control, melatonin, TBI, and TBI + melatonin groups. Melatonin (5 mg/kg body weight) was intraperitoneally given to animals in the melatonin group and the TBI + melatonin group after 1 h of brain trauma. Hippocampal neurons were freshly isolated from the four groups, incubated with a nonspecific TRPM2 blocker (2-aminoethyl diphenylborinate, 2-APB), and then stimulated with cumene hydroperoxide. Apoptosis, caspase-3, caspase-9, intracellular ROS production, mitochondrial membrane depolarization and intracellular free Ca(2+) ([Ca(2+)]i) values were high in the TBI group, and low in the TBI + melatonin group. The [Ca(2+)]i concentration was decreased in the four groups by 2-APB. In our TBI experimental model, TRPM2 channels were involved in Ca(2+) entry-induced neuronal death, and the negative modulation of the activity of this channel by melatonin pretreatment may account for the neuroprotective activity of TRPM2 channels against oxidative stress, apoptosis, and Ca(2+) entry.
Collapse
Affiliation(s)
- Vehbi Yürüker
- Department of Neurosurgery, Faculty of Medicine, University of SuleymanDemirel, Isparta, Turkey
| | | | | |
Collapse
|
39
|
Gardiner KJ. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des Devel Ther 2014; 9:103-25. [PMID: 25552901 PMCID: PMC4277121 DOI: 10.2147/dddt.s51476] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability (ID). Although ID can be mild, the average intelligence quotient is in the range of 40-50. All individuals with DS will also develop the neuropathology of Alzheimer's disease (AD) by the age of 30-40 years, and approximately half will display an AD-like dementia by the age of 60 years. DS is caused by an extra copy of the long arm of human chromosome 21 (Hsa21) and the consequent elevated levels of expression, due to dosage, of trisomic genes. Despite a worldwide incidence of one in 700-1,000 live births, there are currently no pharmacological treatments available for ID or AD in DS. However, over the last several years, very promising results have been obtained with a mouse model of DS, the Ts65Dn. A diverse array of drugs has been shown to rescue, or partially rescue, DS-relevant deficits in learning and memory and abnormalities in cellular and electrophysiological features seen in the Ts65Dn. These results suggest that some level of amelioration or prevention of cognitive deficits in people with DS may be possible. Here, we review information from the preclinical evaluations in the Ts65Dn, how drugs were selected, how efficacy was judged, and how outcomes differ, or not, among studies. We also summarize the current state of human clinical trials for ID and AD in DS. Lastly, we describe the genetic limitations of the Ts65Dn as a model of DS, and in the preclinical testing of pharmacotherapeutics, and suggest additional targets to be considered for potential pharmacotherapies.
Collapse
Affiliation(s)
- Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program, Neuroscience Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
40
|
Epilepsy But Not Mobile Phone Frequency (900 MHz) Induces Apoptosis and Calcium Entry in Hippocampus of Epileptic Rat: Involvement of TRPV1 Channels. J Membr Biol 2014; 248:83-91. [DOI: 10.1007/s00232-014-9744-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/23/2014] [Indexed: 11/24/2022]
|
41
|
Inhibitory effects of AG490 on H2O2-induced TRPM2-mediated Ca2+ entry. Eur J Pharmacol 2014; 742:22-30. [DOI: 10.1016/j.ejphar.2014.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/12/2023]
|
42
|
Övey İS, Naziroğlu M. Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 2014; 284:225-233. [PMID: 25305668 DOI: 10.1016/j.neuroscience.2014.09.078] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/15/2022]
Abstract
Oxidative stress and apoptosis were induced in neuronal cultures by inhibition of glutathione (GSH) biosynthesis with d,l-buthionine-S,R-sulfoximine (BSO). Transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) cation channels are gated by oxidative stress. The oxidant effects of homocysteine (Hcy) may induce activation of TRPV1 and TRPM2 channels in aged mice as a model of Alzheimer's disease (AD). We tested the effects of Hcy, BSO and GSH on oxidative stress, apoptosis and Ca2+ and influx via TRPM2 and TRPV1 channels in the hippocampus of mice. Native mice hippocampal neurons were divided into five groups as follows; control, Hcy, BSO, Hcy+BSO and Hcy+BSO+GSH groups. The neurons in TRPM2 and TRPV1 experiments were stimulated by hydrogen peroxide and capsaicin, respectively. BSO and Hcy incubations increased intracellular free Ca2+ concentrations, reactive oxygen species, apoptosis, mitochondrial depolarization, and levels of caspase 3 and 9. All of these increases were reduced by GSH treatments. Treatment with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA) as potent inhibitors of TRPM2, capsazepine as a potent inhibitor of TRPV1, verapamil+diltiazem (V+D) as inhibitors of the voltage-gated Ca2+ channels (VGCC) and MK-801 as a N-methyl-d-aspartate (NMDA) channel antagonist indicated that GSH depletion and Hcy elevation activated Ca2+ entry into the neurons through TRPM2, TRPV1, VGCC and NMDA channels. Inhibitor roles of 2-APB and capsazepine on the Ca2+ entry higher than in V+D and MK-801 antagonists. In conclusion, these findings support the idea that GSH depletion and Hcy elevation can have damaging effects on hippocampal neurons by perturbing calcium homeostasis, mainly through TRPM2 and TRPV1 channels. GSH treatment can partially reverse these effects.
