1
|
The dorsal subiculum is required for contextual fear conditioning consolidation in rats. Behav Brain Res 2020; 390:112661. [PMID: 32407819 DOI: 10.1016/j.bbr.2020.112661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
The hippocampal formation has a well-known role in contextual fear conditioning. The dorsal subiculum connects the hippocampus to the entorhinal cortex through pathways that seemingly rely on NMDA-dependent synaptic plasticity. The role of the dorsal subiculum in contextual fear conditioning retrieval, but not acquisition, has been previously reported. However, most of the critical biological phenomena involved in memory formation occur in the consolidation phase. The present study aimed to assess the effects of intra-dorsal subiculum muscimol or AP5 infusion on contextual fear conditioning consolidation. Our data show that dorsal subiculum integrity, as well as NMDA transmission in this region, seem to be necessary for contextual fear conditioning consolidation.
Collapse
|
2
|
Zhang GW, Sun WJ, Zingg B, Shen L, He J, Xiong Y, Tao HW, Zhang LI. A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning. Neuron 2018; 97:406-417.e4. [PMID: 29290554 PMCID: PMC5798467 DOI: 10.1016/j.neuron.2017.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022]
Abstract
In the mammalian brain, auditory information is known to be processed along a central ascending pathway leading to auditory cortex (AC). Whether there exist any major pathways beyond this canonical auditory neuraxis remains unclear. In awake mice, we found that auditory responses in entorhinal cortex (EC) cannot be explained by a previously proposed relay from AC based on response properties. By combining anatomical tracing and optogenetic/pharmacological manipulations, we discovered that EC received auditory input primarily from the medial septum (MS), rather than AC. A previously uncharacterized auditory pathway was then revealed: it branched from the cochlear nucleus, and via caudal pontine reticular nucleus, pontine central gray, and MS, reached EC. Neurons along this non-canonical auditory pathway responded selectively to high-intensity broadband noise, but not pure tones. Disruption of the pathway resulted in an impairment of specifically noise-cued fear conditioning. This reticular-limbic pathway may thus function in processing aversive acoustic signals.
Collapse
Affiliation(s)
- Guang-Wei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China; Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Wen-Jian Sun
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Brian Zingg
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Shen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jufang He
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China.
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
3
|
Adenosine A 2A Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory. Neuropsychopharmacology 2016; 41:2862-2871. [PMID: 27312408 PMCID: PMC5061896 DOI: 10.1038/npp.2016.98] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
The consumption of caffeine modulates working and reference memory through the antagonism of adenosine A2A receptors (A2ARs) controlling synaptic plasticity processes in hippocampal excitatory synapses. Fear memory essentially involves plastic changes in amygdala circuits. However, it is unknown if A2ARs in the amygdala regulate synaptic plasticity and fear memory. We report that A2ARs in the amygdala are enriched in synapses and located to glutamatergic synapses, where they selectively control synaptic plasticity rather than synaptic transmission at a major afferent pathway to the amygdala. Notably, the downregulation of A2ARs selectively in the basolateral complex of the amygdala, using a lentivirus with a silencing shRNA (small hairpin RNA targeting A2AR (shA2AR)), impaired fear acquisition as well as Pavlovian fear retrieval. This is probably associated with the upregulation and gain of function of A2ARs in the amygdala after fear acquisition. The importance of A2ARs to control fear memory was further confirmed by the ability of SCH58261 (0.1 mg/kg; A2AR antagonist), caffeine (5 mg/kg), but not DPCPX (0.5 mg/kg; A1R antagonist), treatment for 7 days before fear conditioning onwards, to attenuate the retrieval of context fear after 24-48 h and after 7-8 days. These results demonstrate that amygdala A2ARs control fear memory and the underlying process of synaptic plasticity in this brain region. This provides a neurophysiological basis for the association between A2AR polymorphisms and phobia or panic attacks in humans and prompts a therapeutic interest in A2ARs to manage fear-related pathologies.
Collapse
|
4
|
Liu C, Li Y, Edwards TJ, Kurniawan ND, Richards LJ, Jiang T. Altered structural connectome in adolescent socially isolated mice. Neuroimage 2016; 139:259-270. [DOI: 10.1016/j.neuroimage.2016.06.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/11/2016] [Accepted: 06/18/2016] [Indexed: 12/18/2022] Open
|
5
|
van de Schoot R, Broere JJ, Perryck KH, Zondervan-Zwijnenburg M, van Loey NE. Analyzing small data sets using Bayesian estimation: the case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. Eur J Psychotraumatol 2015; 6:25216. [PMID: 25765534 PMCID: PMC4357639 DOI: 10.3402/ejpt.v6.25216] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/03/2022] Open
Abstract
Background : The analysis of small data sets in longitudinal studies can lead to power issues and often suffers from biased parameter values. These issues can be solved by using Bayesian estimation in conjunction with informative prior distributions. By means of a simulation study and an empirical example concerning posttraumatic stress symptoms (PTSS) following mechanical ventilation in burn survivors, we demonstrate the advantages and potential pitfalls of using Bayesian estimation. Methods : First, we show how to specify prior distributions and by means of a sensitivity analysis we demonstrate how to check the exact influence of the prior (mis-) specification. Thereafter, we show by means of a simulation the situations in which the Bayesian approach outperforms the default, maximum likelihood and approach. Finally, we re-analyze empirical data on burn survivors which provided preliminary evidence of an aversive influence of a period of mechanical ventilation on the course of PTSS following burns. Results : Not suprisingly, maximum likelihood estimation showed insufficient coverage as well as power with very small samples. Only when Bayesian analysis, in conjunction with informative priors, was used power increased to acceptable levels. As expected, we showed that the smaller the sample size the more the results rely on the prior specification. Conclusion : We show that two issues often encountered during analysis of small samples, power and biased parameters, can be solved by including prior information into Bayesian analysis. We argue that the use of informative priors should always be reported together with a sensitivity analysis.