Collapse
Affiliation(s)
- İ S Övey
- Department of Biophysics, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey
| | - M Naziroğlu
- Department of Biophysics, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey; Neuroscience Research Center, University of Suleyman Demirel, Isparta, Turkey.
| |
Collapse
|
43
|
Ghazizadeh V, Nazıroğlu M. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats. Metab Brain Dis 2014; 29:787-99. [PMID: 24792079 DOI: 10.1007/s11011-014-9549-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/14/2014] [Indexed: 11/28/2022]
Abstract
Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.
Collapse
Affiliation(s)
- Vahid Ghazizadeh
- Neuroscience Research Center, University of Suleyman Demirel, 32260, Isparta, Isparta, Turkey
| | | |
Collapse
|
44
|
Tök L, Nazıroğlu M, Doğan S, Kahya MC, Tök O. Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats. Indian J Ophthalmol 2014; 62:12-5. [PMID: 24492496 PMCID: PMC3955064 DOI: 10.4103/0301-4738.126166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction: Melatonin has been considered a potent antioxidant that detoxifies a variety of reactive oxygen species in many pathophysiological states of eye. The present study was designed to determine the effects of Wi-Fi exposure on the lens oxidant, antioxidant redox systems, as well as the possible protective effects of melatonin on the lens injury induced by electromagnetic radiation (EMR). Materials and Methods: Thirty-two rats were used in the current study and they were randomly divided into four equal groups as follows: First and second groups were cage-control and sham-control rats. Rats in third group were exposed to Wi-Fi (2.45 GHz) for duration of 60 min/day for 30 days. As in the third group, the fourth group was treated with melatonin. The one-hour exposure to irradiation in second, third and fourth took place at noon each day. Results: Lipid peroxidation levels in the lens were slightly higher in third (Wi-Fi) group than in cage and sham control groups although their concentrations were significantly (P < 0.05) decreased by melatonin supplementation. Glutathione peroxidase (GSH-Px) activity was significantly (P < 0.05) lower in Wi-Fi group than in cage and sham control groups although GSH-Px (P < 0.01) and reduced glutathione (P < 0.05) values were significantly higher in Wi-Fi + melatonin group than in Wi-Fi group. Conclusions: There are poor oxidative toxic effects of one hour of Wi-Fi exposure on the lens in the animals. However, melatonin supplementation in the lens seems to have protective effects on the oxidant system by modulation of GSH-Px activity.
Collapse
Affiliation(s)
| | - Mustafa Nazıroğlu
- Department of Biophysics, Medical Faculty, Süleyman Demirel University, Isparta, Turkey
| | | | | | | |
Collapse
|
45
|
Kahya MC, Nazıroğlu M, Çiğ B. Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells. Biol Trace Elem Res 2014; 160:285-93. [PMID: 24965080 DOI: 10.1007/s12011-014-0032-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022]
Abstract
Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR + selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36 ± 0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Mehmet Cemal Kahya
- Department of Biophysics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | | | | |
Collapse
|
46
|
Aida L, Soumaya G, Myriam E, Mohsen S, Hafedh A. Effects of static magnetic field exposure on plasma element levels in rat. Biol Trace Elem Res 2014; 160:67-72. [PMID: 24894831 DOI: 10.1007/s12011-014-9987-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/16/2014] [Indexed: 11/24/2022]
Abstract
The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. SMF influenced cellular antioxidant defense mechanisms by affecting antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). However, there were insufficient reports about the effects of SMF on macro and trace elements in serum, and the results were contradictory until now. In the current study, 12 rats were divided into two groups, namely as control and exposure group (128 mT and 1 h/day during five consecutive days). The macro and trace element concentrations in serum were examined. No significant difference was observed in the sodium (Na), potassium (K), calcium (Ca), phosphorus (P), and selenium (Se) levels in rat compared to control. By contrast, exposure to SMF showed an increase in the zinc (Zn) level and a decrease in iron (Fe) concentration. Under our experimental conditions, SMF exposure cannot affect the plasma levels of macroelements, while it can disrupt Zn and Fe concentrations in rat.
Collapse
Affiliation(s)
- Lahbib Aida
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, 7021, Jarzouna, Tunisia,
| | | | | | | | | |
Collapse
|
47
|
Şenol N, Nazıroğlu M. Melatonin reduces traumatic brain injury-induced oxidative stress in the cerebral cortex and blood of rats. Neural Regen Res 2014; 9:1112-6. [PMID: 25206769 PMCID: PMC4146095 DOI: 10.4103/1673-5374.135312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 01/17/2023] Open
Abstract
Free radicals induced by traumatic brain injury have deleterious effects on the function and antioxidant vitamin levels of several organ systems including the brain. Melatonin possesses antioxidant effect on the brain by maintaining antioxidant enzyme and vitamin levels. We investigated the effects of melatonin on antioxidant ability in the cerebral cortex and blood of traumatic brain injury rats. Results showed that the cerebral cortex β-carotene, vitamin C, vitamin E, reduced glutathione, and erythrocyte reduced glutathione levels, and plasma vitamin C level were decreased by traumatic brain injury whereas they were increased following melatonin treatment. In conclusion, melatonin seems to have protective effects on traumatic brain injury-induced cerebral cortex and blood toxicity by inhibiting free radical formation and supporting antioxidant vitamin redox system.
Collapse
Affiliation(s)
- Nilgün Şenol
- Department of Neurosurgery, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, University of Suleyman Demirel, Isparta, Turkey
| |
Collapse
|
48
|
Çetin H, Nazıroğlu M, Çelik Ö, Yüksel M, Pastacı N, Özkaya MO. Liver antioxidant stores protect the brain from electromagnetic radiation (900 and 1800 MHz)-induced oxidative stress in rats during pregnancy and the development of offspring. J Matern Fetal Neonatal Med 2014; 27:1915-21. [DOI: 10.3109/14767058.2014.898056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Li K, Ma S, Ren D, Li Y, Ding G, Liu J, Guo Y, Guo G. Effects of electromagnetic pulse on serum element levels in rat. Biol Trace Elem Res 2014; 158:81-6. [PMID: 24497087 DOI: 10.1007/s12011-014-9903-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/22/2014] [Indexed: 01/20/2023]
Abstract
Electromagnetic pulse (EMP) was a potentially harmful factor to the human body, and a biological dosimetry to evaluate effects of EMP is necessary. Little is known about effects of EMP on concentration of macro and trace elements in serum so far. In this study, Sprague-Dawley rats were randomly divided into 50-kV/m EMP-exposed group (n = 10), 100-kV/m EMP-exposed group (n = 10), 200-kV/m EMP-exposed group (n = 40), and the sham-exposed group (n = 20). The macro and trace element concentrations in serum were examined at 6, 12, 24, and 48 h after EMP exposure at different electric field intensities. Compared with the sham-exposed groups, the concentration of sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), selenium (Se), and manganese (Mn) in rat serum was not changed significantly within 48 h after 200 pulses of EMP exposure at electric field intensity of 50, 100, and 200 kV/m although the K level was decreased and the Ca level was increased with the electric field intensity of EMP increasing. In addition, there was a tendency that the Zn level was decreased with the time going on within 48 h after EMP exposure. Under our experimental conditions, EMP exposure cannot affect the concentration of macro and trace elements in rat serum. There was no time-effect or dose-effect relationship between EMP exposure and serum element levels. The macro and trace elements in serum are not suitable endpoints of biological dosimetry of EMP.
Collapse
Affiliation(s)
- Kangchu Li
- Department of Radiation Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release. J Cell Mol Med 2014; 18:1060-70. [PMID: 24548607 PMCID: PMC4508145 DOI: 10.1111/jcmm.12250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/18/2014] [Indexed: 01/12/2023] Open
Abstract
Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.
Collapse
Affiliation(s)
- Dong-Dong Liu
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|