Collapse
Affiliation(s)
- Rens van de Schoot
- Department of Methods and Statistics, Utrecht University, Utrecht, The Netherlands.,Optentia Research Program, Faculty of Humanities, North-West University, Vanderbijlpark, South Africa;
| | - Joris J Broere
- Department of Methods and Statistics, Utrecht University, Utrecht, The Netherlands
| | - Koen H Perryck
- Department of Methods and Statistics, Utrecht University, Utrecht, The Netherlands
| | | | - Nancy E van Loey
- Department of Clinical & Health Psychology, Utrecht University, Utrecht, The Netherlands.,Department Behavioural Research, Association of Dutch Burn Centres, Beverwijk, The Netherlands
| |
Collapse
|
6
|
Morrissey MD, Takehara-Nishiuchi K. Diversity of mnemonic function within the entorhinal cortex: A meta-analysis of rodent behavioral studies. Neurobiol Learn Mem 2014; 115:95-107. [DOI: 10.1016/j.nlm.2014.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/16/2022]
|
7
|
Baldi E, Bucherelli C. Entorhinal cortex contribution to contextual fear conditioning extinction and reconsolidation in rats. Neurobiol Learn Mem 2014; 110:64-71. [PMID: 24569052 DOI: 10.1016/j.nlm.2014.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 01/27/2023]
Abstract
During contextual fear conditioning a rat learns a temporal contiguity association between the exposition to a previously neutral context (CS) and an aversive unconditioned stimulus (US) as a footshock. This condition determines in the rat the freezing reaction during the subsequent re-exposition to the context. Potentially the re-exposition without US presentation initiates two opposing and competing processes: reconsolidation and extinction. Reconsolidation process re-stabilizes and strengthens the original memory and it is initiated by a brief re-exposure to context. Instead the extinction process leads to the decrease of the expression of the original memory and it is triggered by prolonged re-exposure to the context. Here we analyzed the entorhinal cortex (ENT) participation in contextual fear conditioning reconsolidation and extinction. The rats were trained in contextual fear conditioning and 24h later they were subjected either to a brief (2 min) reactivation session or to a prolonged (120 min) re-exposition to context to induce extinction of the contextual fear memory. Immediately after the reactivation or the extinction session, the animals were submitted to bilateral ENT TTX inactivation. Memory retention was assessed as conditioned freezing duration measured 72 h after TTX administration. The results showed that ENT inactivation both after reactivation and extinction session was followed by contextual freezing retention impairment. Thus, the present findings point out that ENT is involved in contextual fear memory reconsolidation and extinction. This neural structure might be part of parallel circuits underlying two phases of contextual fear memory processing.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Dipartimento di Medicina, Sperimentale e Clinica, Sezione di Fisiologia, Università degli Studi di Firenze, Viale G.B. Morgagni 63, I-50134 Firenze, Italy
| | - Corrado Bucherelli
- Dipartimento di Medicina, Sperimentale e Clinica, Sezione di Fisiologia, Università degli Studi di Firenze, Viale G.B. Morgagni 63, I-50134 Firenze, Italy.
| |
Collapse
|
8
|
Zou L, Li H, Jin G, Tian M, Qin J, Zhao H. Fimbria-fornix (FF)-transected hippocampal extracts induce the activation of astrocytes in vitro. In Vitro Cell Dev Biol Anim 2013; 50:174-82. [PMID: 24203634 DOI: 10.1007/s11626-013-9709-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Hippocampus is one of the neurogenesis areas in adult mammals, but the function of astrocytes in this area is still less known. In our previous study, the fimbria-fornix (FF)-transected hippocampal extracts promoted the proliferation and neuronal differentiation of radial glial cells in vitro. To explore the effects of hippocampal extracts on gliogenesis, the hippocampal astrocytes were treated by normal or ff-transected hippocampal extracts in vitro. The cells were immunostained by brain lipid-binding protein (BLBP), nestin, and SOX2 to assess their state of activation. The effects of astrocyte-conditioned medium on the neuronal differentiation of hippocampal neural stem cells (NSCs) were also investigated. After treatment of FF-transected hippocampal extracts, the number of BLBP, nestin, and Sox-positive cells were obviously more than the cells which treated by normal hippocampal extracts, these cells maintained a state of activation and the activated astrocyte-conditioned medium also promoted the differentiation of NSCs into more neurons. These findings suggest that the astrocytes can be activated by FF-transected hippocampal extracts and these activated cells also can promote the neuronal differentiation of hippocampal NSCs in vitro.
Collapse
Affiliation(s)
- Linqing Zou
- Department of Human Anatomy and Histoembryology, Medical College of Soochow University, Suzhou, 215123, China
| | | | | | | | | | | |
Collapse
|